Citations
All
Search in:AllTitleAbstractAuthor name
Publications
(228)
Patents
Grants
Pathways
Clinical trials
Publication
Journal: Frontiers in Genetics
December/26/2021
Abstract
Autophagy is closely associated with the tumor immune microenvironment (TIME) and prognosis of patients with lung adenocarcinoma (LUAD). In the present study, we established a signature on the basis of long noncoding RNAs (lncRNAs) related to autophagy (ARlncRNAs) to investigate the TIME and survival of patients with LUAD. We selected ARlncRNAs associated with prognosis to construct a model and divided each sample into different groups on the basis of risk score. The ARlncRNA signature could be recognized as an independent prognostic factor for patients with LUAD, and patients in the low-risk group had a greater survival advantage. Kyoto Encyclopedia of Genes and Genomes and Gene Ontology enrichment analysis suggested that several immune functions and pathways were enriched in different groups. A high-risk score correlated significantly negatively with high abundance of immune cells and stromal cells around the tumor and high tumor mutational burden. Low-risk patients had a higher PD-1, CTLA-4, and HAVCR2 expression and had a better efficacy of immune checkpoint inhibitors, including PD-1/CTLA-4 inhibitor. A reliable signature on the basis of ARlncRNAs was constructed to explore the TIME and prognosis of patients with LUAD, which could provide valuable information for individualized LUAD treatment.
Keywords: long noncoding RNA; lung adenocarcinoma; prognostic signature; survival; tumor immune microenvironment.
Publication
Journal: Biosensors and Bioelectronics
December/16/2021
Abstract
In this study, we proposed an advanced point-of-care molecular diagnostic technology to evaluate the acute rejection (AR) in kidney transplanted patients. On the contrary to the conventional PCR method, we developed a colorimetric loop mediated isothermal amplification (LAMP) for quantitative analysis of the six biomarkers related to AR (CD3ϵ, IP-10, Tim-3-HAVCR2, CXCL9, PSMB9, C1QB) with a reference gene (18S rRNA). Using urinary cDNA samples of transplanted patients, it turned out that three biomarkers among six, namely IP-10, Tim-3-HAVCR2 and C1QB, have significant discrepancy in quantity between the stable graft (STA) patient and the AR patient. The AR prediction model using these three biomarkers was established, which could estimate the immune-rejection in the patients with 93.3% of accuracy. For the point-of-care (POC) molecular diagnostics for the AR evaluation, we constructed a centrifugal microfluidic platform, in which the RNA extraction from the clinical urinary samples, the quantitative reverse-transcription (RT)-LAMP reaction, and the data analysis based on the AR prediction model could be performed in a serial order. Ten blind clinical samples were analyzed on the POC genetic analyzer, showing 100% match with the validated qPCR data. Thus, the proposed advanced molecular diagnostic platform enables us to perform the timely treatment for the transplanted patients who are suffering from the allograft failure and side effects such as infection and malignancy.
Keywords: AR prediction Model; Acute rejection (AR); Centrifugal microfluidics; Kidney transplantation; Loop mediated isothermal amplification; Urinary mRNA.
Publication
Journal: Emerging Microbes and Infections
June/13/2021
Abstract
Immune checkpoints play various important roles in tumour immunity, which usually contribute to T cells' exhaustion, leading to immunosuppression in the tumour microenvironment. However, the roles of immune checkpoints in infectious diseases, especially fungal infection, remain elusive. Here, we reanalyzed a recent published single-cell RNA-sequencing (scRNA-seq) data of peripheral blood mononuclear cells (PBMCs) stimulated with Candida albicans (C. albicans), to explore the expression patterns of immune checkpoints after C. albicans bloodstream infection. We characterized the heterogeneous pathway activities among different immune cell subpopulations after C. albicans infection. The CTLA-4 pathway was up-regulated in stimulated CD4+ and CD8+ T cells, while the PD-1 pathway showed high activity in stimulated plasmacytoid dendritic cell (pDC) and monocytes. Importantly, we found that immunosuppressive checkpoints HAVCR2 and LAG3 were only expressed in stimulated NK and CD8+ T cells, respectively. Their viabilities were validated by flow cytometry. We also identified three overexpressed genes (ISG20, LY6E, ISG15) across all stimulated cells. Also, two monocyte-specific overexpressed genes (SNX10, IDO1) were screened out in this study. Together, these results supplemented the landscape of immune checkpoints in fungal infection, which may serve as potential therapeutic targets for C. albicans infection. Moreover, the genes with the most relevant for C. albicans infection were identified in this study.
Keywords: Candida albicans; Single-cell RNA-sequencing; bioinformatics; immune checkpoints; immunotherapy.
Publication
Journal: Thoracic Cancer
September/11/2021
Abstract
Background: To explore the genetic and immunophenotyping heterogeneities between patients with intrapulmonary metastasis (IPM) or multiple primary lung cancer (MPLC).
Methods: Whole exome sequencing (WES) and transcriptome sequencing (RNA-seq) were performed on the tissue and blood samples of IPM and MPLC patients to comprehensively analyze the clonal evolution, molecular typing and immunophenotyping.
Results: There was no significant difference in genetic mutation, tumor mutational burden (TMB) value and mutant allele tumor heterogeneity (MATH) value between IPM and MPLC patients. Notably, the loss of heterozygosity (LOH) of human leukocyte antigen (HLA) appeared in all IPM patients, while there was also no significant difference between the two groups. In addition, expression of immune checkpoint-related genes including CTLA-4, BTLA, TIGIT and HAVCR2 in the MPLC group was significantly higher than those in IPM group. At the same time, 86 differentially expressed genes (DEGs) were observed between IPM and MPLC patients with transcriptome sequencing, of which 56 DEGs were upregulated and 30 were downregulated in the IPM group compared with the MPLC group. The cluster analysis revealed that the 86 DEGs could be distinguished in IPM and MPLC samples. Moreover, only the infiltration levels of CD56dim natural killer cells in the IPM group was significantly higher than that in the MPLC group, and the infiltration levels of the remaining 27 immune cell subsets were similar in both groups.
Conclusions: IPM and MPLC are roughly similar in genetic and immune characteristics indicating that genomics alone may not be able to effectively distinguish between IPM and MPLC, which still needs to be comprehensively evaluated with clinical manifestations, imaging, and pathological characteristics.
Keywords: intrapulmonary metastasis; multiple primary lung cancer; transcriptome sequencing; tumor-infiltrating lymphocyte; whole exome sequencing.
Publication
Journal: World Journal of Surgical Oncology
September/14/2021
Abstract
Background: Squamous cell carcinoma (SCC) is a disease with distinct management complexities as it displays a remarkably heterogeneous molecular subtype. However, the landscape of angiogenesis for SCC is not fully investigated.
Method and materials: The angiogenesis-related subtypes of SCC were established by using the ConsensusClusterPlus package based on angiogenesis-related genes and TCGA data. We analyzed the alteration of genes and miRNAs as well as pathways associated with angiogenesis subtypes. Next, the regulation network, the correlation with genomic characteristics, immune microenvironment, and clinical features of the angiogenesis subtypes were further investigated. Finally, the prognostic impact of the angiogenesis-related subtypes for SCC was also analyzed.
Results: A total of 1368 SCC samples were included in this study. Two angiogenesis subtypes were then identified based on the one hundred and sixty-three angiogenesis-related genes with subtype1 (angiogenesis subtype) of 951 SCC patients and subtype2 (non-angiogenesis subtype) of 417 SCC. GSEA revealed that angiogenesis and epithelial-mesenchymal transition, inflammatory response, and hypoxia were enriched in the angiogenesis subtype. Eight of the 15 immune checkpoints (ADORA2A, BTLA, CD276, CYBB, HAVCR2, SIGLEC7, SIGLEC9, and VTCN1) were significantly upregulated while C10orf54 were significantly downregulated in the angiogenesis subtype. The survival analysis revealed that the patients in the angiogenesis subtype have poorer survival outcomes than those in the non-angiogenesis subtype (P = 0.017 for disease-free interval and P = 0.00013 for overall survival).
Conclusion: Our analysis revealed a novel angiogenesis subtype classification in SCC and provides new insights into a hallmark of SCC progression.
Keywords: Angiogenesis; Comprehensive analysis; Squamous cell carcinoma; TCGA.
