Citations
All
Search in:AllTitleAbstractAuthor name
Publications
(225)
Patents
Grants
Pathways
Clinical trials
Publication
Journal: Gene
August/4/2013
Abstract
Natriuretic peptides (NPs) are involved in maintaining cardiovascular and fluid homeostasis, regulating reproductive processes and bone growth, and other numerous functions. To better understand the role of NPs in goat (Capra hircus), in the present study, full-length cDNAs of goat Nppa (natriuretic peptide precursor A), Nppb (natriuretic peptide precursor B) and Nppc (natriuretic peptide precursor C), respectively encoding ANP, BNP and CNP, were cloned from adult goat heart and ovary. The putative prepropeptide ANP (prepro-ANP) and prepro-CNP share a high amino acid sequence identity with other species. Real-time PCR showed that Nppa, Nppb and Nppc were widely expressed in adult goat tissues. The mRNA expression of Nppa and Nppb in the heart was extremely higher compared with other tissues. Nppc mRNA expression in the lung and uterus was also higher than in other tissues. The expression of Nppa, Nppb and Nppc genes was examined at different ovarian follicle stages using RT-PCR. The mRNAs of Nppa and Nppb were detected in secondary follicles as well as in COCs (cumulus-oocyte-complexes) and granulosa cells of antral follicles. However, the mRNA expression of Nppc was observed throughout ovarian follicle development, and it was especially higher in granulosa cells of antral follicles. In vitro, stimulating goat granulosa cells with FSH led to an increase in the expression of Nppc by dose- and time-dependent manners and a rapid decline was induced by LH stimulation, but the expression of Nppa and Nppb did not change after FSH or LH treatment. These results suggest that Nppc is a gonadotropin-induced gene in granulosa cells of goat ovary and CNP may be involved in the regulation of ovarian follicle development and oocyte maturation.
Publication
Journal: Pharmacological Research
April/15/2014
Abstract
Since the discovery of the influence of the endocrine system on cardiac endocrine function 30 years ago, an increasing number of experimental and clinical studies have consolidated endocrine function of human heart as being a relevant component of a complex network including endocrine, nervous and immune systems. Many aspects, however, still remain unclear as to the production, secretion and peripheral degradation pathways of B- and C-type natriuretic peptides. In particular, the hypothesis that the circulating plasma pool of the pro-hormone can function as precursor of the active peptide hormone is yet to be fully demonstrated. According to recent studies, peripheral processing of circulating pro-hormone likely undergoes regulation pathways which seem to be impaired in patients with heart failure. This would open new perspectives also in the treatment of heart failure, and identify novel pharmacological targets for drugs inducing and/or modulating the maturation of the pro-hormone into active hormone.
Publication
Journal: Journal of Geriatric Cardiology
February/13/2015
Abstract
OBJECTIVE
To investigate the role of oxidative stress, inflammation, hypercoagulability and neuroendocrine activation in the transition of hypertensive heart disease to heart failure with preserved ejection fraction (HFPEF).
METHODS
We performed echocardiography for 112 patients (≥ 60 years old) with normal EF (18 controls and 94 with hypertension), and determined protein carbonylation (PC), and tetrahydrobiopterin (BH4), C-reactive protein (CRP), interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α), fibrinogen, plasminogen activator inhibitor type-I (PAI-I), von Willebrand factor, chromogranin A (cGA) and B-type natriuretic peptide (BNP) levels from their blood samples.
RESULTS
We found that 40% (38/94) of the patients with hypertension (HT) had no diastolic dysfunction (HTDD-), and 60% (56/94) had diastolic dysfunction (HTDD+). Compared to the controls, both patient groups had increased PC and BH4, TNF-α, PAI-I and BNP levels, while the HTDD+ group had elevated cGA and CRP levels. Decreased atrial and longitudinal left ventricular (LV) systolic and diastolic myocardial deformation (strain and strain rate) was demonstrated in both patient groups versus the control. Patients whose LV diastolic function deteriorated during the follow-up had elevated PC and IL-6 level compared to their own baseline values, and to the respective values of patients whose LV diastolic function remained unchanged. Oxidative stress, inflammation, BNP and PAI-I levels inversely correlated with LV systolic, diastolic and atrial function.
CONCLUSIONS
In patients with HT and normal EF, the most common HFPEF precursor condition, oxidative stress and inflammation may be responsible for LV systolic, diastolic and atrial dysfunction, which are important determinants of the transition of HT to HFPEF.
