Citations
All
Search in:AllTitleAbstractAuthor name
Publications
(550)
Patents
Grants
Pathways
Clinical trials
Publication
Journal: Endocrinology
August/13/2012
Abstract
We have previously reported that <em>5α</em>-dihydrotestosterone (<em>DHT</em>) inhibits FSH-mediated granulosa cell proliferation by reducing cyclin D2 mRNA expression and blocking cell cycle progression at G1/S phase. The present study investigated the role of AMP activated protein kinase (AMPK) in <em>DHT</em>-mediated inhibition of granulosa cell proliferation. Granulosa cells harvested from 3-d estradiol primed immature rats were exposed to different concentrations of <em>DHT</em> (0, 45, and 90 ng/ml) for 24 h. Western blot analysis of immunoprecipitated AMPK showed a dose-dependent activation (P < 0.05) as evidenced by the increased phosphorylation at thr 172. In addition, time-courses studies (0, 6, 12, and 24 h) using <em>DHT</em> (90 ng/ml) showed a time-dependent increase in AMPK activation with maximum effect at 24 h. FSH inhibited AMPK phosphorylation and promoted granulosa cell proliferation, but pretreatment with <em>DHT</em> (90 ng/ml) for 24 h prior to FSH treatment reduced this effect. Pharmacological activation of AMPK with 5-aminoimidazole-4-carboxamide-1-β4-ribofuranoside abolished FSH-mediated ERK phosphorylation, indicating that AMPK is a negative upstream regulator of ERK. Furthermore, inhibition of AMPK activation by compound C reversed the <em>DHT</em>-mediated reduction in positive cell cycle regulator, cyclin D2, and 5-bromo-2'-deoxyuridine incorporation. These results suggest that elevated levels of <em>DHT</em> activate AMPK, which in turn inhibits ERK phosphorylation. Thus, inhibition of ERK phosphorylation by activated AMPK in response to <em>DHT</em> might contribute to decreased granulosa cell mitogenesis and ovulatory dysfunction seen in hyperandrogenic states.
Publication
Journal: BioFactors
June/7/2012
Abstract
The purpose of this study was to investigate the effects of equol, a plant and intestinal flora derived isoflavonoid molecule on the expression of skin genes and proteins using human dermal models. As equol has been shown to mimic 17β-estradiol and bind specifically to <em>5α</em>-dihydrotestostone (<em>5α</em>-<em>DHT</em>), these agents were used (in addition to equol) to determine whether equol may play important and beneficial roles in the extracellular matrix (ECM). Equol at 0.3 or 1.2% in qPCR experiments using a human skin barrier model examined ECM gene expression. Equol, <em>5α</em>-<em>DHT</em>, and 17β-estradiol at 10 nM were studied in human monolayer fibroblasts cultures (hMFC) for ECM protein expression. Human fibroblast three-dimensional organotypic cultures revealed equol's influence (@ 10 nM) on ECM proteins via fluorescent-activated cell sorting (FACS) analysis. In qPCR experiments, equol significantly increased collagen, elastin (ELN), and tissue inhibitor of metalloprotease and decreased metalloproteinases (MMPs) gene expression and caused significant positive changes in skin antioxidant and antiaging genes. In hMFC, equol significantly increased collagen type I (COL1A1), whereas, <em>5α</em>-<em>DHT</em> significantly decreased cell viability that was blocked by equol. FACS analysis showed equol and 17β-estradiol significantly stimulated COL1A1, collagen type III (COL3A1), and ELN while MMPs were significantly decreased compared with control values. Finally, tamoxifen blocked the positive influences of equol on ECM proteins via FACS analysis. These findings suggest that equol has the potential to be used topically for the treatment and prevention of skin aging, by enhancing ECM components in human skin.
Publication
Journal: Annals of Clinical Biochemistry
September/4/2013
Abstract
Dihydrotestosterone (<em>DHT</em>) is the most potent natural androgen in humans. There has been an increasing interest in this androgen and its role in the development of primary and secondary sexual characteristics as well as its potential roles in diseases ranging from prostate and breast cancer to Alzheimer's disease. Despite the range of pathologies shown to involve <em>DHT</em> there is little evidence for measurement of serum <em>DHT</em> in the management of these diseases. In this review we describe the physiology of <em>DHT</em> production and action, summarize current concepts in the role of <em>DHT</em> in the pathogenesis of various disorders of sexual development, compare current methods for the measurement of <em>DHT</em> and conclude on the clinical utility of <em>DHT</em> measurement. The clinical indications for the measurement of <em>DHT</em> in serum are: investigation of <em>5α</em> reductase deficiency in infants with ambiguous genitalia and palpable gonads; men with delayed puberty and/or undescended testes; and to confirm the presence of active testicular tissue. Investigation is aided by the use of human chorionic gonadotrophin stimulation. Due to paucity of published data on this procedure, it is important to follow guidelines prescribed by the laboratory performing the analysis to ensure accurate interpretation.
