Citations
All
Search in:AllTitleAbstractAuthor name
Publications
(309)
Patents
Grants
Pathways
Clinical trials
Publication
Journal: Nucleic Acids Research
November/25/2007
Abstract
The MED1/TRAP220 subunit of the Mediator plays a key role in facilitating ligand-dependent interactions of this multisubunit coactivator complex with nuclear receptors through their ligand binding domains. The isolated MED1/TRAP220 protein previously was shown to interact with glucocorticoid receptor (GR) in a ligand-dependent manner. However, the functional role of MED1/TRAP220, within the context of the entire Mediator, is not well studied in GR-mediated transcription. In this study, we show that GR binds directly to the Mediator complex and that both LXXLL motifs of MED1/TRAP220 contribute to its binding to GR. Furthermore, using a Med1/Trap220-/- mouse embryonic fibroblast (MEF) line that lacks entirely MED1/TRAP220, we show that MED1/TRAP220 enhances GR-mediated transcription from an MMTV promoter based-reporter gene and that mutations in the MED1/TRAP220 LXXLL motifs reduce, but do not eliminate, GR-dependent transcription. An analysis of endogenous genes in Med1/Trap220-/- cells has confirmed a variable MED1/TRAP220 requirement for different GR target genes. Taken together, these findings support the idea that Mediator, at least in part through MED1/TRAP220, plays a coregulatory role in ligand-dependent GR-mediated gene expression.
Publication
Journal: mBio
June/21/2017
Abstract
In cancer cells associated with human papillomavirus (HPV) infections, the viral genome is very often found integrated into the cellular genome. The viral oncogenes E6 and E7 are transcribed from the viral promoter, and integration events that alter transcriptional regulation of this promoter contribute to carcinogenic progression. In this study, we detected highly enriched binding of the super-enhancer markers Brd4, MED1, and H3K27ac, visible as a prominent nuclear focus by immunofluorescence, at the tandemly integrated copies of HPV16 in cells of the cervical neoplasia cell line W12 subclone 20861. Tumor cells are often addicted to super-enhancer-driven oncogenes and are particularly sensitive to disruption of transcription factor binding to the enhancers. Treatment of 20861 cells with bromodomain inhibitors displaced Brd4 from the HPV integration site, greatly decreased E6/E7 transcription, and inhibited cellular proliferation. Thus, Brd4 activates viral transcription at this integration site, and strong selection for E6/E7 expression can drive the formation of a super-enhancer-like element to promote oncogenesis.
Oncogenic human papillomaviruses play an essential role in the development of cervical cancer, and growth of these cancer cells requires continued expression of the viral E6 and E7 oncogenes. Integration of the virus into the host genome often results in deregulation of E6 and E7 expression, which provides a selective growth advantage and increases genetic instability of infected cells. We show here that tandemly integrated copies of the viral genome can form a super-enhancer-like element that drives E6/E7 transcription. Targeted disruption of factors binding to this element decreases viral transcription and causes cell death. Thus, cancer cells that harbor integrated HPV could be targeted by therapeutics that disrupt super-enhancer function.
Publication
Journal: Molecular Endocrinology
March/12/2014
Abstract
Peroxisome proliferator-activated receptor γ (PPARγ) is a master regulator of adipocyte differentiation, and genome-wide studies indicate that it is involved in the induction of most adipocyte genes. Here we report, for the first time, the acute effects of the synthetic PPARγ agonist rosiglitazone on the transcriptional network of PPARγ in adipocytes. Treatment with rosiglitazone for 1 hour leads to acute transcriptional activation as well as repression of a number of genes as determined by genome-wide RNA polymerase II occupancy. Unlike what has been shown for many other nuclear receptors, agonist treatment does not lead to major changes in the occurrence of PPARγ binding sites. However, rosiglitazone promotes PPARγ occupancy at many preexisting sites, and this is paralleled by increased occupancy of the mediator subunit MED1. The increase in PPARγ and MED1 binding is correlated with an increase in transcription of nearby genes, indicating that rosiglitazone, in addition to activating the receptor, also promotes its association with DNA, and that this is causally linked to recruitment of mediator and activation of genes. Notably, both rosiglitazone-activated and -repressed genes are induced during adipogenesis. However, rosiglitazone-activated genes are markedly more associated with PPARγ than repressed genes and are highly dependent on PPARγ for expression in adipocytes. By contrast, repressed genes are associated with the other key adipocyte transcription factor CCAAT-enhancer binding proteinα (C/EBPα), and their expression is more dependent on C/EBPα. This suggests that the relative occupancies of PPARγ and C/EBPα are critical for whether genes will be induced or repressed by PPARγ agonist.