Publication
Journal: Fitoterapia
April/25/2012
Abstract
Augmented endothelial nitric oxide (NO) synthase (eNOS) signaling has been reported to be associated with improvements in cardiac remodeling, and NO levels have been shown to be related to cardiac hypertrophy and heart failure. Imperatorin, a dietary furanocoumarin, has been shown to prevent cardiac hypertrophy in the spontaneous hypertension rats (SHR). Thus, we aimed to clarify whether imperatorin attenuates both cardiac hypertrophy and heart failure via the NO-signaling pathway. In neonatal mouse cardiac myocytes, imperatorin inhibited protein synthesis stimulated by either isoproterenol or phenylephrine, which was unchanged by NG-nitro-L-arginine methyl ester (L-NAME). Four weeks after transverse aortic constriction (TAC) on Kunming (KM) male mice, the ratio of heart weight to body weight was lower after imperatorin treatment than in controls (6.60 ± 0.35 mg/g in TAC, 4.54 ± 0.29 mg/g with imperatorin 15 mg kg(-1)d(-1), ig, P<0.01); similar changes in the ratio of lung weight to body weight (7.30 ± 0.85 mg/g in TAC, 5.42 ± 0.51 mg/g with imperatorin 15 mg kg(-1)d(-1), ig) and the myocardial fibrosis. All of these improvements were blunted by L-NAME. Imperatorin treatment significantly activated phosphorylation of eNOS. Myocardial mRNA levels of natriuretic peptide precursor type B and protein inhibitor of NO synthase, which were increased in the TAC mice, were decreased in the imperatorin-treated ones. Imperatorin can attenuate cardiac hypertrophy both in vivo and in vitro, and halt the process leading from hypertrophy to heart failure by a NO-mediated pathway.
Publication
Journal: Neonatology
November/10/2016
Abstract
BACKGROUND
Pulmonary hypertension (PH) in infants with bronchopulmonary dysplasia (BPD) is associated with increased morbidity and mortality. Elevated levels of N-terminal pro-B-type natriuretic peptide (NT-proBNP) and decreased levels of amino acid precursors of nitric oxide (NO) have been associated with PH, but have not been studied in infants with PH secondary to BPD.
OBJECTIVE
The aim of this study was to identify a biochemical marker for PH in infants with BPD.
METHODS
Twenty infants, born at <27 weeks' gestational age (GA) and/or with a birth weight (BW) ≤750 g, who met the criteria for BPD at 36 weeks' corrected GA (CGA) were enrolled in this cross-sectional pilot study. A screening echocardiogram was conducted at 36-38 weeks' CGA and plasma NT-proBNP and amino acid levels were obtained within 1 week of the screening echocardiogram.
RESULTS
Five infants (25%) had echocardiographic evidence of PH. GA and BW were not significantly different between the 2 groups (a PH group and a No PH group). NT-proBNP was significantly elevated in the PH group (median 1,650 vs. 520 pg/ml; p = 0.001) but citrulline levels were significantly lower (median 21 vs. 36 μmol/l; p = 0.005). Arginine levels were not significantly different between the groups (median 78 vs. 79 μmol/l; p = 1).
CONCLUSIONS
NT-proBNP and the NO precursor citrulline may be cost-effective biochemical markers for screening for the presence of PH in preterm infants who have BPD. If validated in a larger study, such biochemical markers may, in part, replace PH screening echocardiograms in these patients.
Publication
Journal: Current Opinion in Cell Biology
April/22/1997
Abstract
Recent advances in the study of receptor-regulated ion channels include the cloning of the genes encoding three types of potassium channel that are favorite targets of receptors for transmitters and hormones. Studies of these channels have also provided a strong indication that G-protein betagamma subunits may gate ion channels via direct protein-protein interactions. Similarities between channel regulation by natriuretic peptides and channel regulation by secreted peptide products of the Alzheimer's beta-amyloid precursor protein offer hints for the existence of a receptor for the latter. There are also other novel examples of channel regulation in excitable and nonexcitable cells, including liver cells and blood cells.
