Citations
All
Search in:AllTitleAbstractAuthor name
Publications
(132)
Patents
Grants
Pathways
Clinical trials
Publication
Journal: Life Sciences
November/8/2020
Abstract
Copy number alterations are widespread in cancer genomes and are part of the genomic instability underlying the pathogenesis of neoplastic diseases. Recurrent copy number alterations of specific chromosomal loci may result in gains of oncogenes or losses of tumor suppressor genes and become entrenched in the genomic framework of certain types of cancers. The locus at chromosome 8p11.23 presents recurrent amplifications most commonly in squamous lung carcinomas, breast cancers, squamous esophageal carcinomas, and urothelial carcinomas. Amplification is rare in other cancers. The amplified segment involves several described oncogenes that may promote cancer cell survival and proliferation, as well as less well characterized genes that could also contribute to neoplastic processes. Genes proposed to be "drivers" in 8p11.23 amplifications include ZNF703, FGFR1 and PLPP5. Additional genes in the locus that could be functionally important in neoplastic networks include co-chaperone BAG4, lysine methyltransferase NSD3, ASH2L, a member of another methyltransferase complex, MLL and the mRNA processing and translation regulators LSM1 and EIF4EBP1. In this paper, genes located in the amplified segment of 8p11.23 will be examined for their role in cancer and data arguing for their importance for cancers with the amplification will be presented.
Keywords: Amplification; Breast cancer; ERLIN2; FGFR1; Oncogenes; ZNF703.
Publication
Journal: BioImpacts
April/28/2021
Abstract
The eukaryotic elongation factor-2 kinase, eEF2K, which restricts protein translation elongation, has been identified as a potential therapeutic target for diverse types of malignancies including triple negative breast cancer (TNBC). However, the contexts in which eEF2K inhibition is essential in TNBC and its consequences on the proteome are largely unknown. Here we show that genetic or pharmacological inhibition of eEF2K cooperated with glutamine (Gln) starvation, and synergized with glutaminase (GLS1) inhibitors to suppress growth of diverse TNBC cell lines. eEF2K inhibition also synergized with depletion of eukaryotic translation initiation factor 4E-binding protein 1 (eIF4EBP1; 4EBP1), a suppressor of eukaryotic protein translation initiation factor 4E (eIF4E), to induce c-MYC and Cyclin D1 expression, yet attenuate growth of TNBC cells. Proteomic analysis revealed that whereas eEF2K depletion alone uniquely induced Cyclin Dependent Kinase 1 (CDK1) and 6 (CDK6), combined depletion of eEF2K and 4EBP1 resulted in overlapping effects on the proteome, with the highest impact on the 'Collagen containing extracellular matrix' pathway (e.g. COL1A1), as well as the amino-acid transporter, SLC7A5/LAT1, suggesting a regulatory loop via mTORC1. In addition, combined depletion of eEF2K and 4EBP1 indirectly reduced the levels of IFN-dependent innate immune response-related factors. Thus, eEF2K inhibition triggers cell cycle arrest/death under unfavourable metabolic conditions such as Gln-starvation/GLS1 inhibition or 4EBP1 depletion, uncovering new therapeutic avenues for TNBC and underscoring a pressing need for clinically relevant eEF2K inhibitors.
Publication
Journal: Journal of Biological Chemistry
June/1/2020
Abstract
Activation of the immune costimulatory molecule cluster of differentiation 40 (CD40) in Müller glia has been implicated in the initiation of diabetes-induced retinal inflammation. Results from previous studies support that CD40 protein expression is elevated in Müller glia of diabetic mice; yet, the mechanisms responsible for this increase have not been explored. Here, we evaluated the hypothesis that diabetes augments translation of the Cd40 mRNA. Mice receiving thiamet G (TMG), an inhibitor of the O-GlcNAc hydrolase O-GlcNAcase, exhibited enhanced retinal protein O-GlcNAcylation and increased Cd40 mRNA translation. TMG administration also promoted Cd40 mRNA association with Müller-cell specific ribosomes isolated from the retina of RiboTag mice. Similar effects on O-GlcNAcylation and Cd40 mRNA translation were also observed in the retina of a mouse model of type 1 diabetes. In cultured cells, TMG promoted sequestration of the cap-binding protein eukaryotic translation in initiation factor 4E (eIF4E) by eIF4E-binding protein 1 (4E-BP1) and enhanced cap-independent Cd40 mRNA translation as assessed by a bicistronic reporter that contained the 5'-UTR of the Cd40 mRNA. Ablation of 4E-BP1/2 prevented the increase in Cd40 mRNA translation in TMG-exposed cells, and expression of a 4E-BP1 variant that constitutively sequesters eIF4E promoted reporter activity. Extending on the cell culture results, we found that in contrast to wild-type mice, diabetic 4E-BP1/2-deficient mice did not exhibit enhanced retinal Cd40 mRNA translation and failed to upregulate expression of the inflammatory marker nitric oxide synthase 2. These findings support a model wherein diabetes-induced O-GlcNAcylation of 4E-BP1 promotes Cd40 mRNA translation in Müller glia.
Keywords: Muller cell; O-GlcNAcylation; cluster of differentiation 40 (CD40); diabetes; eukaryotic translation initiation factor 4E-binding protein 1 (EIF4EBP1); inflammation; mRNA translation; retina.