Publication
Journal: Nature Cell Biology
March/23/2020
Abstract
TAZ promotes growth, development and tumorigenesis by regulating the expression of target genes. However, the manner in which TAZ orchestrates the transcriptional responses is poorly defined. Here we demonstrate that TAZ forms nuclear condensates through liquid-liquid phase separation to compartmentalize its DNA-binding cofactor TEAD4, coactivators BRD4 and MED1, and the transcription elongation factor CDK9 for transcription. TAZ forms phase-separated droplets in vitro and liquid-like nuclear condensates in vivo, and this ability is negatively regulated by Hippo signalling through LATS-mediated phosphorylation and is mediated by the coiled-coil (CC) domain. Deletion of the TAZ CC domain or substitution with the YAP CC domain prevents the phase separation of TAZ and its ability to induce the expression of TAZ-specific target genes. Thus, we identify a mechanism of transcriptional activation by TAZ and demonstrate that pathway-specific transcription factors also engage the phase-separation mechanism for efficient and specific transcriptional activation.
Publication
Journal: Biochimica et Biophysica Acta - General Subjects
July/29/2013
Abstract
HER2 gene amplification is observed in about 15% of breast cancers. The subgroup of HER2-positive breast cancers appears to be heterogeneous and presents complex patterns of gene amplification at the locus on chromosome 17q12-21. The molecular variations within the chromosome 17q amplicon and their clinical implications remain largely unknown. Besides the well-known TOP2A gene encoding Topoisomerase IIA, other genes might also be amplified and could play functional roles in breast cancer development and progression. This review will focus on the current knowledge concerning the HER2 amplicon heterogeneity, its clinical and biological impact and the pitfalls associated with the evaluation of gene amplifications at this locus, with particular attention to TOP2A and the link between TOP2A and anthracycline benefit. In addition it will discuss the clinical and biological implications of the amplification of ten other genes at this locus (MED1, STARD3, GRB7, THRA, RARA, IGFPB4, CCR7, KRT20, KRT19 and GAST) in breast cancer.
Publication
Journal: Journal of Molecular Neuroscience
August/25/2004
Abstract
Alzheimer's disease (AD), the most common form of dementia, is a progressive, degenerative disorder of the central nervous system. The major hallmarks of AD include selective neuronal cell death and the presence of amyloid deposits and neurofibrillary tangles. Apolipoprotein E (ApoE) has also been shown to colocalize with these neuropathological lesions. Here is reviewed the role of ApoE in AD. The human ApoE gene has three alleles (epsilon2, epsilon3, epsilon4)-all products of the same gene. The epsilon3-allele accounts for the majority of the ApoE gene pool (approximately 70-80%), the epsilon4-allele accounts for 10-15% and the epsilon2 allele for 5-10%. Inheritance of the epsilon4-allele strongly increases the risk for developing AD at an earlier age. Functions of ApoE include cholesterol transport, neuronal repair, dendritic growth and anti-inflammatory activities. Putative pathological functions or "risk-factor activities" of ApoE-epsilon4 include its role in promoting amyloid accumulation, neurotoxicity, oxidative stress and neuro fibrillary tangles.ApoE mRNA is most abundant in the liver followed by the brain, where it is synthesized and secreted primarily by astrocytes. ApoE protein and mRNA are further detected in cortical and hippocampal neurons in humans. ApoE gene expression is induced by brain injury in some neurons and upregulated in astrocytes during aging. In AD, an increased ApoE mRNA was reported in the hippocampus. The risk for AD has been reported to correlate with transcriptional activity of the ApoE gene. Binding sites for putative transcriptional factors (TF), such as AP-1, AP-2 and NF-kappaB, are present in the ApoE promoter. The promoter also contains sites for the inflammatory response transcription factors IL-6 RE-BP, MED1, STAT1 and STAT2. A functional peroxisome-proliferator-activated receptor gamma (PPARgamma) has been detected in the ApoE/ApoCI intergenic region. ApoE mRNA levels were shown to be regulated by ciglitazone, a PPARgamma inducer. Certain statin drugs may also affect ApoE promoter activity. Two distal enhancers that specify ApoE gene expression in macrophages were identified. These results have implications for the regulation of ApoE gene expression, which plays an important role in the development of AD. The interaction of different transcription factors with the regulatory region of the ApoE gene is important to understand the neuroinflammatory process seen in AD.