Publication
Journal: Results and Problems in Cell Differentiation
May/19/2010
Abstract
Cardiac-derived peptide hormones were identified more than 25 years ago. An astonishing amount of clinical studies have established cardiac natriuretic peptides and their molecular precursors as useful markers of heart disease. In contrast to the clinical applications, the biogenesis of cardiac peptides has only been elucidated during the last decade. The cellular synthesis including amino acid modifications and proteolytic cleavages has proven considerably more complex than initially perceived. Consequently, the elimination phase of the peptide products in circulation is not yet well characterized. An ongoing characterization of the molecular heterogeneity will help appreciate the biosynthetic capacity of the endocrine heart and could introduce new diagnostic possibilities. Notably, different biosynthetic products may not be equal markers of the same pathophysiological processes. An inefficient post-translational prohormone maturation will also affect the biology of the cardiac natriuretic peptide system. This review aims at summarizing the myocardial synthesis of natriuretic peptides focusing on B-type natriuretic peptide, where new data has disclosed cardiac myocytes as highly competent endocrine cells. The structurally related atrial natriuretic peptide will be mentioned where appropriate, whereas C-type natriuretic peptide will not be considered as a cardiac peptide of relevance in mammalian physiology.
Publication
Journal: Developmental Biology
September/2/2004
Abstract
Atrial natriuretic peptide (ANP) binding sites have been detected in the embryonic brain, but the specific receptor subtypes and biological functions for ANP family ligands therein remain undefined. We now characterize the patterns of gene expression for the natriuretic peptides [ANP, brain natriuretic peptide (BNP), type-C natriuretic peptide (CNP)] and their receptors (NPR-A, NPR-B, NPR-C) at several early stages in the embryonic mouse nervous system by in situ hybridization, and begin to define the potential developmental actions using cell culture models of peripheral (PNS) and central nervous systems (CNS). In the CNS, gene transcripts for CNP were present at the onset of neurogenesis, embryonic day 10.5 (E10.5), primarily in the dorsal part of the ventricular zone (VZ) throughout the hindbrain and spinal cord. On E14.5, new CNP signals were observed in the ventrolateral spinal cord where motor neurons reside, and in bands of cells surrounding the spinal cord and hindbrain, localized to dura and/or cartilage primordia. ANP and BNP gene transcripts were not detected in embryonic brain, but were highly abundant in the heart. The CNP-specific receptor (NPR-B) gene was expressed in cells just outside the VZ, in regions where post-mitotic neurons are differentiating. Gene expression for NPR-C, which recognizes all natriuretic peptides, was present in the roof plate of the hindbrain and spinal cord and in bilateral stripes just dorsolateral to the floor plate at E12.5. In the PNS, NPR-B and NPR-C transcripts were highly expressed in dorsal root sensory (DRG) and cranial ganglia beginning at E10.5, with NPR-C signal also prominent in adjoining nerves, consistent with Schwann cell localization. In contrast, NPR-A gene expression was undetectable in neural tissues. To define ontogenetic functions, we employed embryonic DRG and hindbrain cell cultures. The natriuretic peptides potently stimulated DNA synthesis in neuron-depleted as well as neuron-containing Schwann cell cultures and differentially inhibited neurite outgrowth in DRG sensory neuron cultures. CNP also exhibited modest survival-promoting effects for sensory neurons. In marked contrast to PNS effects, the peptides inhibited proliferation of neural precursor cells of the E10.5 hindbrain. Moreover, CNP, alone and in combination with sonic hedgehog (Shh), induced the expression of the Shh target gene gli-1 in hindbrain cultures, suggesting that natriuretic peptides may also modify patterning events in the embryonic brain. These studies reveal widespread, but discrete patterns of natriuretic peptide and receptor gene expression in the early embryonic nervous system, and suggest that the peptides play region- and stage-specific roles during the development of the peripheral and central nervous systems.
Publication
Journal: Clinica Chimica Acta
May/1/2016
Abstract
B-type Natriuretic Peptide (BNP), A-type and C-type Natriuretic Peptides (ANP and CNP) comprise a family of peptides that retain a common ring structure and conserved amino acid sequences. All are present in the heart, but only BNP and ANP are regarded as primarily cardiac secretory products. BNP and ANP, acting through a guanylyl cyclase receptor, increase sodium and water excretion by the kidney, induce vasodilation, reduce blood pressure, counteract the bioactivity of the renin-angiotensin-aldosterone and sympathetic nervous systems and possess anti-hypertrophic and anti-fibrotic properties. BNP is synthesised in cardiomyocytes first as the precursor peptide preproBNP. Removal of the signal peptide from preproBNP produces proBNP which is cleaved to produce the biologically active carboxy-terminal BNP peptide and the inactive N-terminal fragment, NT-proBNP. BNP, NT-proBNP, proBNP and the C-terminal portion of the BNP signal peptide have been detected in human plasma as well as multiple sub-forms including truncated forms of BNP and NT-proBNP, as well as variable glycosylation of NT-proBNP and proBNP. The origin of these circulating forms, their potential bioactivity and their detection by current analytical methods are presented in this review.