Publication
Journal: Zoonoses and Public Health
March/13/2021
Abstract
Leishmaniasis is a neglected zoonotic disease that poses significant veterinary and public health risks in developing countries. Dogs act as a reservoir host for leishmaniasis transmitted to humans. A total of 108 human cases of cutaneous leishmaniasis (CL) were identified in the Al-Houd Al-Marsoud Hospital in Cairo, Egypt, during 2018. Blood samples and skin biopsies were collected for further examination. Blood samples from 96 asymptomatic dogs were collected. All samples were subjected to molecular and phylogenetic analysis. Quantitative RT-PCR was used to measure the expression of genes related to mTOR signalling and inflammation in blood and tissue samples. The distribution pattern of human cases pointed to an endemic focus in North Sinai (66.67%). The prevalence of asymptomatic canine leishmaniasis was 66.60%. Histopathological examination of human skin lesions revealed a severe granulomatous inflammatory reaction, necrosis and ulceration. Moreover, leishmanial amastigotes could be detected in human tissue samples. Phylogenetic analysis revealed 100% identity of human isolates to Leishmania tropica (MN453682), and dog isolates to Leishmania infantum (MN453673), with 94.9% similarity between the two isolates. Gene expression related to mTOR signalling and inflammation in both species' samples confirmed a significant alteration of EIF4EBP1, CCR4 and INF-γ expression compared with control groups. In Egypt, increased incidence of asymptomatic carrier dogs acting as a significant reservoir host for Leishmania poses a public health hazard. Findings warrant further epidemiological investigation of CL in Egypt, as well as additional study of parasite differentiation and gene regulation.
Keywords: Leishmania; bioinformatics; canine; epidemiology; histopathology; human; qRT-PCR.
Publication
Journal: BMC Genomics
December/22/2020
Abstract
Background: Understanding the molecular mechanisms of platelet activation and aggregation is of high interest for basic and clinical hemostasis and thrombosis research. The central platelet protein interaction network is involved in major responses to exogenous factors. This is defined by systemsbiological pathway analysis as the central regulating signaling cascade of platelets (CC).
Results: The CC is systematically compared here between mouse and human and major differences were found. Genetic differences were analysed comparing orthologous human and mouse genes. We next analyzed different expression levels of mRNAs. Considering 4 mouse and 7 human high-quality proteome data sets, we identified then those major mRNA expression differences (81%) which were supported by proteome data. CC is conserved regarding genetic completeness, but we observed major differences in mRNA and protein levels between both species. Looking at central interactors, human PLCB2, MMP9, BDNF, ITPR3 and SLC25A6 (always Entrez notation) show absence in all murine datasets. CC interactors GNG12, PRKCE and ADCY9 occur only in mice. Looking at the common proteins, TLN1, CALM3, PRKCB, APP, SOD2 and TIMP1 are higher abundant in human, whereas RASGRP2, ITGB2, MYL9, EIF4EBP1, ADAM17, ARRB2, CD9 and ZYX are higher abundant in mouse. Pivotal kinase SRC shows different regulation on mRNA and protein level as well as ADP receptor P2RY12.
Conclusions: Our results highlight species-specific differences in platelet signaling and points of specific fine-tuning in human platelets as well as murine-specific signaling differences.
Keywords: Cascade; Human; Interactome; Interspecies comparison; Mouse; Network; Platelet; Proteome; Signaling; Transcriptome.
Publication
Journal: Molecular and Cellular Proteomics
January/15/2021
Abstract
Aberrant phospho-signaling is a hallmark of cancer. We investigated kinase-substrate regulation of 33,239 phosphorylation sites (phosphosites) in 77 breast tumors and 24 breast cancer xenografts. Our search discovered 2134 quantitatively correlated kinase-phosphosite pairs, enriching for and extending experimental or binding-motif predictions. Among the 91 kinases with auto-phosphorylation, elevated EGFR, ERBB2, PRKG1, and WNK1 phosphosignaling were enriched in basal, HER2-E, Luminal A, and Luminal B breast cancers, respectively, revealing subtype-specific regulation. CDKs, MAPKs, and ataxia-telangiectasia proteins were dominant, master regulators of substrate-phosphorylation, whose activities are not captured by genomic evidence. We unveiled phospho-signaling and druggable targets from 113 kinase-substrate pairs and cascades downstream of kinases, including AKT1, BRAF and EGFR. We further identified kinase-substrate-pairs associated with clinical or immune signatures and experimentally validated activated phosphosites of ERBB2, EIF4EBP1, and EGFR. Overall, kinase-substrate regulation revealed by the largest unbiased global phosphorylation data to date connects driver events to their signaling effects.
Keywords: Bioinformatics; Breast cancer; Drug targets*; Kinases*; Mass Spectrometry; Phosphorylation; Signaling Molecules*.
Publication
Journal: Environmental Pollution
February/28/2020
Abstract
Dichlorvos is a common crop insecticide widely used by people which causes extensive and serious environmental pollution. However, it has been shown that organophosphorus poisoning causes energy metabolism and neural disorders. The overall purpose of this study was to investigate the damage to brain tissue and the changes in AMPK signaling pathway-related gene expression after dichlorvos poisoning in chickens. White-feathered broiler chickens, as the research subjects of this experiment, were divided into three groups: control group, low-dose group (77.5% dichlorvos at 1.13 mg/kg dose) and high-dose group (77.5% dichlorvos at 10.2 mg/kg dose). Clinical symptoms were observed after modeling, and an integrative analysis was conducted using HE staining microscopy, immune-histochemical microscopy, electron microscopy and PCR arrays. The results showed that the high-dose group had more obvious dyspnea, salivation, convulsion and other neurological phenomena. Pathological sections showed that nuclear disintegration of neurons was most obvious in the low-dose group, and apoptosis of brain cells was most obvious in the high-dose group, and the mitochondrial structure was destroyed in the two poisoned group, i.e. low-dose group and high-dose group. PCR arrays showed that AMPK signaling pathway was inhibited and the expressions of genes involved in energy metabolism (ACACA and PRKAA1) were significantly changed. Furthermore, genes associated with protein synthesis (EIF4EBP1) were significantly upregulated. FASN and HMGCR expressions were significantly increased. There were significant changes in the expressions of cell cycle-related genes (STK11, TP53 and FOXO3). Organophosphate poisoning can cause a lot of nuclear disintegration of brain neurons, increases cell apoptosis, disrupts the energy metabolism of mitochondrial structure, and inhibits the AMPK signaling pathway. These results provide a certain idea and basis for studying the mechanism of AMPK signaling after organophosphorus poisoning and provide a research basis for the prevention and treatment of organophosphorus poisoning.