Publication
Journal: Frontiers in Oncology
September/15/2021
Abstract
The chemokine CXCL9 (C-X-C motif chemokine ligand 9) has been reported to be required for antitumour immune responses following immune checkpoint blockade. In this study, we sought to investigate the potential value of CXCL9 according to immune responses in patients with breast cancer (BC). A variety of open-source databases and online tools were used to explore the expression features and prognostic significance of CXCL9 in BC and its correlation with immune-related biomarkers followed by subsequent verification with immunohistochemistry experiments. The CXCL9 mRNA level was found to be significantly higher in BC than in normal tissue and was associated with better survival outcomes in patients with ER-negative tumours. Moreover, CXCL9 is significantly correlated with immune cell infiltration and immune-related biomarkers, including CTLA4, GZMB, LAG3, PDCD1 and HAVCR2. Finally, we performed immunohistochemistry with breast cancer tissue samples and observed that CXCL9 is highly expressed in the ER-negative subgroup and positively correlated with the immune-related factors LAG3, PD1, PDL1 and CTLA4 to varying degrees. These findings suggest that CXCL9 is an underlying biomarker for predicting the status of immune infiltration in ER-negative breast cancer.
Keywords: CXCL9; biomarker; breast cancer; immune infiltration; prognosis.
Publication
Journal: Blood advances
September/16/2021
Abstract
Recent studies identified germline mutations in HAVCR2 (encoding TIM-3) as a genetic factor that predisposes to subcutaneous panniculitis-like T-cell lymphoma (SPTCL). However, the differences between HAVCR2-mutated (HAVCR2MUT) and HAVCR2-wild-type (HAVCR2WT) SPTCLs remain unclear. A nationwide cohort of 53 SPTCL patients diagnosed at eight Korean institutions was established. Whole-exome sequencing (WES) and RNA-seq were performed on eight patients in the discovery set. In the validation set, targeted gene sequencing (TGS) or direct sequencing of HAVCR2 was performed. Of 49 patients with available HAVCR2 status, 24 (49.0%) were HAVCR2Y82C. HAVCR2Y82C was associated with younger age (p = 0.001), development of hemophagocytic lymphohistiocytosis (HLH) or HLH-like systemic illness (p < 0.001), and short relapse-free survival (RFS) (p = 0.023). Most mutated genes in SPTCLs were involved in immune responses, epigenetic modifications, and cell signaling. Mutations in UNC13D, PIAS3, and KMT2D were more frequent in HAVCR2WT SPTCLs. At the gene expression level, HAVCR2Y82C SPTCLs were enriched in genes involved in IL6-JAK-STAT3 signaling and in TNF-α signaling via NF-κB. CCR4 was significantly upregulated in HAVCR2WT SPTCLs both at the mRNA and protein levels. We established a risk stratification system for SPTCL by integrating clinical and histopathological features, including age and HAVCR2 mutation status. This risk stratification system was strongly associated with RFS (p = 0.031). In conclusion, the HAVCR2Y82C mutation was common in Korean patients with SPTCL and was associated with unique clinicopathological and genetic features. Combining clinicopathological parameters could aid in predicting SPTCL patients' prognosis.
Publication
Journal: Gene
September/15/2021
Abstract
This study was designed to construct a prognostic risk model to predict prognosis and immunotherapy response of bladder cancer (BCa) patinets. 350 differential expressed immune-related genes (DEIRGs) were obtained according to the transcriptome profiling and immune-related genes from the Cancer Genome Atlas (TCGA) database and ImmPort database, respectively. A prognostic risk model was constructed based on 15 hub genes through univariate, multivariate, and LASSO Cox regression analyses. The area under the receiver operating characteristic (ROC) curve was 0.743, indicating the superiority of the model. The scatter plot showed that as the risk score increased, the overall survival decreased significantly. In addition, all results were internally verified by the TCGA cohort. The model showed that the higher the grade, clinical stage, and TNM stage of BCa, the higher the risk score of patients. The tumor mutation burden of the low-risk group was generally higher than that of the high-risk group. Immune cell infiltration analysis showed that CD8 T cells, naive CD4 T cells, follicular helper T cells and M0 Macrophage were significantly different between the two groups. Several key immune checkpoint genes were found to be significantly different between the two groups, such as CTLA4, PD-L1, CD47, CD276, CXCL8, and HAVCR2/TIM3. Finally, the analysis of immunotherapy revealed that the efficacy of CTLA4 or PD1 blockers alone was better in the low-risk group than in the high-risk group. Taken together, we developed and validated a prognostic risk model based on 15 hub genes, which performed well in predicting prognosis and immunotherapy response of BCa patients.
Keywords: bladder cancer; immune checkpoint; immunogenomic landscape; prognostic risk model; tumor mutation burden.
Publication
Journal: BioMed Research International
October/6/2021
Abstract
Tumor-infiltrating immune cells have been implicated in the tumorigenesis and progression of esophageal squamous cell carcinoma (ESCC). However, the functionalities and clinical significance of immune cells remain largely unveiled. In this study, the gene expression data from the Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) were extracted. The relative infiltrating levels were estimated by single-sample gene set enrichment analysis. Some cytotoxic immune cells were attenuated, and resting cytotoxic immune cells were accumulated in ESCC. Remarkably, we also observed that infiltrating levels of macrophage M2 and resting natural killer (NK) cells were increased in nonresponders of CRT, and T cells that had anticancer activities such as activated memory CD4 and T helper 2 (Th2) cells were significantly reduced in ESCC tissues of the nonresponders. Moreover, the high infiltrations of the resting natural killer (NK) and dendritic cell (DC) were observed to result in a shorter overall survival in ESCC. Consistently, high expression of immune checkpoint genes, CTLA4 and HAVCR2, was associated with poor prognosis. Furthermore, STAT5B, a key transcription factor, as well as its target genes, involved in the regulation of T cells, was significantly downregulated in ESCC, especially subgroup I, indicating that downregulation of STAT5B might be associated with reduced T cell-mediated anticancer activity. In conclusion, the present study significantly improved our understanding of the regulatory roles of immune cells in ESCC.
Publication
Journal: Journal of Medicinal Chemistry
September/30/2021
Abstract
T-cell immunoglobulin and mucin domain-containing molecule 3 (TIM-3; HAVCR2) has emerged as an attractive immune checkpoint target for cancer immunotherapy. TIM-3 is a negative regulator of the systemic immune response to cancer and is expressed on several dysfunctional, or exhausted, immune cell subsets. Upregulation of TIM-3 is associated with tumor progression, poor survival rates, and acquired resistance to antibody-based immunotherapies in the clinic. Despite the potential advantages of small-molecule inhibitors over antibodies, the discovery of small-molecule inhibitors has lagged behind that of antibody therapeutics. Here, we describe the discovery of high-affinity small-molecule ligands for TIM-3 through an NMR-based fragment screen and structure-based lead optimization. These compounds represent useful tools to further study the biology of TIM-3 immune modulation in cancer and serve as a potentially useful starting point toward the discovery of TIM-3-targeted therapeutics.
Publication
Journal: Cancers
October/12/2021
Abstract
In colorectal cancer (CRC), the role of microsatellite instability (MSI) is well known. In a genome-wide scale, for the first time, we explored whether differential methylation is associated with MSI. We analyzed 250 paired samples from 125 CRC patients (m = 72, f = 53) at different stages. Of them, 101 had left-sided CRC, 30 had MSI, 34 had somatic mutation in KRAS proto-oncogene (KRAS), and 6 had B-Raf proto-oncogene (BRAF) exon 15p.V600E mutation. MSI was more frequent in right-sided tumors (54% vs. 17%, p = 0.003). Among the microsatellite stable (MSS) CRC, a paired comparison revealed 1641 differentially methylated loci (DML) covering 686 genes at FDR 0.001 with delta beta ≥ 20%. Similar analysis in MSI revealed 6209 DML covering 2316 genes. ANOVA model including interaction (Tumor*MSI) revealed 23,322 loci, where the delta beta was different among MSI and MSS patients. Our study shows an association between MSI and tumor DNA methylation in the pathogenesis of CRC. Given the interaction seen in this study, it may be worth considering the MSI status while looking for methylation markers in CRC. The study also indicates an opportunity for potential use of certain immune checkpoint inhibitors (CTLA4 and HAVCR2 inhibitors) in CRC with MSI.