Publication
Journal: European Journal of Heart Failure
December/11/2006
Abstract
BACKGROUND
The levels of B-type natriuretic peptide (BNP), a marker of heart failure, are higher in women and anaemic subjects, and tend to be lower in obese people. These relationships are still largely unexplained and it is unclear whether they also apply to the N-terminal portion of BNP precursor (NT-proBNP).
OBJECTIVE
This cross-sectional study was performed to assess general and abdominal obesity, sex and other variables as possible extra-cardiac determinants of NT-proBNP.
RESULTS
A random sample of 713 subjects aged 65-74 years resident of Pianoro (Northern Italy) underwent assessment of NT-proBNP, several haemato-chemical variables, body mass index (BMI), body fat estimation (through skinfold measurement), waist circumference, intra-abdominal thickness and possible presence of hepatic steatosis (by ultrasound examination). An echocardiogram was performed in a subset of 125 subjects. In multivariable analysis NT-proBNP was inversely associated with haematocrit (r=0.22, P<0.0001) and hepatic steatosis (r=0.13, P=0.0001), while no association was found with BMI and body fat estimation. NT-proBNP was higher in women, but this relationship disappeared when haematocrit was included in the multivariable model. The associations with haematocrit and hepatic steatosis were independent from echocardiographic measurements.
CONCLUSIONS
NT-proBNP is increased in subjects with low haematocrit, which explains the higher values in women. Although NT-proBNP is not affected by general adiposity, low levels of NT-proBNP are associated with hepatic steatosis.
Publication
Journal: Clinica Chimica Acta
August/15/2007
Abstract
BACKGROUND
Elderly patients have the highest prevalence of heart failure (HF). The aims of the study were to establish a reference interval for B-type natriuretic peptide (BNP) and (Nt-proBNP) in elderly people, and to identify clinically relevant decision limits based on long-term outcome.
METHODS
Plasma concentrations of BNP and Nt-proBNP were measured from two elderly populations: 218 healthy subjects (mean age 73 years, population I), and 474 patients (mean age 73 years, population II) with symptoms associated with HF. Study population II was followed for 6 years with registration of all cardiovascular mortality.
RESULTS
An association between both BNP and Nt-proBNP concentrations and age was found. The upper limit for the reference intervals in the healthy elderly (population I) was: BNP< or =28 pmol/L (< or =97 ng/L), and Nt-proBNP< or =64 pmol/L (< or =540 ng/L). Based on cardiovascular mortality, decision limits for BNP (approximately 50 pmol/L, approximately 170 ng/L) and Nt-proBNP ( approximately 200 pmol/L, approximately 1700 ng/L) (population II) were determined.
CONCLUSIONS
Besides establishing reference intervals for BNP and Nt-proBNP in an elderly population, a higher clinically relevant decision limit for BNP and Nt-proBNP was identified, indicating additive prognostic information of the peptides on top of measurements by echocardiography. Therefore, both reference intervals and decision limits should be included in clinical practice.
Publication
Journal: Materials Science and Engineering C
September/7/2016
Abstract
Following a myocardial infarction (MI), cardiomyocytes are replaced by scar tissue, which decreases ventricular contractile function. Tissue engineering is a promising approach to regenerate such damaged cardiomyocyte tissue. Engineered cardiac patches can be fabricated by seeding a high density of cardiac cells onto a synthetic or natural porous polymer. In this study, nanocomposite scaffolds made of gold nanotubes/nanowires incorporated into biodegradable castor oil-based polyurethane were employed to make micro-porous scaffolds. H9C2 cardiomyocyte cells were cultured on the scaffolds for one day, and electrical stimulation was applied to improve cell communication and interaction in neighboring pores. Cells on scaffolds were examined by fluorescence microscopy and scanning electron microscopy, revealing that the combination of scaffold design and electrical stimulation significantly increased cell confluency of H9C2 cells on the scaffolds. Furthermore, we showed that the gene expression levels of Nkx2.5, atrial natriuretic peptide (ANF) and natriuretic peptide precursor B (NPPB), which are functional genes of the myocardium, were up-regulated by the incorporation of gold nanotubes/nanowires into the polyurethane scaffolds, in particular after electrical stimulation.
Publication
Journal: Scandinavian Journal of Clinical and Laboratory Investigation
January/5/2016
Abstract
BACKGROUND
Recent reports have shown that miR-145 concentration correlates with infarct size. In this paper, we attempt to predict heart failure and cardiovascular death after acute myocardial infarction using circulating miR-145 concentration.