Publication
Journal: BMC Genomics
June/5/2021
Abstract
Background: Copper was used for many years in aquaculture operations as an effective algaecide or a parasite treatment of fish. It is an essential nutrient with numerous functions in organisms, but is toxic at high concentrations. However, the toxicity of copper to fish remains unclear. In this study, we used the piebald naked carp, Gymnocypris eckloni, as a model. RNA-seq data from different tissues, including gills, kidney, and liver, were used to investigate the underlying mechanism of copper toxicology in G. eckloni.
Results: We compared the transcriptomes from different tissues with different time durations of copper ion treatment. After 72 h copper ion treatment, the number of genes with different expression in gills and liver changed dramatically, but not in kidneys. In KEGG functional enrichment, the pattern of differentially expressed genes (DEGs) was also similar in the gills and liver. The most enriched pathway of DEGs was "Ribosome" in both tissues. Furthermore, we analyzed the expression levels of genes involved in oxidative stress response and protein synthesis using qPCR and RNA-seq data. Our results showed that several genes involved in oxidative stress response were up-regulated both in gills and liver. Up-regulation of these genes indicated that copper treatment caused oxidative stress, which is likely to result in ribosome damage. In addition, our results showed that the expression of Eef1b2, a transcription elongation factor, was decreased in the liver under oxidative stress, and the expression of translation initiation factors Eif4ebp1 and eIF2α, and elongation factor eEF2 was up-regulated. These results supported the idea that oxidative stress inhibits protein synthesis in cells.
Conclusions: Our results indicate that copper exposure caused different responses in different tissues, since the gene expression patterns changed substantially either in the gills or liver, while the effect on the kidney was relatively weak. Furthermore, our results indicated that the expression pattern of the genes involved in the ribosome, which is a complex molecular machine orchestrating protein synthesis in the cell, together with translation initiation factor and elongation factors, were affected by copper exposure both in the gills and liver of piebald naked carp. This result leads us to speculate that the downregulation of global protein synthesis is an acute response strategy of fish to metal-induced oxidative stress. Moreover, we speculate that this strategy not only exists in the selective translation of proteins but also exists in the specific translation of functional proteins in tissues and cells.
Keywords: Copper; Gymnocypris eckloni; RNA-seq; Toxicology; Transcriptome.
Publication
Journal: Oxidative Medicine and Cellular Longevity
May/9/2021
Abstract
The imbalance of the redox system has been shown to be closely related to the occurrence and progression of many cancers. However, the biological function and clinical significance of redox-related genes (RRGs) in clear cell renal cell carcinoma (ccRCC) are unclear. In our current study, we downloaded transcriptome data from The Cancer Genome Atlas (TCGA) database of ccRCC patients and identified the differential expression of RRGs in tumor and normal kidney tissues. Then, we identified a total of 344 differentially expressed RRGs, including 234 upregulated and 110 downregulated RRGs. Fourteen prognosis-related RRGs (ADAM8, CGN, EIF4EBP1, FOXM1, G6PC, HAMP, HTR2C, ITIH4, LTB4R, MMP3, PLG, PRKCG, SAA1, and VWF) were selected out, and a prognosis-related signature was constructed based on these RRGs. Survival analysis showed that overall survival was lower in the high-risk group than in the low-risk group. The area under the receiver operating characteristic curve of the risk score signature was 0.728 at three years and 0.759 at five years in the TCGA cohort and 0.804 at three years and 0.829 at five years in the E-MTAB-1980 cohort, showing good predictive performance. In addition, we explored the regulatory relationships of these RRGs with upstream miRNA, their biological functions and molecular mechanisms, and their relationship with immune cell infiltration. We also established a nomogram based on these prognostic RRGs and performed internal and external validation in the TCGA and E-MTAB-1980 cohorts, respectively, showing an accurate prediction of ccRCC prognosis. Moreover, a stratified analysis showed a significant correlation between the prognostic signature and ccRCC progression.
Publication
Journal: Carcinogenesis
July/16/2020
Abstract
SASS6 encodes for the Homo sapiens SAS-6 centriolar assembly protein and is important for proper centrosome formation. Although centrosomes are amplified in a wide variety of tumor types, abnormally high SASS6 expression had previously only been identified in colon cancer. Moreover, the role of SASS6 in esophageal squamous cell carcinoma (ESCC) pathogenesis has not yet been elucidated. The aim of this study was to investigate the role and mechanisms of SASS6 in ESCC. In this study, we found that the mRNA and protein levels of SASS6 were increased in human ESCC samples. In addition, SASS6 protein expression was associated with the esophageal cancer stage and negatively impacted survival of patients with ESCC. Furthermore, silencing of SASS6 inhibited cell growth and promoted apoptosis of ESCC cells in vitro and inhibited xenograft tumor formation in vivo. A genetic cluster and pathway analysis showed that SASS6 regulated the p53 signaling pathway. Western blot demonstrated that CCND2, GADD45A, and EIF4EBP1 protein expression decreased and that TP53 protein expression increased after the knockdown of SASS6 in ESCC cells. Therefore, SASS6 promoted the proliferation of esophageal cancer by inhibiting the p53 signaling pathway. SASS6 has potential as a novel tumor marker and a therapeutic target for ESCC.