Keywords: CIMP; CTLA4; HAVCR2; MMR; MSI; colorectal cancer; immune checkpoint inhibitor; interaction.
Publication
Journal: Frontiers in Oncology
January/30/2022
Abstract
Background: We aimed to establish a novel epithelial-mesenchymal transition (EMT)-related gene prognostic index (EMTGPI) associated with biochemical recurrence (BCR) and drug resistance for prostate cancer (PCa).
Methods: We used Lasso and Cox regression analysis to establish the EMTGPI. All analyses were conducted with R version 3.6.3 and its suitable packages.
Results: We established the EMTGPI based on SFRP4 and SPP1. Patients in high-risk group had 2.23 times of BCR risk than those in low-risk group (p = 0.003), as well as 2.36 times of metastasis risk (p = 0.053). In external validation, we detected similar diagnostic efficacy and prognostic value in terms of BCR free survival. For drug resistance, we observe moderately diagnostic accuracy of EMTGPI score (AUC: 0.804). We found that PDCD1LG2 (p = 0.04) and CD96 (p = 0.01) expressed higher in BCR patients compared with their counterpart. For TME analysis, we detected that CD8+ T cells and M1 macrophages expressed higher in BCR group. Moreover, stromal score (p = 0.003), immune score (p = 0.01), and estimate score (p = 0.003) were higher in BCR patients. We found that EMTGPI was significantly related to HAVCR2 (r: 0.34), CD96 (r: 0.26), CD47 (r: 0.22), KIR3DL1 (r: -0.21), KLRD1 (r: -0.21), and CD2 (r: 0.21). In addition, we observed that EMTGPI was significantly associated with M1 macrophages (r: 0.6), M2 macrophages (r: -0.33), monocytes (r: -0.18), neutrophils (r: -0.43), CD8+ T cells (r: 0.13), and dendritic cells (r: 0.37). PHA-793887 was the common drug sensitive to SPP1 and SFRP4, and PC3 and DU145 were the common PCa-related cell lines of SPP1, SFRP4, and PHA-793887.
Conclusions: We concluded that the EMTGPI score based on SFRP4 and SPP1 could be used to predict BCR for PCa patients. We confirmed the impact of immune evasion on the BCR process of PCa.
Keywords: biochemical recurrence; epithelial-mesenchymal transition; immune checkpoint; prostate cancer; tumor chemoresistance; tumor immune microenvironment.
Publication
Journal: Frontiers in Genetics
January/23/2022
Abstract
Background: Lower-grade gliomas (LGGs) are a heterogeneous set of gliomas. One of the primary sources of glioma heterogeneity is genomic instability, a novel characteristic of cancer. It has been reported that long noncoding RNAs (lncRNAs) play an essential role in regulating genomic stability. However, the potential relationship between genomic instability and lncRNA in LGGs and its prognostic value is unclear. Methods: In this study, the LGG samples from The Cancer Genome Atlas (TCGA) were divided into two clusters by integrating the lncRNA expression profile and somatic mutation data using hierarchical clustering. Then, with the differentially expressed lncRNAs between these two clusters, we identified genomic instability-related lncRNAs (GInLncRNAs) in the LGG samples and analyzed their potential function and pathway by co-expression network. Cox and least absolute shrinkage and selection operator (LASSO) regression analyses were conducted to establish a GInLncRNA prognostic signature (GInLncSig), which was assessed by internal and external verification, correlation analysis with somatic mutation, independent prognostic analysis, clinical stratification analysis, and model comparisons. We also established a nomogram to predict the prognosis more accurately. Finally, we performed multi-omics-based analyses to explore the relationship between risk scores and multi-omics data, including immune characteristics, N 6-methyladenosine (m6A), stemness index, drug sensitivity, and gene set enrichment analysis (GSEA). Results: We identified 52 GInLncRNAs and screened five from them to construct the GInLncSig model (CRNDE, AC025171.5, AL390755.1, AL049749.1, and TGFB2-AS1), which could independently and accurately predict the outcome of patients with LGG. The GInLncSig model was significantly associated with somatic mutation and outperformed other published signatures. GSEA revealed that metabolic pathways, immune pathways, and cancer pathways were enriched in the high-risk group. Multi-omics-based analyses revealed that T-cell functions, m6A statuses, and stemness characteristics were significantly disparate between two risk subgroups, and immune checkpoints such as PD-L1, PDCD1LG2, and HAVCR2 were significantly highly expressed in the high-risk group. The expression of GInLncSig prognostic genes dramatically correlated with the sensitivity of tumor cells to chemotherapy drugs. Conclusion: A novel signature composed of five GInLncRNAs can be utilized to predict prognosis and impact the immune status, m6A status, and stemness characteristics in LGG. Furthermore, these lncRNAs may be potential and alternative therapeutic targets.
Keywords: genome instability; long noncoding RNA; lower-grade glioma; multi-omics analysis; signature.
Publication
Journal: Aging
January/19/2022
Abstract
Uveal melanoma (UM) is a highly malignant intraocular tumor. The imbalance of alternative splicing (AS) is a landmark of tumor initiation and progression. However, there are few studies of AS in UM. Thus, this study aimed to identify a new AS-based prognostic signature and reveal its relationship with tumor-infiltrating immune cells. Univariable Cox regression analysis identified survival-related AS events. The prognostic signature was constructed using the univariable and multivariable Cox regression analyses. Kaplan-Meier survival analysis, the proportional hazard model, and receiver operating characteristic curves verified its prognostic value. Single-sample gene set enrichment analysis was used to analyze immune cell enrichment. The correlation of the risk score with tumor-infiltrating immune cells and immune checkpoint blockade (ICB) genes was examined. We screened 2886 survival-related AS events, of which five were selected to build a prognostic predictor. The risk score was positively relevant with ICB key targets (HAVCR2, IDO1, and PDCD1) and the infiltration of T cells, MDSC, and activated B cells. We provided novel and effective indices, including a risk score and clinical nomogram, for prognostic prediction in UM and discussed the potential relationship between survival-related AS events and immune cell infiltration, which is crucial for developing immune-targeted therapy to improve prognosis.
Keywords: alternative splicing; immune checkpoint blockade genes; immune infiltration; uveal melanoma.
Publication
Journal: Molekulyarnaya Biologiya
January/26/2022
Abstract
The TIM-3 receptor, encoded by the Hepatitis A Virus Cellular Receptor 2 (HAVCR2) gene, is an immune checkpoint and plays an important role in preventing the development of autoimmune reactions. This receptor is expressed on the surface of various immunocytes and its functions in myeloid cells remain poorly understood, compared to the role of T cell specific TIM-3 that is actively studied in the context of the search for promising therapeutic targets in cancer immunotherapy. During this study, we performed deletion analysis of the promoter region of the HAVCR2 gene, as well as functional characterization of its enhancer, and studied the effect of a number of single nucleotide polymorphisms (SNPs) on the activity of these regulatory elements in the relevant model of human macrophage-like cells-U937 activated monocytes. We have shown that the SNPs rs10515746(A) and rs4704853(A) located in the HAVCR2 gene promoter and associated with the development of a number of pathologies, do not affect the activity of the promoter in activated monocytes. However, a minor T variant of SNP rs13360222 located in the enhancer in the third intron of the gene, significantly reduces the ability of the enhancer to activate the HAVCR2 promoter, presumably due to weakening of the binding of nuclear receptor ESR2 to the respective region.
Keywords: HAVCR2; TIM-3; enhancer; promoter; single nucleotide polymorphisms; transcription regulation.
Publication
Journal: Journal of Endocrinological Investigation
January/27/2022
Abstract
Background: Pheochromocytomas and paragangliomas (PCPG) are rare catecholamine-secreting endocrine tumors deriving from chromaffin cells of the embryonic neural crest. Although distinct molecular PCPG subtypes have been elucidated, certain characteristics of these tumors have yet to be fully examined, namely the tumor microenvironment (TME). To further understand tumor-stromal interactions in PCPG subtypes, the present study deconvoluted bulk tumor gene expression to examine ligand-receptor interactions.
Methods: RNA-sequencing data primary solid PCPG tumors were derived from The Cancer Genome Atlas (TCGA). Tumor purity was estimated using two robust algorithms. The tumor purity estimates and bulk tumor expression values allowed for non-negative linear regression to predict the average expression of each gene in the stromal and tumor compartments for each PCPG molecular subtype. The predicted expression values were then used in conjunction with a previously curated ligand-receptor database and scoring system to evaluate top ligand-receptor interactions.