METHODS
We assessed 246 patients with first ST-segment-elevation myocardial infarction who underwent successful percutaneous coronary intervention. We measured circulating miR-145, N-terminal fragment of the precursor B-type natriuretic peptide, myocardial-band creatine kinase, and cardiac troponin-I concentrations on day 5 after primary percutaneous coronary intervention and assessed their correlations with long-term clinical outcome.
RESULTS
During the one-year follow-up period, 72 patients experienced primary composite cardiac events (cardiac death or hospitalization for worsening heart failure). Multivariable Cox proportional hazards analysis indicated that circulating miR-145 (hazard ratio 7.174, 95% confidence interval 4.208-12.229); p < 0.0001) was a significant independent predictor of cardiac events after adjustment for multiple confounders.
CONCLUSIONS
Circulating miR-145 may be a novel biomarker for predicting long-term outcome after acute myocardial infarction.
Publication
Journal: PLoS ONE
September/7/2014
Abstract
SHOX and SHOX2 transcription factors are highly homologous, with even identical homeodomains. Genetic alterations in SHOX result in two skeletal dysplasias; Léri-Weill dyschondrosteosis (LWD) and Langer mesomelic dysplasia (LMD), while no human genetic disease has been linked to date with SHOX2. SHOX2 is, though, involved in skeletal development, as shown by different knockout mice models. Due to the high homology between SHOX and SHOX2, and their functional redundancy during heart development, we postulated that SHOX2 might have the same transcriptional targets and cofactors as SHOX in limb development. We selected two SHOX transcription targets regulated by different mechanisms: 1) the natriuretic peptide precursor B gene (NPPB) involved in the endochondral ossification signalling and directly activated by SHOX; and 2) Aggrecan (ACAN), a major component of cartilage extracellular matrix, regulated by the cooperation of SHOX with the SOX trio (SOX5, SOX6 and SOX9) via the protein interaction between SOX5/SOX6 and SHOX. Using the luciferase assay we have demonstrated that SHOX2, like SHOX, regulates NPPB directly whilst activates ACAN via its cooperation with the SOX trio. Subsequently, we have identified and characterized the protein domains implicated in the SHOX2 dimerization and also its protein interaction with SOX5/SOX6 and SHOX using the yeast-two hybrid and co-immunoprecipitation assays. Immunohistochemistry of human fetal growth plates from different time points demonstrated that SHOX2 is coexpressed with SHOX and the members of the SOX trio. Despite these findings, no mutation was identified in SHOX2 in a cohort of 83 LWD patients with no known molecular defect, suggesting that SHOX2 alterations do not cause LWD. In conclusion, our work has identified the first cofactors and two new transcription targets of SHOX2 in limb development, and we hypothesize a time- and tissue-specific functional redundancy between SHOX and SHOX2.
Publication
Journal: Clinical Chemistry
January/26/2006
Abstract
BACKGROUND
Up to 40% of newborn infants of women with type 1 diabetes have echocardiographic signs of cardiomyopathy. Increased plasma concentrations of B-type natriuretic peptide (BNP) and its precursor (proBNP) are markers of cardiac failure and hypoxia in adults. In this study, we investigated whether plasma concentrations of proBNP and/or BNP are increased in infants of women with type 1 diabetes.
METHODS
Plasma BNP and proBNP were measured with RIAs. The proBNP assay measures both intact proBNP and NH(2)-terminal fragments derived from this precursor, whereas the BNP assay measures only BNP-32 and not proBNP.
RESULTS
Infants of women with diabetes and hemoglobin A(1c) (Hb A(1c))>> or =6.2% before delivery had a higher median plasma proBNP concentration (31 pmol/L; interquartile range, 21-47 pmol/L; n = 16) than infants of healthy women [16 (9-32) pmol/L; n = 21; P = 0.01]. Infants of women with diabetes and Hb A(1c) <6.2% (n = 15) had intermediate values. The plasma BNP and proBNP concentrations were closely associated (r(2) = 0.80; P < 0.0001); within the group of infants of women with diabetes and Hb A(1c)>> or =6.2%, both correlated with the degree of fetal stress during labor.
CONCLUSIONS
Maternal diabetes and suboptimal metabolic control may affect the fetal heart and predominantly stimulate proBNP secretion in conjunction with perinatal stress.
Pulse
Views:
5
Posts:
No posts
Rating:
Not rated
Publication
Journal: Clinical Chemistry
July/7/2002
Abstract
BACKGROUND
Measurement of cardiac natriuretic peptides or their precursors in plasma appears promising in the diagnosis of heart failure. However, the currently available assays to measure pro-B-type natriuretic peptide (proBNP)-derived peptides have produced grossly discrepant results.