Publication
Journal: Biochimie
September/21/2014
Abstract
Peroxisome proliferator-activated receptor-α (PPARα) modulates the activities of all three interlinked hepatic fatty acid oxidation systems, namely mitochondrial and peroxisomal β-oxidation and microsomal ω-oxidation pathways. Hyperactivation of PPARα, by both exogenous and endogenous activators up-regulates hepatic fatty acid oxidation resulting in excess energy burning in liver contributing to the development of liver cancer in rodents. Sustained PPARα signaling disproportionately increases H2O2-generating fatty acid metabolizing enzymes as compared to H2O2-degrading enzymes in liver leading to enhanced generation of DNA damaging reactive oxygen species, progressive endoplasmic reticulum stress and inflammation. These alterations also contribute to increased liver cell proliferation with changes in apoptosis. Thus, reactive oxygen species, oxidative stress and hepatocellular proliferation are likely the main contributing factors in the pathogenesis of hepatocarcinogenesis, mediated by sustained PPARα activation-related energy burning in liver. Furthermore, the transcriptional co-activator Med1, a key subunit of the Mediator complex, is essential for PPARα signaling in that both PPARα-null and Med1-null hepatocytes are unresponsive to PPARα activators and fail to give rise to liver tumors when chronically exposed to PPARα activators.
Publication
Journal: Journal of Cellular Physiology
February/26/2009
Abstract
We examined the role of the extracellular signal regulated kinases (ERK) in 1,25-dihydroxyvitamin D (1,25(OH)(2)D(3))-induced gene expression in the differentiated Caco-2 cells. 1,25(OH)(2)D(3)-regulated expression of the 25-hydroxyvitamin D, 24-hydroxylase (CYP24) gene (both natural gene and promoter construct) was strongly modulated by altering ERK activity (i.e., reduced by MEK inhibitors and dominant negative (dn) ERK1 and ERK2, activated by epidermal growth factor) but ERK inhibition had no effect on 1,25(OH)(2)D(3)-regulated expression of the transient receptor potential cation channel, subfamily V, member 6 (TRPV6). ERK5-mediated phosphorylation of the transcription factor Ets-1 enhanced 1,25(OH)(2)D(3)-mediated CYP24 gene transcription in proliferating but not differentiated Caco-2 cells due to reduced levels of ERK5 and Ets-1 (total and phosphoprotein levels) in differentiated cells. MEK inhibition reduced 1,25(OH)(2)D(3)-induced 3X-VDRE promoter activity but had no impact on the association of vitamin D receptor (VDR) with chromatin suggesting a role for co-activator recruitment in ERK-modulation of vitamin D-regulated CYP24 gene activation. Chromatin immunoprecipitation assays revealed that the ERK1/2 target, mediator 1 (MED1), is recruited to the CYP24, but not the TRPV6, promoter following 1,25(OH)(2)D(3) treatment. MED1 phosphorylation was sensitive to activators and inhibitors of the ERK1/2 signaling and MED1 siRNA reduced 1,25(OH)(2)D(3)-regulated human CYP24 promoter activity. This suggests ERK1/2 signaling enhances 1,25(OH)(2)D(3) effects on the CYP24 promoter by MED1-mediated events. Our data show that there are both promoter-specific and cell stage-specific roles for the ERK signaling pathway on 1,25(OH)(2)D(3)-mediated gene induction in enterocyte-like Caco-2 cells.
Publication
Journal: Gene Expression
August/11/2009
Abstract
Glucocorticoid receptor (GR) agonist dexamethasone (Dex) induces hepatic steatosis and enhances constitutive androstane receptor (CAR) expression in the liver. CAR is known to worsen hepatic injury in nonalcoholic hepatic steatosis. Because transcription coactivator MED1/PPARBP gene is required for GR- and CAR-mediated transcriptional activation, we hypothesized that disruption of MED1/PPARBP gene in liver cells would result in the attenuation of Dex-induced hepatic steatosis. Here we show that liver-specific disruption of MED1 gene (MED1(delta Liv)) improves Dex-induced steatotic phenotype in the liver. In wild-type mice Dex induced severe hepatic steatosis and caused reduction in medium- and short-chain acyl-CoA dehydrogenases that are responsible for mitochondrial beta-oxidation. In contrast, Dex did not induce hepatic steatosis in mice conditionally null for hepatic MED1, as it failed to inhibit fatty acid oxidation enzymes in the liver. MED1(delta Liv) livers had lower levels of GR-regulated CAR mRNA compared to wild-type mouse livers. Microarray gene expression profiling showed that absence of MED1 affects the expression of the GR-regulated genes responsible for energy metabolism in the liver. These results establish that absence of MED1 in the liver diminishes Dex-induced hepatic steatosis by altering the GR- and CAR-dependent gene functions.