Publication
Journal: American Journal of Physiology - Regulatory Integrative and Comparative Physiology
September/13/2015
Abstract
Increased vascular 20-HETE is associated with hypertension and activation of the renin-angiotensin system (RAS) through induction of vascular angiotensin-converting enzyme (ACE) expression. Cyp4a12tg mice, whose Cyp4a12-20-HETE synthase expression is under the control of a tetracycline (doxycycline, DOX) promoter, were used to assess the contribution of ACE/RAS to microvascular remodeling in 20-HETE-dependent hypertension. Treatment of Cyp4a12tg mice with DOX increased systolic blood pressure (SBP; 136 ± 2 vs. 102 ± 1 mmHg; P < 0.05), and this increase was prevented by administration of 20-HEDGE, lisinopril, or losartan. DOX-induced hypertension was associated with microvascular dysfunction and remodeling of preglomerular microvessels, which was prevented by 20-HEDGE, a 20-HETE antagonist, yet only lessened, but not prevented, by lisinopril or losartan. In ACE 3/3 mice, which lack vascular endothelial ACE, administration of <em>5α</em>-dihydrotestosterone (<em>DHT</em>), a known inducer of 20-HETE production, increased SBP; however, the increase was about 50% of that in wild-type (WT) mice (151 ± 1 vs. 126 ± 1 mmHg). Losartan and 20-HEDGE prevented the <em>DHT</em>-induced increase in SBP in WT and ACE 3/3 mice. <em>DHT</em> treatment increased 20-HETE production and microvascular remodeling in WT and ACE 3/3 mice; however, remodeling was attenuated in the ACE 3/3 mice as opposed to WT mice (15.83 ± 1.11 vs. 22.17 ± 0.92 μm; P < 0.05). 20-HEDGE prevented microvascular remodeling in WT and ACE 3/3 mice, while losartan had no effect on microvascular remodeling in ACE 3/3. Taken together, these results suggest that RAS contributes to 20-HETE-mediated microvascular remodeling in hypertension and that 20-HETE-driven microvascular remodeling independent of blood pressure elevation does not fully rely on ACE activity in the vascular endothelium.
Publication
Journal: Journal of Endocrinological Investigation
July/5/2015
Abstract
OBJECTIVE
Gender-related differences in sex hormones might have a key role in the development of atherosclerosis though direct vascular effects of sex hormones are not yet well understood. Thus, the main purpose of this study was to compare the effects of sex hormones on inflammatory response in Human Umbilical Vein Endothelial Cells (HUVECs) obtained from both male and female donors.
METHODS
We analyzed the expression of receptors and enzymes relevant to the action of androgens (AR, <em>5α</em>-reductase 1 and <em>5α</em>-reductase 2) and estrogens (ERα, ERβ, and aromatase) in male and female HUVECs. Furthermore, we analyzed the effect of testosterone (T), 17β-estradiol (E2), dihydrotestosterone (<em>DHT</em>), and several androgenic-anabolic steroids (AAS) on VCAM-1, ICAM-1, and E-selectin gene expression and on adhesion of U937 cells to TNF-α-stimulated male and female HUVECs.
RESULTS
Our results reveal that in HUVECs, regardless of gender, the components involved in the androgen action pathway are predominant as compared to those of estrogen action pathway. In both HUVEC genders, the inflammatory effect of TNF-α was amplified by co-administration of T or DHT and several AAS frequently used in doping, while E2 had no effect.
CONCLUSIONS
This is the first study analyzing, under identical culture conditions, the key components of sex hormone response in male and female HUVECs and the possible role of sex hormones in regulating the endothelial inflammatory response. The data obtained in our experimental system showed a pro-inflammatory effect of androgens, while conclusively excluding any protective effect for all the tested hormones.
Publication
Journal: Biological and Pharmaceutical Bulletin
September/30/2013
Abstract
Peroxisome proliferator-activated receptor (PPAR) γ plays a major role in the regulation of lipid and carbohydrate metabolism. Pioglitazone is a PPARγ agonist that is widely used for the treatment of type 2 diabetes mellitus. However, female patients have been reported to experience stronger efficacy and adverse effects than male patients. This study evaluated the effects of sex hormones on PPARγ expression and activity in adipocytes. Mouse 3T3-L1 preadipocytes were used after being grown into matured adipocytes. The sex hormones 17β-estradiol (E2), testosterone (T), or <em>5α</em>-androstan-17β-ol-3-one (dihydrotestosterone; <em>DHT</em>) were added to the matured adipocytes and the cells were then maintained for short (24-72 h) or long (1- or 2-weeks) periods. E2 significantly upregulated PPARγ protein expression in a concentration-dependent manner after extended exposure, whereas T and <em>DHT</em> did not have such an effect. When cells were co-treated with pioglitazone and E2, PPARγ protein expression significantly increased in an E2-dependent manner, whereas this expression seemed to be reduced by pioglitazone mono-treatment and co-treatment with <em>DHT</em> at higher concentrations. The secretion levels of adiponectin protein, a major indicator of PPARγ activity, were significantly decreased by <em>DHT</em>, but were not affected by E2. Finally a luciferase assay was performed using a PPAR response element-Luk reporter gene. Transcriptional activity was not changed by any of single sex hormone treatment, but was significantly downregulated by co-treatment with pioglitazone and <em>DHT</em>. Taken together, our results suggest that sex hormones may influence PPARγ expression and function, which may explain the observed sex-specific different effect of pioglitazone.