METHODS
We treated plasma with trypsin before assay and used in the assay an antibody specific for a processing-independent epitope of human proBNP. We then determined the total concentration of proBNP and its products in healthy volunteers and heart-failure patients.
RESULTS
The antiserum produced (no. 98192) required an intact proBNP NH2 terminus for binding and displayed a high titer, index of heterogeneity, and binding affinity, implying that the RIA was monospecific and highly sensitive. Preanalytical tryptic treatment of plasma cleaved proBNP forms to release the N-terminal 1-21 fragment. Furthermore, enzymatic treatment of plasma also was efficient in avoiding nonspecific interference from plasma proteins, making it an expedient alternative to extraction. In healthy individuals, the total proBNP concentrations increased with age from 2.0 pmol/L (range, 0-15 pmol/L; ages 51-65 years) to 22 pmol/L (range, 3-40 pmol/L; ages 66-88 years; P <0.0001). The increase in plasma proBNP in the elderly, however, also seems to reflect the prevalence of cardiac disease. Plasma concentrations in patients with heart failure were all markedly increased [median, 89 pmol/L (range, 29-659) vs 1.0 pmol/L (range, 0-16) in age-matched controls; P <0.0001].
CONCLUSIONS
The processing-independent analysis measures the total proBNP product irrespective of the degree of proBNP processing. The results show that proBNP and its products circulate in low picomolar concentrations in healthy individuals.
Publication
Journal: Circulation Research
May/23/1993
Abstract
The structure of the mouse natriuretic peptide type-B (BNP) gene was determined by isolating and sequencing genomic clones. The mouse BNP gene was structurally similar to other natriuretic peptide genes and comprised three exons and two introns. Expression of the mouse BNP gene was found only in cardiac tissue as determined by ribonuclease protection analyses. Initiation of transcription was 31 bp downstream from a consensus TATA box as determined by primer extension analysis of cardiac RNA. Comparative DNA sequence analysis identified several DNA elements with potential transcriptional regulatory function. Comparative amino acid sequence analysis showed that the N-terminal portion of the mouse and rat BNP precursors was more conserved than the C-terminal 45-amino-acid sequence that constitute the bioactive BNP-45 peptide. The proteolytic processing site (RXXR-S) generating bioactive BNPs was highly conserved among all BNP precursors and was identical to the consensus site of furin, a calcium-dependent serine endoprotease. Finally, the BNP gene was mapped using recombinant inbred DNA and a polymerase chain reaction-based restriction fragment-length polymorphism assay to mouse chromosome 4 near the atrial natriuretic factor (Anf) locus. No recombination event between Bnp and Anf was evident in the 39 recombinant inbred and inbred strains examined. This physical linkage between the two natriuretic peptide genes expressed in cardiac tissue may be important for their transcriptional regulation.
Publication
Journal: Clinical Chemistry
August/1/2011
Abstract
BACKGROUND
The appearance of B-type natriuretic peptide (BNP) in the blood is ultimately caused by proteolytic processing of its precursor, proBNP. The mechanisms leading to the high plasma concentration of unprocessed proBNP are still poorly understood. The goals of the present study were to examine whether processing of proBNP takes place in the circulation and to evaluate the clearance rate of proBNP and proBNP-derived peptides.
METHODS
We studied the processing of human proBNP in the circulation and the clearance rate of proBNP and proBNP-derived peptides (BNP and N-terminal fragment of proBNP, NT-proBNP) in rats by injecting the corresponding peptides and analyzing immunoreactivity at specific time points. Glycosylated and nonglycosylated proBNP and NT-proBNP were used in the experiments. We applied immunoassays, gel filtration, and mass spectrometry (MS) techniques to analyze the circulation-mediated processing of proBNP.
RESULTS
ProBNP was effectively processed in the circulation into BNP (1-32) and various truncated BNP forms as confirmed by gel filtration and MS analysis. Glycosylation of proBNP close to the cleavage-site region suppressed its processing in the circulation. The terminal half-life for human glycosylated proBNP was 9.0 (0.5) min compared with 6.4 (0.5) min for BNP. For NT-proBNP, the terminal half-lives were 15.7 (1.4) min and 15.5 (1.3) min for glycosylated and nonglycosylated forms, respectively.
CONCLUSIONS
In rats, processing of human proBNP to active BNP occurs in the circulation. The clearance rate of proBNP is quite similar to that of BNP. These observations suggest that peripheral proBNP processing may be an important regulatory step rather than mere degradation.