Results: Across all PCPG subtypes compared to normal samples, tumor-to-tumor signaling between bone morphogenic proteins 7 (BMP7) and 15 (BMP15) and cognate receptors ACVR2B and BMPR1B was increased. In addition, tumor-to-stroma signaling was enriched for interactions between predicted tumor-originating delta-like ligand 3 (DLL3) and predicted stromal NOTCH receptors. Stroma-to-tumor signaling was enriched for interactions between ephrins A1 and A4 with ephrin receptors EphA5, EphA7, and EphA8. Pseudohypoxia subtype tumors displayed increased predicted stromal expression of genes related to immune-exhausted T-cell response, including those for inhibitory receptors HAVCR2 and CTLA4.
Conclusion: The current exploratory study predicted stromal and tumor through compartmental deconvolution and yielded previously unrecognized interactions and putative biomarkers in PCPG.
Keywords: Ligand–receptor interactions; Paraganglioma; Pheochromocytoma; Pseudohypoxia; RNA deconvolution; Tumor microenvironment.
Publication
Journal: BioImpacts
January/24/2022
Abstract
Osteosarcoma (OS) is the most common type of primary malignant bone tumor. The high-throughput sequencing technology has shown potential abilities to illuminate the pathogenic genes in OS. This study was designed to find a powerful gene signature that can predict clinical outcomes. We selected OS cases with gene expression and survival data in the TARGET-OS dataset and GSE21257 datasets as training cohort and validation cohort, respectively. The univariate Cox regression and Kaplan-Meier analysis were conducted to determine potential prognostic genes from the training cohort. These potential prognostic genes underwent a LASSO regression, which then generated a gene signature. The harvested signature's predictive ability was further examined by the Kaplan-Meier analysis, Cox analysis, and receiver operating characteristic (ROC curve). More importantly, we listed similar studies in the most recent year and compared theirs with ours. Finally, we performed functional annotation, immune relevant signature correlation identification, and immune infiltrating analysis to better study he functional mechanism of the signature and the immune cells' roles in the gene signature's prognosis ability. A seventeen-gene signature (UBE2L3, PLD3, SLC45A4, CLTC, CTNNBIP1, FBXL5, MKL2, SELPLG, C3orf14, WDR53, ZFP90, UHRF2, ARX, CORT, DDX26B, MYC, and SLC16A3) was generated from the LASSO regression. The signature was then confirmed having strong and stable prognostic capacity in all studied cohorts by several statistical methods. We revealed the superiority of our signature after comparing it to our predecessors, and the GO and KEGG annotations uncovered the specifically mechanism of action related to the gene signature. Six immune signatures, including PRF1, CD8A, HAVCR2, LAG3, CD274, and GZMA were identified associating with our signature. The immune-infiltrating analysis recognized the vital roles of T cells CD8 and Mast cells activated, which potentially support the seventeen-gene signature's prognosis ability. We identified a robust seventeen-gene signature that can accurately predict OS prognosis. We identified potential immunotherapy targets to the gene signature. The T cells CD8 and Mast cells activated were identified linked with the seventeen-gene signature predictive power.
Publication
Journal: BioMed Research International
February/23/2022
Abstract
Background: Glioma is a common tumor originating from the glial cells of the brain. Immune checkpoint inhibitors can potentially be used to treat gliomas, although no drug is currently approved.
Methods: The expression levels of the immune checkpoint genes in glioma and normal tissues, and their correlation with the IDH mutation status and complete 1p/19q codeletion, were analyzed using The Cancer Genome Atlas (TCGA) and the Chinese Glioma Genome Atlas (CGGA) databases. Survival analyses were conducted using the CGGA database. Protein-protein interaction and functional enrichment analyses were performed via the STRING database using GO, KEGG, and Reactome pathways. The correlation between the immune checkpoints and the immune cell infiltration was determined using the TISIDB and TIMER databases.
Results: HAVCR2 was overexpressed in the gliomas compared to normal brain tissues, as well as in the high-grade glioma patients and significantly downregulated in IDH mutant or 1p/19q codeletion patients. Overexpression of HAVCR2 was associated with poor survival in tumor grades II, III, and IV and was the most correlated with immune infiltration of B and T cells.
Conclusion: HAVCR2 can be a potential therapeutic target for cancer immunotherapy for glioma patients.
Results with error correction
Publication
Journal: Nature
February/1/2015
Abstract
T-cell immunoglobulin domain and mucin domain-3 (TIM-3, also known as HAVCR2) is an activation-induced inhibitory molecule involved in tolerance and shown to induce T-cell exhaustion in chronic viral infection and cancers. Under some conditions, TIM-3 expression has also been shown to be stimulatory. Considering that TIM-3, like cytotoxic T lymphocyte antigen 4 (CTLA-4) and programmed death 1 (PD-1), is being targeted for cancer immunotherapy, it is important to identify the circumstances under which TIM-3 can inhibit and activate T-cell responses. Here we show that TIM-3 is co-expressed and forms a heterodimer with carcinoembryonic antigen cell adhesion molecule 1 (CEACAM1), another well-known molecule expressed on activated T cells and involved in T-cell inhibition. Biochemical, biophysical and X-ray crystallography studies show that the membrane-distal immunoglobulin-variable (IgV)-like amino-terminal domain of each is crucial to these interactions. The presence of CEACAM1 endows TIM-3 with inhibitory function. CEACAM1 facilitates the maturation and cell surface expression of TIM-3 by forming a heterodimeric interaction in cis through the highly related membrane-distal N-terminal domains of each molecule. CEACAM1 and TIM-3 also bind in trans through their N-terminal domains. Both cis and trans interactions between CEACAM1 and TIM-3 determine the tolerance-inducing function of TIM-3. In a mouse adoptive transfer colitis model, CEACAM1-deficient T cells are hyper-inflammatory with reduced cell surface expression of TIM-3 and regulatory cytokines, and this is restored by T-cell-specific CEACAM1 expression. During chronic viral infection and in a tumour environment, CEACAM1 and TIM-3 mark exhausted T cells. Co-blockade of CEACAM1 and TIM-3 leads to enhancement of anti-tumour immune responses with improved elimination of tumours in mouse colorectal cancer models. Thus, CEACAM1 serves as a heterophilic ligand for TIM-3 that is required for its ability to mediate T-cell inhibition, and this interaction has a crucial role in regulating autoimmunity and anti-tumour immunity.
Pulse
Views:
2
Posts:
No posts
Rating:
Not rated
Publication
Journal: Nature
June/17/2019
Abstract
Tumour-specific CD8 T cell dysfunction is a differentiation state that is distinct from the functional effector or memory T cell states1-6. Here we identify the nuclear factor TOX as a crucial regulator of the differentiation of tumour-specific T (TST) cells. We show that TOX is highly expressed in dysfunctional TST cells from tumours and in exhausted T cells during chronic viral infection. Expression of TOX is driven by chronic T cell receptor stimulation and NFAT activation. Ectopic expression of TOX in effector T cells in vitro induced a transcriptional program associated with T cell exhaustion. Conversely, deletion of Tox in TST cells in tumours abrogated the exhaustion program: Tox-deleted TST cells did not upregulate genes for inhibitory receptors (such as Pdcd1, Entpd1, Havcr2, Cd244 and Tigit), the chromatin of which remained largely inaccessible, and retained high expression of transcription factors such as TCF-1. Despite their normal, 'non-exhausted' immunophenotype, Tox-deleted TST cells remained dysfunctional, which suggests that the regulation of expression of inhibitory receptors is uncoupled from the loss of effector function. Notably, although Tox-deleted CD8 T cells differentiated normally to effector and memory states in response to acute infection, Tox-deleted TST cells failed to persist in tumours. We hypothesize that the TOX-induced exhaustion program serves to prevent the overstimulation of T cells and activation-induced cell death in settings of chronic antigen stimulation such as cancer.
Publication
Journal: Gastroenterology
December/3/2018
Abstract
T-cell exhaustion, or an impaired capacity to secrete cytokines and proliferate with overexpression of immune checkpoint receptors, occurs during chronic viral infections but has also been observed in tumors, including hepatocellular carcinomas (HCCs). We investigated features of exhaustion in CD8+ T cells isolated from HCC specimens.