Publication
Journal: Journal of Steroid Biochemistry and Molecular Biology
April/18/2012
Abstract
The membrane-bound enzyme 3β-hydroxysteroid dehydrogenase/5-ene-4-ene isomerase (3β-HSD) catalyses an essential step in the transformation of all 5-pregnen-3β-ol and 5-androsten-3β-ol steroids into the corresponding 3-keto-4-ene-steroids, namely progesterone as well as all the precursors of androgens, estrogens, glucocorticoids and mineralocorticoids. We have recently characterized two types of human 3β-HSD cDNA clones and the corresponding genes which encode type I and II 3β-HSD isoenzymes of 372 and 371 amino acids, respectively, and share 93.5% homology. The human 3β-HSD genes containing 4 exons were assigned by in situ hybridization to the p11-p13 region of the short arm of chromosome 1. Human type I 3β-HSD is the almost exclusive mRNA species present in the placenta and skin while the human type II is the predominant mRNA species in the adrenals, ovaries and testes. The type I protein possesses higher 3β-HSD activity than type II. We elucidated the structures of three types of rat 3β-HSD cDNAs as well that of one type of 3β-HSD from bovine and macaque ovary λgt11 cDNA libraries, which all encode a 372 amino acid protein. The rat type I and II 3β-HSD proteins expressed in the adrenals, gonads and adipose tissue share 93.8% homology. Transient expression of human type I and II as well as rat type I and II 3β-HSD cDNAs in HeLa human cervical carcinoma cells reveals that 3β-ol dehydrogenase and 5-ene-4-ene isomerase activities reside within a single protein. These expressed 3β-HSD proteins convert 3β-hydroxy-5-ene-steroids into 3-keto-4-ene derivatives and catalyze the interconversion of 3β-hydroxy and 3-keto-<em>5α</em>-androstane steroids. By site-directed mutagenesis, we demonstrated that the lower activity of expressed rat type II compared to rat type I 3β-HSD is due to a change of four residues probably involved in a membrane-spanning domain. When homogenates from cells transfected with a plasmid vector containing rat type I 3β-HSD is incubated in the presence of dihydrotestosterone (<em>DHT</em>) using NAD⁺ as co-factor, <em>5α</em>-androstanedione was formed (A-dione), indicating an intrinsic androgenic 17β-hydroxysteroid dehydrogenase (17β-HSD) activity of this 3β-HSD. We cloned a third type of rat cDNA encoding a predicted type III 3β-HSD specifically expressed in the rat liver, which shares 80% similarity with the two other isoenzymes. Transient expression in human HeLa cells reveals that the type III isoenzyme does not display oxidative activity for the classical substrates of 3β-HSD. However, in common with the type I enzyme, it converts A-dione and <em>DHT</em> to the corresponding 3β-hydroxysteroids, thus showing an exclusive 3-ketosteroid reductase activity. When NADPH is used as co-factor, the affinity for <em>DHT</em> of the type III enzyme becomes 10-fold higher than that of the type I. Rat type III mRNA was below the detection limit in intact female liver. Following hypophysectomy, its concentration increased to 55% of the values measured in intact or hypophysectomized male rats, an increase which can be blocked by administration of ovine prolactin (oPRL). Treatment with oPRL for 10 days starting 15 days after hypophysectomy markedly decreased ovarian 3β-HSD mRNA accumulation accompanied by a similar decrease in 3β-HSD activity and protein levels. Treatment with the gonadotropin hCG reversed the potent inhibitory effect of oPRL on these parameters and stimulated 3β-HSD mRNA levels in ovarian interstitial cells. These data indicate that the presence of multiple 3β-HSD isoenzymes offers the possibility of tissue-specific expression and regulation of this enzymatic activity that plays an essential role in the biosynthesis of all hormonal steroids in classical as well as peripheral intracrine steroidogenic tissues.
Publication
Journal: Fitoterapia
January/22/2017
Abstract
This article discusses the mechanisms via topically applied products containing herbs and their active constituents affect the hair growth process. It was reported that the mechanisms involving (1) insulin-like growth factor-I (IGF-I), (2) vascular endothelial growth factor (VEGF), (3) epidermal growth factor (EGF), (4) fibroblast growth factor 2 (FGF-2), (5) endothelial nitric oxide synthase (eNOS), (6) Wnt/β-catenin signalling pathway, (7) prostaglandin E (PGE), (8) prostaglandin F (PGF) stimulate hair growth, whereas the mechanisms engaging (1) <em>5α</em>-reductase and dihydrotestosterone (<em>DHT</em>), (2) transforming growth factor beta (TGF-β), (3) fibroblast growth factor 5 (FGF-5), (4) prostaglandin D2 (PGD2) inhibit hair growth. The knowledge summarized in the paper may be an inspiration to create new preparations for the treatment of hair loss.
Pulse
Views:
1
Posts:
No posts
Rating:
Not rated
Publication
Journal: Endocrinology
April/27/2017
Abstract
<em>5α</em>-Reductase types 1 and 2, encoded by SRD5A1 and SRD5A2, are the two enzymes that can catalyze the conversion of testosterone to dihydrotestosterone, the most potent androgen receptor (AR) agonist in prostate cells. <em>5α</em>-Reductase type 2 is the predominant isoform expressed in the normal prostate. However, its expression decreases during prostate cancer (PCa) progression, whereas SRD5A1 increases, and the mechanism underlying this transcriptional regulatory switch is still unknown. Interrogation of SRD5A messenger RNA expression in three publicly available data sets confirmed that SRD5A1 is increased in primary and metastatic PCa compared with nontumoral prostate tissues, whereas SRD5A2 is decreased. Activation of AR, a major oncogenic driver of PCa, induced the expression of SRD5A1 from twofold to fourfold in three androgen-responsive PCa cell lines. In contrast, AR repressed SRD5A2 expression in this context. Chromatin-immunoprecipitation studies established that AR is recruited to both SRD5A1 and SRD5A2 genes following androgen stimulation but initiates transcriptional activation only at SRD5A1 as monitored by recruitment of RNA polymerase II and the presence of the H3K27Ac histone mark. Furthermore, we showed that the antiandrogens bicalutamide and enzalutamide block the AR-mediated regulation of both SRD5A1 and SRD5A2, highlighting an additional mechanism explaining their beneficial effects in patients. In summary, we identified an AR-dependent transcriptional regulation that explains the differential expression of <em>5α</em>-reductase types 1 and 2 during PCa progression. Our work thus defines a mechanism by which androgens control their own synthesis via differential regulatory control of the expression of SRD5A1 and SRD5A2.
Publication
Journal: Journal of Ovarian Research
September/27/2018
Abstract
BACKGROUND
Ovarian cancer stem cells (OCSCs) contribute to the poor prognosis of ovarian cancer. Involvement of the androgen receptor (AR) in the malignant behaviors of other tumors has been reported. However, whether AR associates with Nanog (a stem cell marker) and participates in OCSC functions remain unclear. In this study, we investigated the interaction of Nanog with AR and examined whether this interaction induced stem-like properties in ovarian cancer cells.