Publication
Journal: Genetics in Medicine
June/28/2017
Abstract
PurposeC-type natriuretic peptide (CNP) and its principal receptor, natriuretic peptide receptor B (NPR-B), have been shown to be important in skeletal development. CNP and NPR-B are encoded by natriuretic peptide precursor-C (NPPC) and natriuretic peptide receptor 2 (NPR2) genes, respectively. While NPR2 mutations have been described in patients with skeletal dysplasias and idiopathic short stature (ISS), and several Npr2 and Nppc skeletal dysplasia mouse models exist, no mutations in NPPC have been described in patients to date.MethodsNPPC was screened in 668 patients (357 with disproportionate short stature and 311 with autosomal dominant ISS) and 29 additional ISS families in an ongoing whole-exome sequencing study.ResultsTwo heterozygous NPPC mutations, located in the highly conserved CNP ring, were identified. Both showed significant reductions in cyclic guanosine monophosphate synthesis, confirming their pathogenicity. Interestingly, one has been previously linked to skeletal abnormalities in the spontaneous Nppc mouse long-bone abnormality (lbab) mutant.ConclusionsOur results demonstrate, for the first time, that NPPC mutations cause autosomal dominant short stature in humans. The NPPC mutations cosegregated with a short stature and small hands phenotype. A CNP analog, which is currently in clinical trials for the treatment of achondroplasia, seems a promising therapeutic approach, since it directly replaces the defective protein.
Publication
Journal: Pharmacogenomics Journal
September/23/2012
Abstract
Little is known about the genetic impact on loop diuretic effects. We newly investigated five genetic polymorphisms in 95 healthy volunteers, who had ingested bumetanide, frusemide and torsemide. The subjects excreted means of 20.2 g sodium chloride, 2.87 g potassium and 261 mg calcium over 24 h. Concerning sodium chloride, the subjects excreted 2.2 g less per two T-alleles of C825T in the G nucleotide β-subunit 3 (GNB3), 3.2 g less per two Met32-alleles of Val32Met in the atrial natriuretic peptide precursor (ANP) and 2.8 g more per two Arg152-alleles of Ter152Arg in ANP (P=0.007, 0.05 and 0.007). Concerning potassium, the subjects excreted 0.42 g more per two ANP Arg152-alleles (P=0.023). Concerning calcium, the subjects excreted 32 mg more per two deletion-alleles of the insertion/deletion polymorphism in the angiotensin-converting enzyme, 44 mg more per two Trp460-alleles of Gly460Trp in α-adducin (ADD1) and 42 mg less per two GNB3 T-alleles (P=0.006, 0.023 and 0.008). The common genetic impact together with three polymorphisms in the sodium chloride cotransporter and the epithelial sodium channel was 20, 15, 10 and 23% of the variation in the urinary excretion of sodium chloride, volume, potassium and calcium. This exceeded the fraction of variation explained by differences in the pharmacokinetics: 13, 10, 11 and 6%. Thus, genetic variation seems to be a stronger predictor of the loop diuretic drug response than pharmacokinetic variation.
Publication
Journal: Critical Reviews in Clinical Laboratory Sciences
February/15/2016
Abstract
The aim of this review article is to give an update on the state of the art of the immunoassay methods for the measurement of B-type natriuretic peptide (BNP) and its related peptides. Using chromatographic procedures, several studies reported an increasing number of circulating peptides related to BNP in human plasma of patients with heart failure. These peptides may have reduced or even no biological activity. Furthermore, other studies have suggested that, using immunoassays that are considered specific for BNP, the precursor of the peptide hormone, proBNP, constitutes a major portion of the peptide measured in plasma of patients with heart failure. Because BNP immunoassay methods show large (up to 50%) systematic differences in values, the use of identical decision values for all immunoassay methods, as suggested by the most recent international guidelines, seems unreasonable. Since proBNP significantly cross-reacts with all commercial immunoassay methods considered specific for BNP, manufacturers should test and clearly declare the degree of cross-reactivity of glycosylated and non-glycosylated proBNP in their BNP immunoassay methods. Clinicians should take into account that there are large systematic differences between methods when they compare results from different laboratories that use different BNP immunoassays. On the other hand, clinical laboratories should take part in external quality assessment (EQA) programs to evaluate the bias of their method in comparison to other BNP methods. Finally, the authors believe that the development of more specific methods for the active peptide, BNP1-32, should reduce the systematic differences between methods and result in better harmonization of results.