We obtained HCC specimens, along with adjacent nontumor tissues and blood samples, from 90 patients who underwent surgical resection at Asan Medical Center (Seoul, Korea) from April 2016 through April 2018. Intrahepatic lymphocytes and tumor-infiltrating T cells were analyzed by flow cytometry. Tumor-infiltrating CD8+ T cells were sorted by flow cytometry into populations based on expression level of programmed cell death 1 (PDCD1 or PD1): PD1-high, PD1-intermediate, and PD1-negative. Sorted cells were analyzed by RNA sequencing. Proliferation and production of interferon gamma (IFNG) and tumor necrosis factor (TNF) by CD8+ T cells were measured in response to anti-CD3 and antibodies against immune checkpoint receptors including PD1, hepatitis A virus cellular receptor 2 (HAVCR2 or TIM3), lymphocyte activating 3 (LAG3), or isotype control. Tumor-associated antigen-specific CD8+ T cells were identified using HLA-A*0201 dextramers. PDL1 expression on tumor tissue was assessed by immunohistochemistry.
PD1-high, PD1-intermediate, and PD1-negative CD8+ T cells from HCCs had distinct gene expression profiles. PD1-high cells expressed higher levels of genes that regulate T-cell exhaustion than PD1-intermediate cells. PD1-high cells expressed TIM3 and LAG3, and low proportions of TCF1+, TBEThigh/eomesoderminlow, and CD127+. PD1-high cells produced the lowest amounts of IFNG and TNF upon anti-CD3 stimulation. Differences in the PD1 expression patterns of CD8+ T cells led to the identification of 2 subgroups of HCCs: HCCs with a discrete population of PD1-high cells were more aggressive than HCCs without a discrete population of PD1-high cells. HCCs with a discrete population of PD1-high cells had higher levels of predictive biomarkers of response to anti-PD1 therapy. Incubation of CD8+ T cells from HCCs with a discrete population of PD1-high cells with antibodies against PD1 and TIM3 or LAG3 further restored proliferation and production of IFNG and TNF in response to anti-CD3.
We found HCC specimens to contain CD8+ T cells that express different levels of PD1. HCCs with a discrete population of PD1-high CD8+ T cells express TIM3 and/or LAG3 and produce low levels of IFNG and TNF in response to anti-CD3. Incubation of these cells with antibodies against PD1 and TIM3 or LAG3 further restore proliferation and production of cytokines; HCCs with a discrete population of PD1-high CD8+ T cells might be more susceptible to combined immune checkpoint blockade-based therapies.
Publication
Journal: Clinical Cancer Research
February/6/2019
Abstract

PURPOSE
Innate immunity is an indispensable arm of tumor immune surveillance, and the liver is an organ with a predominance of innate immunity, where mucosal-associated invariant T (MAIT) cells are enriched. However, little is known about the phenotype, functions, and immunomodulatory role of MAIT cells in hepatocellular carcinoma (HCC).Experimental Design: The distribution, phenotype, and function of MAIT cells in patients with HCC were evaluated by both flow cytometry (FCM) and in vitro bioassays. Transcriptomic analysis of MAIT cells was also performed. Prognostic significance of tumor-infiltrating MAIT cells was validated in four independent cohorts of patients with HCC.

RESULTS
Despite their fewer densities in HCC tumor than normal liver, MAIT cells were significantly enriched in the HCC microenvironment compared with other mucosa-associated organs. Tumor-derived MAIT cells displayed a typical CCR7-CD45RA-CD45RO+CD95+ effector memory phenotype with lower costimulatory and effector capabilities. Tumor-educated MAIT cells significantly upregulated inhibitory molecules like PD-1, CTLA-4, TIM-3, secreted significantly less IFNγ and IL17, and produced minimal granzyme B and perforin while shifting to produce tumor-promoting cytokines like IL8. Transcriptome sequencing confirmed that tumor-derived MAIT cells were reprogrammed toward a tumor-promoting direction by downregulating genes enriched in pathways of cytokine secretion and cytolysis effector function like NFKB1 and STAT5B and by upregulating genes like IL8, CXCL12, and HAVCR2 (TIM-3). High infiltration of MAIT cells in HCC significantly correlated with an unfavorable clinical outcome, revealed by FCM, qRT-PCR, and multiplex IHC analyses, respectively.

CONCLUSIONS
HCC-infiltrating MAIT cells were functionally impaired and even reprogrammed to shift away from antitumor immunity and toward a tumor-promoting direction.See related commentary by Carbone, p. 3199.

Publication
Journal: Nature Communications
September/3/2019
Abstract
Natural killer (NK) cells are critical to both innate and adaptive immunity. However, the development and heterogeneity of human NK cells are yet to be fully defined. Using single-cell RNA-sequencing technology, here we identify distinct NK populations in human bone marrow and blood, including one population expressing higher levels of immediate early genes indicative of a homeostatic activation. Functionally matured NK cells with high expression of CX3CR1, HAVCR2 (TIM-3), and ZEB2 represents terminally differentiated status with the unique transcriptional profile. Transcriptomic and pseudotime analyses identify a transitional population between CD56bright and CD56dim NK cells. Finally, a donor with GATA2T354M mutation exhibits reduced percentage of CD56bright NK cells with altered transcriptome and elevated cell death. These data expand our understanding of the heterogeneity and development of human NK cells.
Publication
Journal: Nature Genetics
November/28/2018
Abstract
Subcutaneous panniculitis-like T cell lymphoma (SPTCL), a non-Hodgkin lymphoma, can be associated with hemophagocytic lymphohistiocytosis (HLH), a life-threatening immune activation that adversely affects survival1,2. T cell immunoglobulin mucin 3 (TIM-3) is a modulator of immune responses expressed on subgroups of T and innate immune cells. We identify in ~60% of SPTCL cases germline, loss-of-function, missense variants altering highly conserved residues of TIM-3, c.245A>G (p.Tyr82Cys) and c.291A>G (p.Ile97Met), each with specific geographic distribution. The variant encoding p.Tyr82Cys TIM-3 occurs on a potential founder chromosome in patients with East Asian and Polynesian ancestry, while p.Ile97Met TIM-3 occurs in patients with European ancestry. Both variants induce protein misfolding and abrogate TIM-3's plasma membrane expression, leading to persistent immune activation and increased production of inflammatory cytokines, including tumor necrosis factor-α and interleukin-1β, promoting HLH and SPTCL. Our findings highlight HLH-SPTCL as a new genetic entity and identify mutations causing TIM-3 alterations as a causative genetic defect in SPTCL. While HLH-SPTCL patients with mutant TIM-3 benefit from immunomodulation, therapeutic repression of the TIM-3 checkpoint may have adverse consequences.
Publication
Journal: Nature Medicine
May/6/2021
Abstract
Immune-checkpoint blockade (ICB) combined with neoadjuvant chemotherapy improves pathological complete response in breast cancer. To understand why only a subset of tumors respond to ICB, patients with hormone receptor-positive or triple-negative breast cancer were treated with anti-PD1 before surgery. Paired pre- versus on-treatment biopsies from treatment-naive patients receiving anti-PD1 (n = 29) or patients receiving neoadjuvant chemotherapy before anti-PD1 (n = 11) were subjected to single-cell transcriptome, T cell receptor and proteome profiling. One-third of tumors contained PD1-expressing T cells, which clonally expanded upon anti-PD1 treatment, irrespective of tumor subtype. Expansion mainly involved CD8+ T cells with pronounced expression of cytotoxic-activity (PRF1, GZMB), immune-cell homing (CXCL13) and exhaustion markers (HAVCR2, LAG3), and CD4+ T cells characterized by expression of T-helper-1 (IFNG) and follicular-helper (BCL6, CXCR5) markers. In pre-treatment biopsies, the relative frequency of immunoregulatory dendritic cells (PD-L1+), specific macrophage phenotypes (CCR2+ or MMP9+) and cancer cells exhibiting major histocompatibility complex class I/II expression correlated positively with T cell expansion. Conversely, undifferentiated pre-effector/memory T cells (TCF7+, GZMK+) or inhibitory macrophages (CX3CR1+, C3+) were inversely correlated with T cell expansion. Collectively, our data identify various immunophenotypes and associated gene sets that are positively or negatively correlated with T cell expansion following anti-PD1 treatment. We shed light on the heterogeneity in treatment response to anti-PD1 in breast cancer.