METHODS
AR and Nanog expression in ovarian tumors was evaluated. Using the CRISPR/Cas9 system, we constructed a Nanog green fluorescent protein (GFP) marker cell model to investigate the expression and co-localization of Nanog and AR. Then, we examined the effect of androgen on the Nanog promoter in ovarian cancer cell lines (A2780 and SKOV3). After androgen or anti-androgen treatment, cell proliferation, migration, sphere formation, colony formation and tumorigenesis were assessed in vitro and in vivo.
RESULTS
Both AR and Nanog expression were obviously high in ovarian tumors. Our results showed that Nanog expression was correlated with AR expression. The androgen <em>5α</em>-dihydrotestosterone (<em>DHT</em>) activated Nanog promoter transcription. Meanwhile, Nanog GFP-positive cells treated with <em>DHT</em> exhibited higher levels of proliferation, migration, sphere formation and colony formation. We also observed that the tumorigenesis of Nanog GFP-positive cells was significantly higher than that of the GFP-negative cells. Xenografts of Nanog GFP-positive cells showed significant differences when treated with androgen or anti-androgen drugs in vivo.
CONCLUSIONS
The interaction of Nanog with the AR signaling axis might induce or contribute to OCSC regulation. In addition, androgen might promote stemness characteristics in ovarian cancer cells by activating the Nanog promoter. This finding merits further study because it may provide a new understanding of OCSC regulation from a hormone perspective and lead to the reevaluation of stem cell therapy for ovarian cancer.
Publication
Journal: Journal of Clinical Endocrinology and Metabolism
September/25/2012
Abstract
BACKGROUND
The data concerning the effects and safety of androgen in human breast tissue are conflicting.
OBJECTIVE
Our aim was to analyze the effects of androgens on normal human breast tissue (HBT).
METHODS
We cultured explants of HBT (obtained from reduction mammoplasty operations of postmenopausal women) with or without testosterone (T) and <em>5α</em>-dihydrotestosterone (<em>DHT</em>) or in combination with 17β-estradiol (E(2)) for 7 and 14 d to study the effects of androgens on proliferation, apoptosis, target gene expression, and steroid receptors. The androgen receptor (AR) and estrogen receptor (ER) dependences of the effects were studied with the antihormones bicalutamide and fulvestrant, respectively.
RESULTS
The hormone responsiveness of cultured breast tissue was assessed by assaying apolipoprotein-D and prostate-specific antigen expression increased by androgens and amphiregulin and trefoil factor-1 expression induced by E(2) treatment. T and DHT reduced proliferation and increased apoptosis in breast epithelium, the effects of which were reversed by bicalutamide. In combination with E(2), they suppressed E(2)-stimulated proliferation and cell survival. DHT also inhibited basal (P < 0.05) and E(2)-induced expression of cyclin-D1 mRNA (P < 0.05). Immunohistochemistry showed that T (P < 0.05) and DHT (P < 0.05) increased the relative number of AR-positive cells, whereas ERα-positive (P < 0.001) cell numbers were strongly decreased. The percentage of ERβ-positive cells remained unchanged. E(2) treatment increased ERα-positive (P < 0.01) cells, whereas AR- (P < 0.05) and ERβ-expressing (P < 0.001) cells diminished. These effects were repressed in combination cultures of E(2) with T and DHT.
CONCLUSIONS
T and DHT inhibited proliferation and increased apoptosis in the epithelium of cultured normal HBT and opposed E(2)-stimulated proliferation and cell survival in an AR-dependent manner. These effects were associated with changes in the proportions of ERα- and AR-positive epithelial cells.
Publication
Journal: Scientific Reports
January/5/2017
Abstract
The endometrium is a complex, steroid-dependent tissue that undergoes dynamic cyclical remodelling. Transformation of stromal fibroblasts (ESC) into specialised secretory cells (decidualization) is fundamental to the establishment of a receptive endometrial microenvironment which can support and maintain pregnancy. Androgen receptors (AR) are present in ESC; in other tissues local metabolism of ovarian and adrenal-derived androgens regulate AR-dependent gene expression. We hypothesised that altered expression/activity of androgen biosynthetic enzymes would regulate tissue availability of bioactive androgens and the process of decidualization. Primary human ESC were treated in vitro for 1-8 days with progesterone and cAMP (decidualized) in the presence or absence of the AR antagonist flutamide. Time and treatment-dependent changes in genes essential for a) intra-tissue biosynthesis of androgens (<em>5α</em>-reductase/SRD5A1, aldo-keto reductase family 1 member C3/AKR1C3), b) establishment of endometrial decidualization (IGFBP1, prolactin) and c) endometrial receptivity (SPP1, MAOA, EDNRB) were measured. Decidualization of ESC resulted in significant time-dependent changes in expression of AKR1C3 and SRD5A1 and secretion of T/<em>DHT</em>. Addition of flutamide significantly reduced secretion of IGFBP1 and prolactin and altered the expression of endometrial receptivity markers. Intracrine biosynthesis of endometrial androgens during decidualization may play a key role in endometrial receptivity and offer a novel target for fertility treatment.
Publication
Journal: Human Reproduction
September/8/2016
Abstract
OBJECTIVE
By investigating a birth cohort with a high ongoing participation rate to derive an unbiased population, what are the parameters and influences upon testicular function for a population not selected with regard to fertility?
CONCLUSIONS
While varicocele, cryptorchidism and obesity may impact on human testicular function, most common drug exposures and the presence of epididymal cysts appear to have no or minimal adverse impact.