Publication
Journal: Sleep
September/25/2019
Abstract
Sleep and sleep loss are impacting protein synthesis in the brain but the contribution of translational control to wakefulness and sleep regulation remains poorly understood. Here, we studied the role of two suppressors of protein synthesis, the eukaryotic translation initiation factor 4E-binding protein 1 and 2 (4E-BP1 and 4E-BP2), in sleep architecture and electroencephalographic (EEG) activity as well as in the EEG and molecular responses to acute sleep loss. The EEG of mice mutant for the genes encoding 4E-BP1 or 4E-BP2 (Eif4ebp1 and Eif4ebp2 knockout [KO] mice) was recorded under undisturbed conditions and following a 6-h sleep deprivation (SD). The effect of SD on the expression of genes known to respond to SD was also measured in the prefrontal cortex of Eif4ebp1 and Eif4ebp2 KO mice. Eif4ebp1 KO mice differed from wild-type mice in parameters of wakefulness and sleep quantity and quality, and more subtly in the gene expression response to SD. For instance, Eif4ebp1 KO mice spent more time in slow wave sleep (SWS) and showed altered baseline 24-h time courses of SWS delta (1-4 Hz) activity and sigma (10-13 Hz) activity. Eif4ebp2 KO mice differed from wild-type mice only for wakefulness and sleep quality, expressing changes in EEG spectral activity generally revealed during and after SD. These findings suggest different roles of effectors of translational control in the regulation of wakefulness and sleep and of synchronized cortical activity.
Publication
Journal: BioMed Research International
September/9/2020
Abstract
Background: Esophageal squamous cell carcinoma (ESCC) is a leading malignancy with both high incidence and mortality worldwide. However, the molecular mechanisms of the poor prognosis in ESCC are still unclear.
Methods: We conducted differential expression analysis between ESCC and normal tissues and between ESCC samples with and without CNAs in a given gene. Overrepresentation enrichment and gene set enrichment analyses were used to identify the oncogenic pathways and abnormal transcription factors (TFs). The survival analysis was employed to identify the genes associated with overall survival.
Results: In this study, we aimed to identify and interpret the driver genes triggered by the copy number alterations (CNAs), including CCND1, TEAD4, EIF4EBP1, EGFR, FGFR3, and FZD6. Furthermore, we identified oncogenic pathways, including RTK-RAS, WNT, PI3K, Hippo, and cell cycle, and key TFs including TEAD4, a transcription factor in the Hippo signaling pathway, and LEF1 in the WNT signaling pathway. Furthermore, we observed that upregulations of FGFR3 and EIF4EBP1 were significantly associated with shorter overall survival in ESCC.
Conclusion: In conclusion, the driver genes triggered by CNAs not only exhibited critical functionality but also were clinically relevant in ESCC, which greatly improved our understanding of the molecular mechanisms in ESCC.
Publication
Journal: Clinical Medicine
September/28/2020
Abstract
Background: Amplification of the locus 8p11.23 has been observed in cancer and genes of this locus, including ZNF703 (Zinc finger protein 703), NSD3 (Nuclear receptor binding SET domain protein 3) and FGFR1 (Fibroblast growth factor receptor 1), have been put forward as dominant oncogenes conferring pathophysiologic benefit in cancers with amplifications. However, there is no consensus on the importance of each of them or any other genes of the amplicon or even a consensus on which genes are part of the amplicon.
Methods: Publicly available data were used to characterize the locus amplified at 8p11.23 and derive information on each of the genes and roles as oncogenes. The frequency of the amplifications in the locus was examined in the cBioportal platform, and expression levels of the amplicon genes in amplified cases were derived from genomic studies reported in the platform. Examination of the influence of mRNA expressions of each gene of the locus for Recurrence-free survival in breast cancer was performed using K-M plotter.
Results: The 8p11.23 amplicon is present in higher frequency in squamous cell lung carcinomas, breast cancers and bladder carcinomas and is only rarely observed in other cancers. The most frequently amplified genes within the amplicon vary between different types of cancers. In breast cancer, amplified cases are most commonly of the luminal B type. Amplified genes are not always over-expressed and there is a low correlation of amplification with over-expression in amplicon genes with variation between genes. The presence of the amplicon does not influence the aneuploidy score or the tumor mutation burden of breast cancers. Regarding prognosis, the two genes of the amplicon whose mRNA hyper-expression portends adverse relapse-free survival in breast cancer are EIF4EBP1 (Eukaryotic transcription initiation factor 4E binding protein 1) and LSM1 (LSM1 homolog, mRNA degradation associated).
Conclusion: Besides the previously proposed genes to play a role as dominant oncogenes in the 8p11.23 cancer amplified locus, other genes may also be important in breast cancer based on the high correlation of their amplification and mRNA expression and adverse prognosis conferred by over-expression, consistent with an oncogenic role.
Keywords: amplicon; amplification; breast cancer; chromosome 8p11; driver oncogene; prognosis.