Publication
Journal: Clinical Chemistry
February/20/2012
Abstract
BACKGROUND
Plasma cardiac natriuretic peptides and peptide fragments from their molecular precursors are markers of heart disease. Clinical studies have defined the current diagnostic utility of these markers, whereas biochemical elucidation of peptide structure and posttranslational processing has revealed new plasma peptide forms of potential clinical use.
BACKGROUND
Natriuretic propeptide structures undergo variable degrees of endo- and exoproteolytic cleavages as well as amino acid modifications, which leave the plasma phase of the peptides highly heterogeneous and dependent on cardiac pathophysiology and capacity. An ongoing characterization of the molecular heterogeneity may not only help us to appreciate the biosynthetic capacity of the endocrine heart but may also lead to the discovery of new and more disease-specific targets for future molecular diagnosis.
CONCLUSIONS
Peptides derived from pro-atrial natriuretic peptide and pro-B-type natriuretic peptide are useful plasma markers in heart failure. New data have defined cardiac myocytes as competent endocrine cells in posttranslational processing and cellular secretion.
Publication
Journal: Cancers
October/16/2019
Abstract
Physical activity improves the prognosis of cancer patients, partly by contrasting the associated muscle wasting (cachexia), through still unknown mechanisms. We asked whether aerobic exercise causes secretion by skeletal muscles of proteins (myokines) that may contrast cachexia. Media conditioned by peroxisome proliferator-activated receptor γ coactivator 1α (PGC1α)-expressing myotubes, reproducing some metabolic adaptations of aerobic exercise, as increased mitochondrial biogenesis and oxidative phosphorylation, restrained constitutively active Forkhead box-containing subfamily O3 (caFoxO3)-induced proteolysis. Microarray analysis identified amphiregulin (AREG), natriuretic peptide precursor B (NppB), musclin and fibroblast growth factor 18 (FGF18) as myokines highly induced by PGC1α. Notably, only musclin tended to be low in muscle of mice with a rare human renal carcinoma; it was reduced in plasma and in muscles of C26-bearing mice and in atrophying myotubes, where PGC1α expression is impaired. Therefore, we electroporated the Tibialis Anterior (TA) of C26-bearing mice with musclin or (its receptor) natriuretic peptide receptor 3 (Npr3)-encoding plasmids and found a preserved fiber area, as a result of restrained proteolysis. Musclin knockout (KO) mice lose more muscle tissue during growth of two distinct cachexia-causing tumors. Running protected C26-bearing mice from cachexia, not changing tumor growth, and rescued the C26-induced downregulation of musclin in muscles and plasma. Musclin expression did not change in overloaded plantaris of mice, recapitulating partially muscle adaptations to anaerobic exercise. Musclin might, therefore, be beneficial to cancer patients who cannot exercise and are at risk of cachexia and may help to explain how aerobic exercise alleviates cancer-induced muscle wasting.
Publication
Journal: Toxicological Sciences
June/20/2010
Abstract
Chronic treatment with suprapharmacologic doses of peroxisome proliferator-activated receptor (PPAR) agonists has a known potential for causing left ventricular hypertrophy (LVH). The mechanism by which LVH develops is not well understood nor are biomarkers of it well characterized. Natriuretic peptides are important regulators of cardiac growth, blood volume, and arterial pressure and may be useful biomarkers of LVH and hemodynamic changes that precede it. We measured amino-terminal pro-atrial natriuretic peptide (NTproANP), amino-terminal pro-brain natriuretic peptide (NTproBNP), and cardiac troponin I (cTnI) concentrations in serum and plasma, as well as transcripts in left ventricular heart tissue for atrial natriuretic peptide precursor (Nppa), brain natriuretic peptide precursor (Nppb), and myosin heavy chain-beta (Myh7) as potential biomarkers of LVH induced by a PPARalpha/gamma dual agonist in Sprague-Dawley rats. We used magnetic resonance imaging, echocardiography, and hemodynamics to identify structural and functional cardiovascular changes related to the biomarkers. Heart-to-brain weight ratios (HW:BrW) were correlated with NTproANP, NTproBNP, and cTnI concentrations in serum as well as fold change in expression of Nppa and Nppb. LVH was characterized by increased left ventricular wall thickness and inner diameter, increased cardiac output, decreased arterial blood pressure, and increased heart rate. In these studies, each end point contributed to the early detection of LVH, the ability to monitor its progression, and demonstrated the ability of NTproANP concentration in serum to predict LVH and hemodynamic changes.
load more...