BACKGROUND
The majority of previous attempts to develop valid reference populations for spermatogenesis have relied on potentially biased sources such as recruits from infertility clinics, self-selected volunteer sperm donors for research or artificial insemination or once-fertile men seeking vasectomy. It is well known that studies requiring semen analysis have low recruitment rates which consequently question their validity. However, there has been some concern that a surprisingly high proportion of young men may have semen variables that do not meet all the WHO reference range criteria for fertile men, with some studies reporting that up to one half of participants have not meet the reference range for fertile men. Reported median sperm concentrations have ranged from 40 to 60 million sperm/ml.
METHODS
The Western Australian Pregnancy Cohort (Raine) was established in 1989. At 20-22 years of age, members of the cohort were contacted to attend for a general follow-up, with 753 participating out of the 913 contactable men. Of these, 423 men (56% of participants in the 20-22 years cohort study, 46% of contactable men) participated in a testicular function study. Of the 423 men, 404 had a testicular ultrasound, 365 provided at least one semen sample, 287 provided a second semen sample and 384 provided a blood sample.
METHODS
Testicular ultrasound examinations were performed at King Edward Memorial Hospital, Subiaco, Perth, for testicular volume and presence of epididymal cysts and varicoceles. Semen samples were provided and analysed by standard semen assessment and a sperm chromatin structural assay (SCSA) at Fertility Specialists of Western Australia, Claremont, Perth. Serum blood samples were provided at the University of Western Australia, Crawley, Perth and were analysed for serum luteinizing hormone (LH), follicular stimulating hormone (FSH), inhibin B, testosterone, dihydrotestosterone (<em>DHT</em>), dehydroepiandrosterone (DHEA), estradiol, estrone and the primary metabolites of <em>DHT</em>: <em>5α</em>-androstane-3α,17β-diol (3α-diol) and 5-α androstane-3-β-17-beta-diol (3β-diol). Serum steroids were measured by liquid chromatography, mass spectrometry and LH, FSH and inhibin B were measured by ELISA assays.
RESULTS
Cryptorchidism was associated with a significant reduction in testicular (P = 0.047) and semen (P = 0.027) volume, sperm concentration (P = 0.007) and sperm output (P = 0.003). Varicocele was associated with smaller testis volume (P < 0.001), lower sperm concentration (P = 0.012) and total sperm output (P = 0.030) and lower serum inhibin B levels (P = 0.046). Smoking, alcohol intake, herniorrhaphy, an epididymal cyst, medication and illicit drugs were not associated with any significant semen variables, testicular volume or circulating reproductive hormones. BMI had a significantly negative correlation with semen volume (r = -0.12, P = 0.048), sperm output (r = -0.13, P = 0.02), serum LH (r = -0.16, P = 0.002), inhibin B (r = -0.16, P < 0.001), testosterone (r = -0.23, P < 0.001) and DHT (r = -0.22, P < 0.001) and a positive correlation with 3αD (r = 0.13, P = 0.041) and DHEA (r = 0.11, P = 0.03). Second semen samples compared with the first semen samples in the 287 participants who provided two samples, with no significant bias by Bland-Altman analysis. Testis volume was significantly correlated positively with sperm concentration (r = 0.25, P < 0.001) and sperm output (r = 0.29, P < 0.001) and inhibin B (r = 0.42, P < 0.001), and negatively correlated with serum LH (r = -0.24, P < 0.001) and FSH (r = -0.32, P < 0.001). SCSA was inversely correlated with sperm motility (r = -0.20, P < 0.001) and morphology (r = -0.16, P = 0.005). WHO semen reference criteria were all met by only 52 men (14.4%). Some criteria were not met at first analysis in 15-20% of men, including semen volume (<1.5 ml, 14.8%), total sperm output (<39 million, 18.9%), sperm concentration (<15 million/ml, 17.5%), progressive motility (<32%, 14.4%) and morphologically normal sperm (<4%, 26.4%), while all five WHO criteria were not met in four participants (1.1%).
CONCLUSIONS
This was a large cohort study; however, potential for recruitment bias still exists. Men who did not participate in the testicular evaluation study (n = 282) did not differ from those who did (n = 423) with regard to age, weight, BMI, smoking or circulating reproductive hormones (LH, FSH, inhibin B, T, DHT, E2, E1, DHEA, 3α-diol, 3β-diol), but were significantly shorter (178 versus 180 cm, P = 0.008) and had lower alcohol consumption (P = 0.019) than those who did participate.
CONCLUSIONS
This study demonstrated the feasibility of establishing a birth cohort to provide a relatively unbiased insight into population-representative sperm output and function and of investigating its determinants from common exposures. While varicocele, cryptorchidism and obesity may impact on human testicular function, most common drug exposures and the presence of epididymal cysts appear to have little adverse impact, and this study suggests that discrepancies from the WHO reference ranges are expected, due to its derivation from non-population-representative fertile populations.
Publication
Journal: BJU International
September/13/2015
Abstract
OBJECTIVE
To investigate if short-term treatment with dutasteride (8 weeks) before bipolar transurethral resection of the prostate (B-TURP) can reduce intraoperative bleeding, as dutasteride a dual <em>5α</em>-reductase inhibitor (5-ARI) blocks the conversion of testosterone into its active form dihydrotestosterone (<em>DHT</em>), and reduces prostate volume and prostate-specific antigen (PSA) levels, while increasing urinary flow rate.
METHODS
In all, 259 patients were enrolled and randomised to two groups: Group A, receiving placebo and Group B, receiving dutasteride (0.5 mg daily for 8 weeks). Blood samples were taken before and after B-TURP for serum chemistry evaluation. In particular we evaluated blood parameters associated with blood loss [haemoglobin (Hb) and haematocrit (Ht)] and prostate vascularity [vascular endothelial growth factor (VEGF) immunoreactivity and microvessel density (MVD) using cluster of differentiation 34 (CD34) immunoreactivity].