Publication
Journal: Molecular and Cellular Proteomics
June/14/2019
Abstract
Aberrant phospho-signaling is a hallmark of cancer. We investigated kinase-substrate regulation of 33,239 phosphorylation sites (phosphosites) in 77 breast tumors and 24 breast cancer xenografts. Our search discovered 2134 quantitatively correlated kinase-phosphosite pairs, enriching for and extending experimental or binding-motif predictions. Among the 91 kinases with auto-phosphorylation, elevated EGFR, ERBB2, PRKG1, and WNK1 phosphosignaling were enriched in basal, HER2-E, Luminal A, and Luminal B breast cancers, respectively, revealing subtype-specific regulation. CDKs, MAPKs, and ataxia-telangiectasia proteins were dominant, master regulators of substrate-phosphorylation, whose activities are not captured by genomic evidence. We unveiled phospho-signaling and druggable targets from 113 kinase-substrate pairs and cascades downstream of kinases, including AKT1, BRAF and EGFR. We further identified kinase-substrate-pairs associated with clinical or immune signatures and experimentally validated activated phosphosites of ERBB2, EIF4EBP1, and EGFR. Overall, kinase-substrate regulation revealed by the largest unbiased global phosphorylation data to date connects driver events to their signaling effects.
Publication
Journal: Journal of Central South University (Medical Sciences)
October/6/2015
Abstract
OBJECTIVE
To explore the differential expression of microRNA (miRNA) in HPV16-positive squamous carcinoma of the cervix in the Uygur of southern Xinjiang and to predict the target genes of the miRNAs.
METHODS
Samples of HPV16-positive squamous carcinoma of the cervix from 5 Uygurs were collected for miRNA microarray assay. The differentially expressed miRNAs were selected for further verification by real-time quantitative RT-PCR. The software, including targetscan, miRwalk, miRanda and pictar, were used to predict the target genes of the verified miRNAs.
RESULTS
Eighteen differentially expressed miRNAs were identified by miRNA microarray assay. The significantly differentially expressed miRNA-138 and miRNA-720 were verified by real-time quantitative RT-PCR. According to the prediction, the target genes for miRNA-138 were EZH2, LYPLA1, ARHGEF3, CLNS1A, EIF4EBP1, GNAI2, LIMK1, RHOC, ROCK2, SLC20A1, TERT, and H2AFX, while for miRNA-720 were EZH2, AGAP2, SPOCK2, FGF14, HNRNPA2B1, QKI, FOXG1, ACVR1B, DNMT3A, EPHB2, LATS2, KRAS, CCND2, NBN, ENAM, AMELX, PRNP, and CALB1.
CONCLUSIONS
miR-138 and miR-720 are the down-regulated target miRNAs in HPV16-positive squamous carcinoma of the cervix in the Uygur of southern Xinjiang. The common target gene for miR-138 and miR-720 is EZH2, which might be related to cervical squamous carcinoma invasion and metastasis.
Publication
Journal: Autophagy
January/16/2020
Abstract
Macroautophagy/autophagy is a lysosomal degradation system which plays a protective role against kidney injury. RUBCN/Rubicon (RUN domain and cysteine-rich domain containing, Beclin 1-interacting protein) inhibits the fusion of autophagosomes and lysosomes. However, its physiological role in kidney proximal tubular epithelial cells (PTECs) remains uncertain. In the current study, we analyzed the phenotype of newly generated PTEC-specific rubcn-deficient (KO) mice. Additionally, we investigated the role of RUBCN in lipid metabolism using isolated rubcn-deficient PTECs. Although KO mice exhibited sustained high autophagic flux in PTECs, they were not protected from acute ischemic kidney injury. Unexpectedly, KO mice exhibited hallmark features of metabolic syndrome accompanied by expanded lysosomes containing multi-layered phospholipids in PTECs. RUBCN deficiency in cultured PTECs promoted the mobilization of phospholipids from cellular membranes to lysosomes via enhanced autophagy. Treatment of KO PTECs with oleic acid accelerated fatty acids transfer to mitochondria. Furthermore, KO PTECs promoted massive triglyceride accumulation in hepatocytes (BNL-CL2 cells) co-cultured in transwell, suggesting accelerated fatty acids efflux from the PTECs contributes to the metabolic syndrome in KO mice. This study shows that sustained high autophagic flux by RUBCN deficiency in PTECs leads to metabolic syndrome concomitantly with an accelerated mobilization of phospholipids from cellular membranes to lysosomes.Abbreviations: ABC: ATP binding cassette; ACADM: acyl-CoA dehydrogenase medium chain; ACTB: actin, beta; ATG: autophagy related; AUC: area under the curve; Baf: bafilomycin A1; BAT: brown adipose tissue; BODIPY: boron-dipyrromethene; BSA: bovine serum albumin; BW: body weight; CAT: chloramphenicol acetyltransferase; CM: complete medium; CPT1A: carnitine palmitoyltransferase 1a, liver; CQ: chloroquine; CTRL: control; EGFP: enhanced green fluorescent protein; CTSD: cathepsin D; EAT: epididymal adipose tissue; EGFR: epidermal growth factor receptor; EIF4EBP1: eukaryotic translation initiation factor 4E binding protein 1; FA: fatty acid; FBS: fetal bovine serum; GTT: glucose tolerance test; HE: hematoxylin and eosin; HFD: high-fat diet; I/R: ischemia-reperfusion; ITT: insulin tolerance test; KAP: kidney androgen regulated protein; KO: knockout; LAMP1: lysosomal associated membrane protein 1; LD: lipid droplet; LRP2: low density lipoprotein receptor related protein 2; MAP1LC3B: microtubule associated protein 1 light chain 3 beta; MAT: mesenteric adipose tissue; MS: mass spectrometry; MTOR: mechanistic target of rapamycin kinase; MTORC1: MTOR complex 1; NDRG1: N-myc downstream regulated 1; NDUFB5: NADH:ubiquinone oxidoreductase subunit B5; NEFA: non-esterified fatty acid; OA: oleic acid; OCT: optimal cutting temperature; ORO: Oil Red O; PAS: Periodic-acid Schiff; PFA: paraformaldehyde; PIK3C3: phosphatidylinositol 3-kinase catalytic subunit type 3; PPARA: peroxisome proliferator activated receptor alpha; PPARGC1A: PPARG coactivator 1 alpha; PTEC: proximal tubular epithelial cell; RAB7A: RAB7A, member RAS oncogene family; RPS6: ribosomal protein S6; RPS6KB1: ribosomal protein S6 kinase B1; RT: reverse transcription; RUBCN: rubicon autophagy regulator; SAT: subcutaneous adipose tissue; SFC: supercritical fluid chromatography; SQSTM1: sequestosome 1; SREBF1: sterol regulatory element binding transcription factor 1; SV-40: simian virus-40; TFEB: transcription factor EB; TG: triglyceride; TS: tissue specific; TUNEL: terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling; UN: urea nitrogen; UQCRB: ubiquinol-cytochrome c reductase binding protein; UVRAG: UV radiation resistance associated; VPS: vacuolar protein sorting; WAT: white adipose tissue.