Publication
Journal: Immunity
September/2/2013
Abstract
T cell activation plays a central role in immune response and in the maintenance of self-tolerance. We analyzed the evolutionary history of T cell regulatory molecules. Nine genes involved in triggering T cell activation or in regulating the ensuing response evolved adaptively in mammals. Several positively selected sites overlap with positions interacting with the binding partner or with cellular components. Population genetic analysis in humans revealed a complex scenario of local (FASLG, CD40LG, HAVCR2) and worldwide (FAS, ICOSLG) adaptation and H. sapiens-to-Neandertal gene flow (gene transfer between populations). Disease variants in these genes are preferential targets of pathogen-driven selection, and a Crohn's disease risk polymorphism targeted by bacterial-driven selection modulates the expression of ICOSLG in response to a bacterial superantigen. Therefore, we used evolutionary information to generate experimentally testable hypotheses concerning the function of specific genetic variants and indicate that adaptation to infection underlies the maintenance of autoimmune risk alleles.
Publication
Journal: Frontiers in Immunology
January/8/2019
Abstract
Eomes, a T-box transcription factor, is known important for both function and homeostasis of effector and memory T cells, but was recently also implicated in CD8+ T cell exhaustion. However, whether and how Eomes might regulate effector functions or exhaustion of CD8+ T cells, especially in the tumor setting, is unknown. Here we first show, as tumor progressed, Eomes expression was elevated in tumor-infiltrating CD8+ T cells, especially in PD-1+Tim-3+ exhausted CD8+ T cells. Complete loss of Eomes in T cells resulted in impaired development of anti-tumor CTLs, whereas deletion of one allele of Eomes in T cells decreased development of exhausted CD8+ T cells, which offered better tumor control. Integrative analysis of RNAseq and ChIPseq of Eomes-overexpressing T cells revealed that high levels of Eomes expression directly controlled expression of T cell exhaustion genes, such as Havcr2. In addition, Eomes might compete with T-bet binding to regulatory genomic loci to antagonize T-bet functions. Collectively, Eomes exerts bimodal functions in CD8+ T cells in tumor.
Publication
Journal: American Journal of Pathology
October/28/2003
Abstract
The induction of organ-specific autoimmune diseases, such as experimental allergic encephalomyelitis (EAE) the principal animal model of multiple sclerosis (MS), relies on the use of complete Freund's adjuvant (CFA) emulsions. In this study we report that the physical structure of the particles comprising neuroantigen-CFA emulsions significantly influences the genetic control of the incidence and sexual dimorphism seen in EAE. Immunization of (B10.S/SgMcdJ x SJL/J) F(2) mice segregating the quantitative trait loci (QTL) controlling EAE in susceptible SJL/J and resistant B10.S/SgMcdJ mice with emulsions consisting of particles where the Mycobacterium tuberculosis and neuroantigens are localized on the phase surfaces led to severe EAE in 98.8% of the mice, overriding all sex-specific and non-sex-specific genetic checkpoints. In contrast, F(2) mice immunized with emulsions where the bacterial products and encephalitogens are buried inside the water/oil vesicles exhibited a significant reduction in disease incidence (7.5%) and a sexual dimorphism (5% male versus 10% female). A genome scan identified QTL on chromosomes 7 and 11 controlling the sexual dimorphism as a function of the physical structure of the emulsion. The chromosome 11 QTL co-localizes with eae6b, and with Il12b and heptatitis A virus cellular receptor 2 (Havcr2, formerly known as Timd3), both of which are candidate genes for this QTL. Sequence analysis of the SJL/J and B10.S/SgMcdJ alleles indicates that both gene products are structurally monomorphic. Expression analysis also excluded both as candidates for this sex-specific QTL. These results reinforce the importance of gene-environment interactions in initiating and propagating autoimmune disease of the central nervous system, particularly in the context of susceptibility to MS and disease heterogeneity.
Publication
Journal: Oncotarget
August/23/2017
Abstract
In breast cancer (BC), up to 10-20% patients were known to have clinical benefit with immune checkpoint inhibitors, and biomarkers are needed for optimal use of this multi-potential therapeutic strategy. Accordingly, we conducted an experiment to identify expression of genes associated with immune checkpoints that represent potential targets of cancer immunotherapy. We performed whole-transcriptome sequencing and whole-exome sequencing using 37 refractory BC specimens. In the immune pathway gene set expression analysis, we found that HER2 expression and previous taxane treatment were positively correlated with high expression of immune gene set expression (p = 0.070 and 0.008, respectively). The nine genes associated with immune checkpoints - PDCD1(PD-1), CD274(PD-L1), CD276(B7-H3), CTLA-4, IDO1, LAG3, VTCN1, HAVCR2, and TNFRSF4(OX40) - interacted with each other. In addition, HER2 expression also affected the expression levels of these genes (p = 0.044). Lastly, expression of immune checkpoint genes and tissue-infiltrating lymphocytes were positively correlated in metastatic BCs (p < 0.001). In conclusion, we suggest that HER2 expression and previous taxane treatment are potential surrogate markers for high expression of immune checkpoint genes and immune pathway gene sets. Further study of the BC immune signature with large-scale, translational data sets is warranted.
Publication
Journal: Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie
December/7/2019
Abstract
Natural Killer (NK) cells are effector lymphocytes involved in tumor immunosurveillance, however, the specific mechanism in hepatocellular carcinoma (HCC) has not been well understood. In the present study, we estimated the relative abundances of NK cells in HCC using gene expression data, and found that NK cell abundance was lower in HCC tissues than in the adjacent normal tissues. With the common HCC subclasses, we also found that three HCC subclasses had distinct abundances of NK cells. Moreover, we also found strong association between NK cell abundances and genes encoding immune checkpoint proteins, such as KLRD1, CD96, TIGIT, CD86, HAVCR2, PDCD1 (PD-1), HLA-E, CD274 (PD-L1), and CTLA4, among which, KLRD1 vs. HLA-E, CD274 vs. PDCD1, and CTLA4 vs. CD86 were three pairs of receptors and ligands. Furthermore, we investigated the clinical significance of NK cell activities in HCC, and found that the NK cell abundances were highly associated with the response to sorafinib, and higher NK cell abundances may prolong both the recurrence-free and overall survival of HCC patients. In summary, the present study not only improved our understanding of the potential tumor immune evasion mechanism of NK cells in HCC, but also proposed the potential clinical application of NK activities in HCC treatment and risk assessment.
Publication
Journal: Immunobiology
March/16/2019
Abstract
Given the heightened interest in manipulation of co-signaling cascades for cancer immunotherapy, we sought to determine how/whether tumors decorated with therapeutic monoclonal antibodies (mAbs) impact the expression of co-signaling molecules on human NK cells. Stimulation of NK cells with aggregated IgG1 resulted in the upregulation of HAVCR2 - the gene encoding T-cell immunoglobulin and mucin-containing domain (Tim)-3 - known to be involved in the induction of peripheral T cell tolerance. This upregulation of HAVCR2 was recapitulated at the protein level, following NK cell stimulation by either mAb opsonized tumors, recombinant human IgG1 Fc multimer, and/or non-Fc stimuli e.g. IL-12/IL-18. The patterns of Tim-3 expression were temporally distinct from the FcR mediated induction of the co-signaling molecule, 4-1BB (CD137), with Tim-3 increases observed twenty minutes following exposure to Fc multimers and remaining at high levels for at least six hours, while increases in CD137 expression were first observed at the four-hour time point. Importantly, these Tim-3+ NK cells were functionally diverse, as evidenced by the fact that their ability to produce IFN-γ in response to an NK cell responsive tumor was strictly dependent upon the stimuli employed for Tim-3 induction. These data suggest that Tim-3 upregulation is the common end-result of NK cell activation by a variety of unique and overlapping stimuli and is not an independent marker of NK cell exhaustion. Furthermore, our observations potentially explain the diverse functionality attributed to Tim-3+ NK cells and should be considered prior to use of anti-Tim-3 inhibitory mAbs for cancer immunotherapy.