RESULTS
Total testosterone, DHT, PSA level and prostate volume were evaluated and with the exception of DHT and PSA level there was no statistically significant differences between the groups. When comparing changes in Hb and Ht between Group A and Group B before and after B-TURP, there was a statistically significant difference only in patients with large prostates of ≥50 mL (ΔHb 3.86 vs 2.05 g/dL and ΔHt 4.98 vs 2.64%, in Groups A and B, respectively). There was no significant difference in MVD and VEGF index in prostates of <50 mL, conversely in large prostates the difference become statistically significant.
CONCLUSIONS
Dutasteride was able to reduce operative and perioperative bleeding only in patients with large prostates (≥50 mL) that underwent B-TURP. Our findings are confirmed by Hb and Ht values reported before and after the B-TURP and reductions in the molecular markers for VEGF and CD34 in the dutasteride-treated specimens.
Publication
Journal: Annales d'Endocrinologie
July/16/2015
Abstract
Defects of androgen biosynthesis cause 46,XY disorder of sexual development (DSD). All steroids are produced from cholesterol and the early steps of steroidogenesis are common to mineralocorticoid, glucocorticoid and sex steroid production. Genetic mutations in enzymes and proteins supporting the early biosynthesis pathways cause adrenal insufficiency (AI), DSD and gonadal insufficiency. The classic androgen biosynthesis defects with AI are lipoid CAH, CYP11A1 and HSD3B2 deficiencies. Deficiency of CYP17A1 rarely causes AI, and HSD17B3 or SRD5A2 deficiencies only cause 46,XY DSD and gonadal insufficiency. All androgen biosynthesis depends on 17,20 lyase activity of CYP17A1 which is supported by P450 oxidoreductase (POR) and cytochrome b5 (CYB5). Therefore 46,XY DSD with apparent 17,20 lyase deficiency may be due to mutations in CYP17A1, POR or CYB5. Illustrated by patients harboring mutations in SRD5A2, normal development of the male external genitalia depends largely on dihydrotestosterone (<em>DHT</em>) which is converted from circulating testicular testosterone (T) through SRD5A2 in the genital skin. In the classic androgen biosynthetic pathway, T is produced from DHEA and androstenedione/-diol in the testis. However, recently found mutations in AKR1C2/4 genes in undervirilized 46,XY individuals have established a role for a novel, alternative, backdoor pathway for fetal testicular <em>DHT</em> synthesis. In this pathway, which has been first elucidated for the tammar wallaby pouch young, 17-hydroxyprogesterone is converted directly to <em>DHT</em> by <em>5α</em>-3α reductive steps without going through the androgens of the classic pathway. Enzymes AKR1C2/4 catalyse the critical 3αHSD reductive reaction which feeds 17OH-DHP into the backdoor pathway. In conclusion, androgen production in the fetal testis seems to utilize two pathways but their exact interplay remains to be elucidated.
Publication
Journal: Journal of Cancer Research and Clinical Oncology
May/16/2016
Abstract
OBJECTIVE
The present study aims to investigate the role of androgens in controlling the glycolytic metabolism and lactate efflux in prostate cancer (PCa) cells.
METHODS
Androgen-responsive LNCaP cells were treated with <em>5α</em>-dihydrotestosterone (<em>DHT</em>, 10 nM) for 12-48 h, and their glycolytic metabolism, lactate production and viability were analyzed. Intracellular and extracellular levels of glucose and lactate were determined spectrophotometrically, and the expression of glucose transporters (GLUT1/GLUT3), phosphofructokinase 1, lactate dehydrogenase (LDH) and monocarboxylate transporter (MCT4) was analyzed by real-time PCR and Western blot. The enzymatic activity of LDH was determined by means of a colorimetric assay. Experiments were reproduced in androgen-non-responsive DU145 and PC3 cells.
RESULTS
Androgens stimulated glucose consumption in LNCaP cells by increasing the expression of GLUT3, GLUT1 and PFK, which was underpinned by increased cell viability. Accordingly, lactate production by LNCaP cells was enhanced upon DHT stimulation as evidenced by the increased levels of lactate found in cell culture medium. Although LDH enzymatic activity decreased in LNCaP cells treated with DHT, the expression of MCT4 was significantly increased with androgenic treatment, which sustains the increase on lactate export. Glucose consumption and the expression of GLUTs and PFK remained unchanged in DHT-treated DU145 and PC3 cells.
CONCLUSIONS
The results obtained establish androgens as modulators of glycolytic metabolism in PCa cells by stimulating glucose consumption, as well as the production and export of lactate, which may represent a crucial issue-driven prostate tumor development. These findings also highlight the importance of PCa therapies targeting AR and metabolism-related proteins.
Publication
Journal: BMC Biochemistry
September/25/2013
Abstract
BACKGROUND
The androgen receptor (AR) is a member of the nuclear receptor (NR) superfamily of ligand-inducible DNA transcription factors, and is the major mediator of male sexual development, prostate growth and the pathogenesis of prostate cancer. Cell and gene specific regulation by the AR is determined by availability of and interaction with sets of key accessory cofactors. Ski-interacting protein (SKIP; SNW1, NCOA62) is a cofactor shown to interact with several NRs and a diverse range of other transcription factors. Interestingly, SKIP as part of the spliceosome is thought to link mRNA splicing with transcription. SKIP has not been previously shown to interact with the AR.
RESULTS
The aim of this study was to investigate whether SKIP interacts with the AR and modulates AR-dependent transcription. Here, we show by co-immunoprecipitation experiments that SKIP is in a complex with the AR. Moreover, SKIP increased <em>5α</em>-dihydrotestosterone (<em>DHT</em>) induced N-terminal/C-terminal AR interaction from 12-fold to almost 300-fold in a two-hybrid assay, and enhanced AR ligand-independent AF-1 transactivation. SKIP augmented ligand- and AR-dependent transactivation in PC3 prostate cancer cells. Live-cell imaging revealed a fast (half-time=129 s) translocation of AR from the cytoplasm to the nucleus upon <em>DHT</em>-stimulation. Förster resonance energy transfer (FRET) experiments suggest a direct AR-SKIP interaction in the nucleus upon translocation.