Publication
Journal: ACS Omega
December/19/2021
Abstract
Retinoblastoma (RB) is the most common type of intraocular malignant tumor that lowers the quality of life among children worldwide. Long noncoding RNAs (lncRNAs) are reported to play a dual role in tumorigenesis and development of RB. Autophagy is also reported to be involved in RB occurrence. Although several studies of autophagy-related lncRNAs in RB have been explored before, there are still unknown potential mechanisms in RB. In the present study, we mined dataset GSE110811 from the Gene Expression Omnibus database and downloaded autophagy-related genes from the Human Autophagy Database for further bioinformatic analysis. By implementing the differential expression analysis and Pearson correlation analysis on the lncRNA expression matrix and autophagy-related genes expression matrix, we identified four autophagy-related lncRNAs (namely, N4BP2L2-IT2, SH3BP5-AS1, CDKN2B-AS1, and LINC-PINT) associated with RB. We then performed differential expression analysis on microRNA (miRNA) from dataset GSE39105 for further analyses of lncRNA-miRNA-mRNA regulatory mechanisms. With the miRNA-lncRNA module on the StarBase 3.0 website, we predicted the differentially expressed miRNAs that could target the autophagy-related lncRNAs and constructed a potential lncRNA-miRNA-mRNA regulatory network. Furthermore, the functional annotations of these target genes in regulatory networks were presented using the Cytoscape and the Metascape annotation tool. Finally, the expression pattern of the four autophagy-related lncRNAs was evaluated via qRT-PCR. In conclusion, our findings suggest that the four autophagy-related lncRNAs could be critical molecules associated with the development of RB and affect the occurrence and development of RB through the lncRNA-miRNA-mRNA regulatory network. Genes (GRP13B, IFT88, EPHA3, GABARAPL1, and EIF4EBP1) may serve as potential novel therapeutic targets and biomarkers in RB.
Publication
Journal: Pediatric Rheumatology
December/28/2021
Abstract
Background: This study aimed to perform an immunoprofiling of systemic juvenile idiopathic arthritis (sJIA) in order to define biomarkers of clinical use as well as reveal new immune mechanisms.
Methods: Immunoprofiling of plasma samples from a clinically well-described cohort consisting of 21 sJIA patients as well as 60 age and sex matched healthy controls, was performed by a highly sensitive proteomic immunoassay. Based on the biomarkers being significantly up- or down-regulated in cross-sectional and paired analysis, related canonical pathways and cellular functions were explored by Ingenuity Pathway Analysis (IPA).
Results: The well-studied sJIA biomarkers, IL6, IL18 and S100A12, were confirmed to be increased during active sJIA as compared to healthy controls. IL18 was the only factor found to be increased during inactive sJIA as compared to healthy controls. Novel factors, including CASP8, CCL23, CD6, CXCL1, CXCL11, CXCL5, EIF4EBP1, KITLG, MMP1, OSM, SIRT2, SULT1A1 and TNFSF11, were found to be differentially expressed in active and/or inactive sJIA and healthy controls. No significant pathway activation could be predicted based on the limited factor input to the IPA. High Mobility Group Box 1 (HMGB1), a damage associated molecular pattern being involved in a series of inflammatory diseases, was determined to be higher in active sJIA than inactive sJIA.
Conclusions: We could identify a novel set of biomarkers distinguishing active sJIA from inactive sJIA or healthy controls. Our findings enable a better understanding of the immune mechanisms active in sJIA and aid the development of future diagnostic and therapeutic strategies.
Keywords: Cytokines and inflammatory mediators; High mobility group Box 1; Inflammation; Ingenuity pathway analysis; Proteomics; Systemic juvenile idiopathic arthritis.