Publication
Journal: Frontiers in Immunology
March/16/2020
Abstract
In the context of adoptive T cell transfer (ACT) for cancer treatment, it is crucial to generate in vitro large amounts of tumor-specific CD8 T cells with high potential to persist in vivo. PD-1, Tim3, and CD39 have been proposed as markers of tumor-specific tumor-infiltrating CD8 T lymphocytes (CD8 TILs). However, these molecules are highly expressed by terminally differentiated exhausted CD8 T cells (Tex) that lack proliferation potential. Therefore, optimized strategies to isolate tumor-specific TILs with high proliferative potential, such as Tcf1+ precursor exhausted T cells (Tpe) are needed to improve in vivo persistence of ACT. Here we aimed at defining cell surface markers that would unequivocally identify Types for precision cell sorting increasing the purity of tumor-specific PD-1+ Tcf1+ Tpe from total TILs. Transcriptomic analysis of Tpe vs. Tex CD8 TIL subsets from B16 tumors and primary human melanoma tumors revealed that Tpes are enriched in Slamf6 and lack Entpd1 and Havcr2 expression, which encode Slamf6, CD39, and Tim3 cell surface proteins, respectively. Indeed, we observed by flow cytometry that CD39- Tim3- Slamf6+ PD-1+ cells yielded maximum enrichment for tumor specific PD-1+ Tcf1+ OT1 TILs in B16.OVA tumors. Moreover, this population showed higher re-expansion capacity upon an acute infection recall response compared to the CD39+ counterparts or bulk PD-1+ TILs. Hence, we report an enhanced sorting strategy (CD39- Tim3- Slamf6+ PD-1+) of Tpes. In conclusion, we show that optimization of CD8 TIL cell sorting strategy is a viable approach to improve recall capacity and in vivo persistence of transferred cells in the context of ACT.
Publication
Journal: Genetics
April/29/2008
Abstract
Numerous genes have been identified to date that contribute to the host response to systemic Salmonella Typhimurium infection in mice. We have previously identified two loci, Ity2 and Ity3, that control survival to Salmonella infection in the wild-derived inbred MOLF/Ei mouse using a (C57BL/6J x MOLF/Ei)F(2)cross. We validated the existence of these two loci by creating congenic mice carrying each quantitative trait locus (QTL) in isolation. Subcongenic mice generated for each locus allowed us to define the critical intervals underlying Ity2 and Ity3. Furthermore, expression profiling was carried out with the aim of identifying differentially expressed genes within the critical intervals as potential candidate genes. Genomewide expression arrays were used to interrogate expression differences in the Ity2 congenics, leading to the identification of a new candidate gene (Havcr2, hepatitis A virus cellular receptor 2). Interval-specific oligonucleotide arrays were created for Ity3, identifying one potential candidate gene (Chi3l1, chitinase 3-like 1) to be pursued further. The combination of the use of congenics in QTL confirmation and fine mapping and in the identification of candidate genes by expression profiling has been successful and represents a step toward quantitative gene(s) identification.
Publication
Journal: Epigenetics
June/4/2008
Abstract
Imprinted genes are monoallelically expressed from either the maternal or paternal genome. Because cancer develops through genetic and epigenetic alterations, imprinted genes affect tumorigenesis depending on which parental allele undergoes alteration. We have shown previously in a mouse model of neurofibromatosis type 1 (NF1) that inheriting mutant alleles of Nf1 and Trp53 on chromosome 11 from the mother or father dramatically changes the tumor spectrum of mutant progeny, likely due to alteration in an imprinted gene(s) linked to Nf1 and Trp53. In order to identify imprinted genes on chromosome 11 that are responsible for differences in susceptibility, we tested candidate imprinted genes predicted by a bioinformatics approach and an experimental approach. We have tested 30 candidate genes (Havcr2, Camk2b, Ccdc85a, Cntnap1, Ikzf1, 5730522E02Rik, Gria1, Zfp39, Sgcd, Jup, Nxph3, Spnb2, Asb3, Rasd1, Map2k3, Map2k4, Trp53, Serpinf1, Crk, Rasl10b, Itga3, Hoxb5, Cbx1, Pparbp, Igfbp4, Smarce1, Stat3, Atp6v0a1, Nbr1 and Meox1), two known imprinted genes (Grb10 and Impact) and Nf1, which has not been previously identified as an imprinted gene. Although we confirmed the imprinting of Grb10 and Impact, we found no other genes imprinted in the brain. We did, however, find strain-biased expression of Camk2b, 5730522E02Rik, Havcr2, Map2k3, Serpinf1, Rasl10b, Itga3, Asb3, Trp53, Nf1, Smarce1, Stat3, Cbx1, Pparbp and Cntnap1. These results suggest that the prediction of imprinted genes is complicated and must be individually validated. This manuscript includes supplementary data listing primer sequences for Taqman assays and Ct values for Taqman PCR.
Publication
Journal: eLife
December/6/2018
Abstract
Leukemia stem cells (LSCs) are regarded as the origins and key therapeutic targets of leukemia, but limited knowledge is available on the key determinants of LSC 'stemness'. Using single-cell RNA-seq analysis, we identify a master regulator, SPI1, the LSC-specific expression of which determines the molecular signature and activity of LSCs in the murine Pten-null T-ALL model. Although initiated by PTEN-controlled β-catenin activation, Spi1 expression and LSC 'stemness' are maintained by a β-catenin-SPI1-HAVCR2 regulatory circuit independent of the leukemogenic driver mutation. Perturbing any component of this circuit either genetically or pharmacologically can prevent LSC formation or eliminate existing LSCs. LSCs lose their 'stemness' when Spi1 expression is silenced by DNA methylation, but Spi1 expression can be reactivated by 5-AZ treatment. Importantly, similar regulatory mechanisms may be also present in human T-ALL.
Publication
Journal: OncoImmunology
November/11/2020
Abstract
Objectives: Tumor necrosis receptor super family (TNFRSF) plays an important role in regulating the function of CD8+ T cells. In this study, we explored the clinical significance and immune profile of TNFRSF9+ CD8+ T cells in clear cell renal cell carcinoma (ccRCC).
Methods: The infiltration of immune cells was determined by immunohistochemistry in ZS cohort from our hospital and their prognostic value was further determined by Cox regression. Functional status of CD8+ T cells in ccRCC was determined by flow cytometry in 29 fresh tumor samples. In silico analysis on a TCGA cohort and other datasets was performed to further demonstrate our findings.
Results: High TNFRSF9+ CD8+ T cells infiltration was associated with inferior overall survival in ZS cohort (p = .0016) and TCGA-KIRC cohort (p = .018). TNFRSF9+ CD8+ T cells expressed higher exhaustion markers (PD-1, TIM-3, CTLA-4, and TIGIT), and effector markers (IFN-γ, GZMB, CD107a, and Ki-67), than their TNFRSF9 negative counterparts. In silico analysis indicated the expression of TNFRSF9 was significantly correlated with IFNG, GZMK, MKI-67, PDCD1, HAVCR2, TIGIT, and CTLA-4 in CD8+ T cells. However, higher TNFRSF9 signature was correlated with larger tumor size shrinkage (p = .003) and better progression-free survival (p = .012) in patients treated with nivolumab but not everolimus.
Conclusion: TNFRSF9+ CD8+ T cells, which possessed both exhaustion and effector phenotype, were identified as an adverse prognosticator in ccRCC. These cells enrichment was associated with better immunotherapy response which indicated these cells potentially be crucial in immunotherapy.
Keywords: CD8+ T cells; Immunotherapy; Prognosis; Renal cell carcinoma; Tumor necrosis receptor super family 9.
Pulse
Views:
2
Posts:
No posts
Rating:
Not rated
Publication
Journal: Proceedings of the National Academy of Sciences of the United States of America
November/13/2018
Abstract
CD4+ T follicular helper (TFH) cells support germinal center (GC) reactions promoting humoral immunity. Dendritic cell (DC) diversification into genetically distinct subsets allows for specialization in promoting responses against several types of pathogens. Whether any classical DC (cDC) subset is required for humoral immunity is unknown, however. We tested several genetic models that selectively ablate distinct DC subsets in mice for their impact on splenic GC reactions. We identified a requirement for Notch2-dependent cDC2s, but not Batf3-dependent cDC1s or Klf4-dependent cDC2s, in promoting TFH and GC B cell formation in response to sheep red blood cells and inactivated Listeria monocytogenes This effect was mediated independent of Il2ra and several Notch2-dependent genes expressed in cDC2s, including Stat4 and Havcr2 Notch2 signaling during cDC2 development also substantially reduced the efficiency of cDC2s for presentation of MHC class II-restricted antigens, limiting the strength of CD4 T cell activation. Together, these results demonstrate a nonredundant role for the Notch2-dependent cDC2 subset in supporting humoral immune responses.