CONCLUSIONS
Our results suggest that SKIP interacts with AR in the nucleus and enhances AR-dependent transactivation and N/C-interaction supporting a role for SKIP as an AR co-factor.
Publication
Journal: FASEB Journal
June/6/2016
Abstract
Myocardial repolarization capacity varies with sex, age, and pathology; the molecular basis for this variation is incompletely understood. Here, we show that the transcript for KCNE4, a voltage-gated potassium (Kv) channel β subunit associated with human atrial fibrillation, was 8-fold more highly expressed in the male left ventricle compared with females in young adult C57BL/6 mice (P < 0.05). Similarly, Kv current density was 25% greater in ventricular myocytes from young adult males (P < 0.05). Germ-line Kcne4 deletion eliminated the sex-specific Kv current disparity by diminishing ventricular fast transient outward current (Ito,f) and slowly activating K(+) current (IK,slow1). Kcne4 deletion also reduced Kv currents in male mouse atrial myocytes, by >45% (P < 0.001). As we previously found for Kv4.2 (which generates mouse Ito,f), heterologously expressed KCNE4 functionally regulated Kv1.5 (the Kv α subunit that generates IKslow1 in mice). Of note, in postmenopausal female mice, ventricular repolarization was impaired by Kcne4 deletion, and ventricular Kcne4 expression increased to match that of males. Moreover, castration diminished male ventricular Kcne4 expression 2.8-fold, whereas <em>5α</em>-dihydrotestosterone (<em>DHT</em>) implants in castrated mice increased Kcne4 expression >3-fold (P = 0.01) to match noncastrated levels. KCNE4 is thereby shown to be a <em>DHT</em>-regulated determinant of cardiac excitability and a molecular substrate for sex- and age-dependent cardiac arrhythmogenesis.
Publication
Journal: International journal of andrology
March/5/2012
Abstract
Oral testosterone undecanoate (TU) is used to treat testosterone deficiency; however, oral TU treatment elevates dihydrotestosterone (<em>DHT</em>), which may be associated with an increased risk of acne, male pattern baldness and prostate hyperplasia. Co-administration of <em>5α</em>-reductase inhibitors with other formulations of oral testosterone suppresses <em>DHT</em> production and increases serum testosterone. We hypothesized that finasteride would increase serum testosterone and lower <em>DHT</em> during treatment with oral TU. Therefore, we studied the steady-state pharmacokinetics of oral TU, 200 mg equivalents of testosterone twice daily for 7 days, alone and with finasteride 0.5 and 1.0 mg po twice daily in an open-label, three-way crossover study in 11 young men with experimentally induced hypogonadism. On the seventh day of each dosing period, serum testosterone, <em>DHT</em> and oestradiol were measured at baseline and 1, 2, 4, 8, 12, 13, 14, 16, 20 and 24 h after the morning dose. Serum testosterone and <em>DHT</em> were significantly increased into and above their normal ranges similarly by all three treatments. Co-administration of finasteride at 0.5 and 1.0 mg po twice daily had no significant effect on either serum testosterone or <em>DHT</em>. Oral TU differs from other formulations of oral testosterone in its response to concomitant inhibition of <em>5α</em>-reductase, perhaps because of its unique lymphatic route of absorption.
Publication
Journal: American Journal of Physiology - Endocrinology and Metabolism
September/29/2011
Abstract
This study was undertaken to assess the effects of dehydroepiandrosterone (DHEA) administration and exercise training on muscular DHEA and <em>5α</em>-dihydrotestosterone (<em>DHT</em>) levels and hyperglycemia in diet-induced obese and hyperglycemic rats. After 14 wk of a high-sucrose diet, obese male Wistar rats were assigned randomly to one of three 6-wk regimens: control, DHEA treatment, or exercise training (running at 25 m/min for 1 h, 5 days/wk; n = 10 each group). Results indicate that either 6 wk of DHEA treatment or exercise training significantly attenuated serum insulin and fasting glucose levels compared with the control group. Plasma and muscle concentrations of DHEA and <em>DHT</em> and expression levels of <em>5α</em>-reductase were significantly higher in the DHEA-treated and exercise-training groups. Moreover, both DHEA administration and exercise training upregulated GLUT4 translocation with concomitant increases in protein kinase B and protein kinase Cζ/λ phosphorylation. Muscle DHEA and <em>DHT</em> concentrations closely correlated with blood glucose levels (DHEA treatment: r = -0.68, P < 0.001; exercise training: r = -0.65, P < 0.001), serum insulin levels, and activation of the GLUT4-regulated signaling pathway. Thus, increased levels of muscle sex steroids may contribute to improved fasting glucose levels via upregulation of GLUT4-regulated signaling in diet-induced obesity and hyperglycemia.