Publication
Journal: Autophagy
December/28/2021
Abstract
By promoting anabolism, MTORC1 is critical for muscle growth and maintenance. However, genetic MTORC1 upregulation promotes muscle aging and produces age-associated myopathy. Whether MTORC1 activation is sufficient to produce myopathy or indirectly promotes it by accelerating tissue aging is elusive. Here we examined the effects of muscular MTORC1 hyperactivation, produced by simultaneous depletion of TSC1 and DEPDC5 (CKM-TD). CKM-TD mice produced myopathy, associated with loss of skeletal muscle mass and force, as well as cardiac failure and bradypnea. These pathologies were manifested at eight weeks of age, leading to a highly penetrant fatality at around twelve weeks of age. Transcriptome analysis indicated that genes mediating proteasomal and macroautophagic/autophagic pathways were highly upregulated in CKM-TD skeletal muscle, in addition to inflammation, oxidative stress, and DNA damage signaling pathways. In CKM-TD muscle, autophagosome levels were increased, and the AMPK and ULK1 pathways were activated; in addition, autophagy induction was not completely blocked in CKM-TD myotubes. Despite the upregulation of autolysosomal markers, CKM-TD myofibers exhibited accumulation of autophagy substrates, such as SQSTM1/p62 and ubiquitinated proteins, suggesting that the autophagic activities were insufficient. Administration of a superoxide scavenger, tempol, normalized most of these molecular pathologies and subsequently restored muscle histology and force generation. However, CKM-TD autophagy alterations were not normalized by rapamycin or tempol, suggesting that they may involve non-canonical targets other than MTORC1. These results collectively indicate that the concomitant muscle deficiency of TSC1 and DEPDC5 can produce early-onset myopathy through accumulation of oxidative stress, which dysregulates myocellular homeostasis.Abbreviations: AMPK: AMP-activated protein kinase; CKM: creatine kinase, M-type; COX: cytochrome oxidase; DEPDC5: DEP domain containing 5, GATOR1 subcomplex subunit; DHE: dihydroethidium; EDL: extensor digitorum longus; EIF4EBP1: eukaryotic translation initiation factor 4E binding protein 1; GAP: GTPase-activating protein; GTN: gastrocnemius; MTORC1: mechanistic target of rapamycin kinase complex 1; PLA: plantaris; QUAD: quadriceps; RPS6KB/S6K: ribosomal protein S6 kinase beta; SDH: succinate dehydrogenase; SOL: soleus; SQSTM1: sequestosome 1; TA: tibialis anterior; TSC1: TSC complex subunit 1; ULK1: unc-51 like autophagy activating kinase 1.
Keywords: MTORC1; ULK1; myopathy; oxidative stress; tempol.
Publication
Journal: Autophagy
March/21/2021
Abstract
ALS (amyotrophic lateral sclerosis), the most common motor neuron disease, causes muscle denervation and rapidly fatal paralysis. While motor neurons are the most affected cells in ALS, studies on the pathophysiology of the disease have highlighted the importance of non-cell autonomous mechanisms, which implicate astrocytes and other glial cells. In ALS, subsets of reactive astrocytes lose their physiological functions and become toxic for motor neurons, thereby contributing to disease pathogenesis. Evidence of astrocyte contribution to disease pathogenesis are well established in cellular and animal models of familial ALS linked to mutant SOD1, where astrocytes promote motor neuron cell death. The mechanism underlying astrocytes reactivity in conditions of CNS injury have been shown to involve the MTOR pathway. However, the role of this conserved metabolic signaling pathway, and the potential therapeutic effects of its modulation, have not been investigated in ALS astrocytes. Here, we show elevated activation of the MTOR pathway in human-derived astrocytes harboring mutant SOD1, which results in inhibition of macroautophagy/autophagy, increased cell proliferation, and enhanced astrocyte reactivity. We demonstrate that MTOR pathway activation in mutant SOD1 astrocytes is due to post-transcriptional upregulation of the IGF1R (insulin like growth factor 1 receptor), an upstream positive modulator of the MTOR pathway. Importantly, inhibition of the IGF1R-MTOR pathway decreases cell proliferation and reactivity of mutant SOD1 astrocytes, and attenuates their toxicity to motor neurons. These results suggest that modulation of astrocytic IGF1R-MTOR pathway could be a viable therapeutic strategy in SOD1 ALS and potentially other neurological diseases.
Keywords: Astrocytes; EIF4EBP1; IGF1R; PPP; SOD1G93A; Torin1; ULK1; autophagy; motor neurons; mtor.
Publication
Journal: AlterNative
November/7/2021
Abstract
Aim: This study aimed to investigate the expression profiles of circRNAs and candidate circRNA-miRNA-mRNA network in BC.
Methods: Differentially expressed circRNAs, miRNAs, and mRNAs (DEcircRNAs, DEmiRNAs, and DEmRNAs) between BC and normal breast tissue samples were screened by analyzing raw data of the RNA sequencing profile. The expression levels of hub genes in 48 pairs of cancerous and tumor-free breast tissues surgically resected from BC patients were determined by RT-qPCR analysis.
Results: A total of 145 DEcircRNAs, 140 DEmiRNAs, and 2451 DEmRNAs between BC and normal breast tissue samples were screened out. There were 5 pairs of upcircRNA-downmiRNA-upmRNA network and 20 pairs of downcircRNA-upmiRNA-downmRNA network. EIF4EBP1, DUSP1, EGR2, EZH1, and CBX7 were found to be correlated with overall survival of the patients with BC. The expression level of EIF4EBP1 was increased and the expression levels of DUSP1, EGR2, EZH1, and CBX7 were decreased in cancerous breast tissues compared to tumor-free breast tissues (p < 0.0001). The RT-qPCR results from 48 BC patients were consistent with the bioinformatics results.