Publication
Journal: Blood advances
February/22/2019
Abstract
Subcutaneous panniculitis-like T-cell lymphoma (SPTCL) is a rare subtype of peripheral T-cell lymphoma affecting younger patients and associated with hemophagocytic lymphohistiocytosis. To clarify the molecular pathogenesis of SPTCL, we analyzed paired tumor and germline DNAs from 13 patients by whole-exome sequencing. All cases were Asians and were phenotypically sporadic with no family history of SPTCL. Consistent with a recent report, germline mutations in HAVCR2, encoding T-cell immunoglobulin mucin 3 (TIM3), were identified in 11 of 13 (85%) cases. All mutated cases were primary SPTCL, whereas the 2 cases without mutation were secondary SPTCL associated with underlying diseases, including viral infection and autoimmune disease. Ten patients harbored homozygous p.Y82C mutations, and 1 showed compound heterozygous mutations (p.Y82C and p.T101I). Both missense mutations altered highly conserved residues located in the extracellular immunoglobulin variable-like domain. According to the Genome Aggregation Database of >138 500 general individuals, both mutations were documented with minor allele frequencies < 0.007, indicating remarkable enrichment of these HAVCR2 alleles in SPTCL. SPTCL cells also harbored somatic mutations (6.2 per patient) that are frequently identified in genes associated with epigenetic regulation and signal transduction. In conclusion, individuals harboring biallelic HAVCR2 (TIM3) germline mutations were highly susceptible to sporadic SPTCL, which was also associated with clonal somatic mutations.
Publication
Journal: International Journal of Oncology
May/29/2020
Abstract
Adoptive cell therapy with the use of tumor-infiltrating lymphocytes (TILs) is a very promising immunotherapeutic approach for the treatment of patients with colorectal cancer (CRC). However, within the tumor microenvironment, co‑inhibitory immune checkpoints can inactivate TILs. The aim of the present study was to examine the association between the TIL load, the mutation rate and the clinical outcome in the immune landscape of patients with CRC. RNA‑seq and whole exome seq data of 453 colon adenocarcinomas (COAD) and rectal adenocarcinomas (READ), along with the TIL load and clinicopathological information of each patient, were extracted from the TCGA GDC Data Portal and analyzed computationally. The expression of immune checkpoint molecules was compared between colon cancer and normal tissue. A total of 9 immune‑related gene signatures were investigated in CRC. Spearman's correlation analysis was performed to examine the correlation between the TIL load with the expression of each immune checkpoint molecule. Indoleamine 2,3‑dioxygenase 1 (IDO1) was found to be significantly overexpressed in CRC, whereas V‑domain Ig suppressor of T cell activation (VISTA) and lymphocyte activating 3 (LAG3) were markedly downregulated. A high expression of cytotoxic T‑lymphocyte‑associated protein 4 (CTLA‑4), IDO1, programmed cell death 1 (PD‑1) and T‑cell immunoreceptor with Ig and ITIM domains (TIGIT), tended to be associated with a better overall survival of the patients. In COAD, the TIL load positively correlated with the expression of adenosine A2A receptor (ADORA2A), CTLA‑4, hepatitis A virus cellular receptor 2 (HAVCR2), lymphocyte activating 3 (LAG3), programmed death‑ligand PD‑L1, PD‑L2, TIGIT and VISTA, whereas in READ, such positive correlations were noted only between the TIL load and LAG3 or PD‑L2. The 'central memory T‑cell' and 'exhausted T‑cell' gene signatures were significantly lower among the READ tumors. The expression of PD‑1, PD‑L1, PD‑L2, CTLA‑4 and IDO1 was significantly higher among COAD patients with a high mutation rate (>34 mutations/Mb) compared to those with a lower rate. Somatic mutations in PD‑1, PD‑L1, CTLA‑4 and other checkpoint molecules did not seem to affect their expression levels. On the whole, the data of the present study highlight the association of immune checkpoint molecules with the TIL load, patient survival and a high mutation rate in CRC. The data corroborate that patients with colon cancer with higher PD1, PD‑L1/2, CTLA‑4 and IDO1 expression, and a high mutation rate, are the ones who will benefit more from the respective immune checkpoint inhibition therapies.
Publication
Journal: Scientific Reports
July/11/2019
Abstract
In current molecular medicine, next-generation sequencing (NGS) for transcript variant detection and multivariable analyses are valid methods for evaluating gene expression, cancer mechanisms, and prognoses of patients. We conducted RNA-sequencing on samples from patients with primary central nervous system lymphoma (PCNSL) using NGS and performed multivariable analysis on gene expression data and correlations focused on Th-1/Th-2 helper T cell balance and immune checkpoint to identify diagnosis/prognosis markers and cancer immune pathways in PCNSL. We selected 84 transcript variants to limit the analysis range for Th-1/Th-2 balance and stimulatory and inhibitory checkpoints in 31 PCNSLs. Of these, 21 highly-expressed transcript variants were composed of the formulas for prognoses based on Th-1/Th-2 status and checkpoint activities. Using formulas, Th-1low, Th-2high, and stimulatory checkpointhigh resulted in poor prognoses. Further, Th-1highTh-2low was associated with good prognoses. On the other hand, CD40-001high and CD70-001high as stimulatory genes, and LAG3-001high, PDCD1 (PD-1)-001/002/003high, and PDCD1LG2 (PD-L2)-201low as inhibitory genes were associated with poor prognoses. Interestingly, Th-1highTh-2low and Th-1lowTh-2high were correlated with stimulatory checkpointlow as CD70-001low and inhibitory checkpointlow as HAVCR2 (TIM-3)-001low and PDCD1LG2-001/201low, respectively. Focused on the inhibitory checkpoint, specific variants of CD274 (PD-L1)-001 and PDCD1-002 served severe hazard ratios. In particular, PDCD1-002high by a cut off score was associated with poor prognoses, in addition to PDCD1-001/003high, PDCD1LG2-201low, and LAG3-001high. These results mainly suggest that expression of transcript variants of PDCD1 and PDCD1LG2 on the Th-1/Th-2 balance enable prognostic prediction in PCNSL. This study provides insights for development of molecular target therapies and identification of diagnosis/prognosis markers in PCNSL.
Publication
Journal: Clinical Epigenetics
November/21/2019
Abstract
The T cell immunoglobulin and mucin-domain containing-3 receptor TIM-3 (also known as hepatitis A virus cellular receptor 2, encoded by HAVCR2) and its ligand galectin 9 (LGALS9) are promising targets for immune checkpoint inhibition immunotherapies. However, little is known about epigenetic regulation of the encoding genes. This study aimed to investigate the association of TIM-3 and LGALS9 DNA methylation with gene expression, patients' survival, as well as molecular and immune correlates in malignant melanoma.Methylation of all six TIM-3 CpGs correlated significantly with TIM-3 mRNA levels (P ≤ 0.05). A strong inverse correlation (Spearman's ρ = - 0.49) was found in promoter regions, while a strong positive correlation (ρ = 0.63) was present in the gene body of TIM-3. High TIM-3 mRNA expression (hazard ratio (HR) = 0.88, 95% confidence interval (CI) [0.81-0.97], P = 0.007) was significantly associated with better overall survival. Seven of the eight LGALS9 CpG sites correlated significantly with LGALS9 mRNA levels (P ≤ 0.003). Methylation at five CpG sites showed a strong inverse correlation (Spearman's ρ = - 0.67) and at two sites a weak positive correlation (Spearman's ρ = 0.15). High LGALS9 mRNA expression was significantly associated with increased overall survival (HR = 0.83, 95%CI [0.75-0.93], P = 0.001). In addition, we found significant correlations between TIM-3 and LGALS9 methylation and mRNA expression with immune cell infiltrates and significant differences among distinct immune cell subsets.Our study points toward an epigenetic regulation of TIM-3 and LGALS9 via DNA methylation and might provide an avenue for the development of a predictive biomarker for response to immune checkpoint blockade.
Publication
Journal: Blood
February/1/2020
load more...