Publication
Journal: Seminars in Reproductive Medicine
March/13/2013
Abstract
At least one genetic defect in each reaction of the classical androgen biosynthesis pathway has been described. For some steps, such as the conversion of cholesterol to pregnenolone and the 17,20-lyase reaction, two or three genetic defects cause similar disorders with overlapping phenotypes and biochemical profiles. The elucidation of the molecular basis for these diseases has helped to define the pathways, essential genes, and enzymatic steps required to make androgens, and this knowledge is being exploited to develop better treatments of androgen-dependent diseases. Furthermore the description of nonclassical lipoid CAH and the protean manifestations of P450 oxidoreductase (POR) deficiencies has expanded the spectrum of human disease caused by disordered steroidogenesis. Finally, the recognition of the backdoor pathway to <em>DHT</em> has added a new dimension to our understanding of how steroid flux is maintained in normal and pathologic states. The traditional view of male external genital development has been that fetal testicular testosterone is converted to <em>DHT</em> by <em>5α</em>-reductase Type 2 in genital skin, which then acts in a paracrine fashion to stimulate fusion of the labio-scrotal folds and phallic growth. This view is consistent with the incomplete external genital development in persons with severe deficiencies of <em>5α</em>-reductase type 2. The new observations concerning AKR1C2/4 and the backdoor pathway indicate that <em>DHT</em> produced in the testis via the backdoor pathway also acts as a hormone to induce labio-scrotal fusion. Thus, both the classic and backdoor pathways are needed, and <em>DHT</em> acts in male genital development as both a paracrine factor and as a hormone. These surprising findings are revising our understanding of the mechanisms by which male sexual differentiation occurs, and illustrate the importance of detailed studies of rare patients with 46,XY DSD.
Publication
Journal: International Journal of Biological Sciences
February/3/2015
Abstract
While androgen deprivation therapy (ADT) remains the primary treatment for metastatic prostate cancer (PCa), castration does not eliminate androgens from the prostate tumor microenvironment, and residual intratumoral androgens are implicated in nearly every mechanism by which androgen receptor (AR)-mediated signaling promotes castration-resistant disease. The uptake and intratumoral (intracrine) conversion of circulating adrenal androgens such as dehydroepiandrosterone sulfate (DHEA-S) to steroids capable of activating the wild type AR is a recognized driver of castration resistant prostate cancer (CRPC). However, less well-characterized adrenal steroids, including 11-deoxcorticosterone (DOC) and 11beta-hydroxyandrostenedione (11OH-AED) may also play a previously unrecognized role in promoting AR activation. In particular, recent data demonstrate that the <em>5α</em>-reduced metabolites of DOC and 11OH-AED are activators of the wild type AR. Given the well-recognized presence of SRD5A activity in CRPC tissue, these observations suggest that in the low androgen environment of CRPC, alternative sources of <em>5α</em>-reduced ligands may supplement AR activation normally mediated by the canonical <em>5α</em>-reduced agonist, <em>5α</em>-<em>DHT</em>. Herein we review the emerging data that suggests a role for these alternative steroids of adrenal origin in activating the AR, and discuss the enzymatic pathways and novel downstream metabolites mediating these effects. We conclude by discussing the potential implications of these findings for CRPC progression, particularly in context of new agents such as abiraterone and enzalutamide which target the AR-axis for prostate cancer therapy.
Pulse
Views:
1
Posts:
No posts
Rating:
Not rated
Publication
Journal: Medical Hypotheses
May/22/2011
Abstract
In spite of widespread use of morphine to treat pain in patients, little is known about the effects of this opioid on many cells including stem cells. Moreover the studies have been shown controversial results about morphine effects on several kinds of cells. It is well-known that morphine exposure could decrease testosterone levels in brain and spinal cord. Morphine could increase the activity of <em>5α</em>-redutase, the enzyme that converts testosterone into its respective <em>5α</em>-redutase derivative dihydrotestosterone (<em>DHT</em>). Also it could increase aromatase activity that converts testosterone to estradiol. Proliferation of neural stem cells was observed in human stem cells after exposure to certain combinations of steroids especially testosterone. On the other hand <em>DHT</em> has negative effect in neural stem cell reproduction. Morphine induces over-expression of p53 gene that could mediate stem cell apoptosis. Therefore we hypothesized that due to reduction in the testosterone levels, elevation in the <em>DHT</em> levels, and over-expression of p53 gene, morphine could prevent neural stem cell proliferation.
Publication
Journal: Journal of Steroid Biochemistry and Molecular Biology
December/28/2014
Abstract
The importance of investigating the molecular mechanism of action of medroxyprogesterone acetate (MPA) and norethisterone acetate (NET-A), two clinically important progestins used in hormone therapy (HT), has been highlighted by clinical evidence showing that MPA and norethisterone (NET) increase the risk of the development of breast cancer in HRT users, and that MPA may increase susceptibility to- and transmission of HIV-1. The aim of this study was to compare the molecular mechanisms of action of MPA, NET-A and progesterone (Prog) via the androgen receptor (AR) in a cell line model that can minimize confounding factors such as the presence of other steroid receptors. This study is the first to determine accurate apparent Ki values for Prog, MPA and NET-A toward the human AR in COS-1 cells. The results reveal that these ligands have a similar binding affinity for the AR to that of the natural androgen <em>5α</em>-dihydrotestosterone (<em>DHT</em>) (Ki's for <em>DHT</em>, Prog, MPA and NET-A are 29.4, 36.6, 19.4 and 21.9 nM, respectively). Moreover, in both transactivation and transrepression transcriptional assays we demonstrate that, unlike Prog, MPA and NET-A are efficacious AR agonists, with activities comparable to <em>DHT</em>. One of the most novel findings of our study is that NET-A, like <em>DHT</em>, induces the ligand-dependent interaction between the NH2- and COOH-terminal domains (N/C-interaction) of the AR independent of promoter-context, while MPA does not induce the N/C interaction on a classical ARE and does so only weakly on an AR-selective ARE. This suggests that MPA and NET-A may exert differential promoter-specific actions via the AR in vivo. Consistent with this, molecular modeling suggests that MPA and NET-A induce subtle differences in the structure of the AR ligand binding domain. Taken together, the results from this study suggest that unlike Prog, both MPA and NET-A used in hormonal therapy are likely to compete with <em>DHT</em> and exert significant and promoter-specific off-target transcriptional effects via the AR, possibly contributing to some of the observed side-effects with the clinical use of MPA and NET-A.
load more...