Conclusion: This study provides a novel perspective to study circRNA-miRNA-mRNA network in BC and assists in the identification of new potential biomarkers to be used for diagnostic and prognostic purposes.
Publication
Journal: Cancer Cell International
November/7/2021
Abstract
Background: Acute myeloid leukemia (AML) is a myeloid neoplasm accounts for 7.6% of hematopoietic malignancies. AML is a complex disease, and understanding its pathophysiology is contributing to the improvement in the treatment and prognosis of AML. In this study, we assessed the expression profile and molecular functions of CCAAT enhancer binding protein gamma (CEBPG), a gene implicated in myeloid differentiation and AML progression.
Methods: shRNA mediated gene interference was used to down-regulate the expression of CEBPG in AML cell lines, and knockdown efficiency was detected by RT-qPCR and western blotting. The effect of knockdown on the growth of AML cell lines was evaluated by CCK-8. Western blotting was used to detect PARP cleavage, and flow cytometry were used to determine the effect of knockdown on apoptosis of AML cells. Genes and pathways affected by knockdown of CEBPG were identified by gene expression analysis using RNA-seq. One of the genes affected by knockdown of CEBPG was Eukaryotic translation initiation factor 4E binding protein 1 (EIF4EBP1), a known repressor of translation. Knockdown of EIF4EBP1 was used to assess its potential role in AML progression downstream of CEBPG.
Results: We explored the ChIP-Seq data of AML cell lines and non-AML hematopoietic cells, and found CEBPG was activated through its distal enhancer in AML cell lines. Using the public transcriptomic dataset, the Cancer Cell Line Encyclopedia (CCLE) and western blotting, we also found CEBPG was overexpressed in AML. Moreover, we observed that CEBPG promotes AML cell proliferation by activating EIF4EBP1, thus contributing to the progression of AML. These findings indicate that CEBPG could act as a potential therapeutic target for AML patients.
Conclusion: In summary, we systematically explored the molecular characteristics of CEBPG in AML and identified CEBPG as a potential therapeutic target for AML patients. Our findings provide novel insights into the pathophysiology of AML and indicate a key role for CEBPG in promoting AML progression.
Keywords: Acute myeloid leukemia; Apoptosis; CEBPG; EIF4EBP1; Proliferation.
Publication
Journal: Cancer Biomarkers
August/15/2021
Abstract
Lung cancer accounts for a large proportion of cancer-related deaths worldwide. Personalized therapeutic medicine based on the genetic characteristics of non-small cell lung cancer (NSCLC) is a promising field, and discovering clinically applicable biomarkers of NSCLC is required. LINC00472 is a long non-coding RNA and has been recently suggested to be a biomarker of NSCLC, but little is known of its mechanism in NSCLC. Thus, the current study was performed to document changes in gene expression after LINC00472 overexpression in NSCLC cells. As a result of cell viability and migration assay, LINC00472 downregulated cell survival, proliferation, and motility. Transcriptome sequencing analysis showed 3,782 genes expression were changed in LINC00472 overexpressing cells. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis showed most genes were associated with intracellular metabolism. The PPP1R12B, RGS5, RBM5, RBL2, LDLR and PTPRM genes were upregulated by LINC00472 overexpression and these genes functioned as tumor suppressors in several cancers. In contrast, SPSB1, PCNA, CD24, CDK5, CDC25A, and EIF4EBP1 were downregulated by LINC00472, and they functioned as oncogenes in various cancers. Consequently, the function of LINC00472 in tumorigenesis might be related to changes in the expressions of other oncogenes and tumor suppressors.
Keywords: Long non-coding RNA LINC00472; lung tumorigenesis; transcriptome analysis.
Publication
Journal: Recent Patents on Anti-Cancer Drug Discovery
November/30/2021
Abstract
Background: Triple-negative breast cancer (TNBC) is a highly aggressive malignancy with poor prognosis. Therefore, it is imperative to develop new prognostic or therapeutic biomarkers for TNBC.
Objective: To explore the prognostic and therapeutic values of autophagy-related genes (ARGs) in TNBC.
Methods: Overall, 157 TNBC patients' data were obtained from The Cancer Genome Atlas database, and the ARGs were acquired from the Human Autophagy Database. Differentially expressed ARGs (DEGs) between tumor and normal tissues were identified and the prognostic ARGs were developed using R software. Kaplan-Meier survival curves and receiver operating characteristic (ROC) curves were both used to evaluate the accuracy of the signature. Patents about prognostic ARGs were reviewed through Worldwide Espacenet® and Patentscope®.
Results: We obtained 28 DEGs and two prognostic ARGs (EIF4EBP1 and PARP1). The Kaplan-Meier survival curves showed that the survival rate of patients with low 2-ARG signature risk score was significantly higher than that of patients with high risk score (P=0.003). ROC at 5 years indicated that the signature had good prognostic accuracy (AUC=0.929). The signature was independent of T, N, M, and TNM stage (P<0.05). Patent review suggested that many mTOR inhibitors alone or in combination with another anticancer agent have been provided for treatment of many cancers and shown promising results. No drug patents about PARP1 overexpression were disclosed.
Conclusion: We developed a 2-ARG signature (EIF4EBP1 and PARP1) which was an independent prognostic biomarker for TNBC. As EIF4EBP1 was upregulated in TNBC, mTOR inhibitors which blocked the mTOR/4EBP1/eIF4E pathway may be a promising therapeutic strategy for TNBC.
Keywords: EIF4EBP1; PARP1; Triple-negative breast cancer; autophagy-related genes; mTOR inhibitor; prognostic signature.
load more...