Publication
Journal: Proceedings of the National Academy of Sciences of the United States of America
March/15/1999
Abstract
The mediator complex is essential for regulated transcription in vitro. In the yeast Saccharomyces cerevisiae, mediator comprises >15 subunits and interacts with the C-terminal domain of the largest subunit of RNA polymerase II, thus forming an RNA polymerase II holoenzyme. Here we describe the molecular cloning of the MED1 cDNA encoding the 70-kDa subunit of the mediator complex. Yeast cells lacking the MED1 gene are viable but show a complex phenotype including partial defects in both repression and induction of the GAL genes. Together with results on other mediator subunits, this implies that the mediator is involved in both transcriptional activation and repression. Similar to mutations in the SRB10 and SRB11 genes encoding cyclin C and the cyclin C-dependent kinase, a disruption of the MED1 gene can partially suppress loss of the Snf1 protein kinase. We further found that a lexA-Med1 fusion protein is a strong activator in srb11 cells, which suggests a functional link between Med1 and the Srb10/11 complex. Finally, we show that the Med2 protein is lost from the mediator on purification from Med1-deficient cells, indicating a physical interaction between Med1 and Med2.
Publication
Journal: Biochimica et Biophysica Acta - General Subjects
July/29/2013
Abstract
BACKGROUND
Mediator is an evolutionarily conserved multisubunit complex that plays an essential regulatory role in eukaryotic transcription of protein-encoding genes. The human complex was first isolated as a transcriptional coactivator bound to the thyroid hormone receptor (TR) and has since been shown to play a key coregulatory role for a broad range of nuclear hormone receptors (NRs) as well as other signal-activated transcription factors.
METHODS
We provide a general overview of Mediator structure and function, summarize the mechanisms by which Mediator is targeted to NRs, and outline recent evidence revealing Mediator as a regulatory axis for other distinct coregulatory factors, chromatin modifying enzymes and cellular signal transduction pathways.
CONCLUSIONS
Besides serving as a functional interface with the RNA polymerase II basal transcription machinery, Mediator plays a more versatile role in regulating transcription including the ability to: a) facilitate gene-specific chromatin looping events; b) coordinate chromatin modification events with preinitiation complex assembly; and c) regulate critical steps that occur during transcriptional elongation. The variably associated MED1 subunit continues to emerge as a pivotal player in Mediator function, not only as the primary interaction site for NRs, but also as a crucial interaction hub for other coregulatory factors, and as an important regulatory target for signal-activated kinases.
CONCLUSIONS
Mediator plays an integral coregulatory role at NR target genes by functionally interacting with the basal transcription apparatus and by coordinating the action of chromatin modifying enzymes and transcription elongation factors. This article is part of a Special Issue entitled Thyroid hormone signalling.
Publication
Journal: Cancer Research
October/19/2011
Abstract
The cell-cycle G(2)-M phase gene UBE2C is overexpressed in various solid tumors including castration-resistant prostate cancer (CRPC). Our recent studies found UBE2C to be a CRPC-specific androgen receptor (AR) target gene that is necessary for CRPC growth, providing a potential novel target for therapeutic intervention. In this study, we showed that the G(1)-S cell-cycle inhibitor-779 (CCI-779), an mTOR inhibitor, inhibited UBE2C mRNA and protein expression in AR-positive CRPC cell models abl and C4-2B. Treatment with CCI-779 significantly decreased abl cell proliferation in vitro and in vivo through inhibition of cell-cycle progression of both G(2)-M and G(1)-S phases. In addition, exposure of abl and C4-2B cells to CCI-779 also decreased UBE2C-dependent cell invasion. The molecular mechanisms for CCI-779 inhibition of UBE2C gene expression involved a decreased binding of AR coactivators SRC1, SRC3, p300, and MED1 to the UBE2C enhancers, leading to a reduction in RNA polymerase II loading to the UBE2C promoter, and attenuation of UBE2C mRNA stability. Our data suggest that, in addition to its ability to block cell-cycle G(1) to S-phase transition, CCI-779 causes a cell-cycle G(2)-M accumulation and an inhibition of cell invasion through a novel UBE2C-dependent mechanism, which contributes to antitumor activities of CCI-779 in UBE2C overexpressed AR-positive CRPC.
Publication
Journal: Cancer Discovery
September/8/2017
Abstract
Targeting the dysregulated BRAF-MEK-ERK pathway in cancer has increasingly emerged in clinical trial design. Despite clinical responses in specific cancers using inhibitors targeting BRAF and MEK, resistance develops often involving nongenomic adaptive bypass mechanisms. Inhibition of MEK1/2 by trametinib in patients with triple-negative breast cancer (TNBC) induced dramatic transcriptional responses, including upregulation of receptor tyrosine kinases (RTK) comparing tumor samples before and after one week of treatment. In preclinical models, MEK inhibition induced genome-wide enhancer formation involving the seeding of BRD4, MED1, H3K27 acetylation, and p300 that drives transcriptional adaptation. Inhibition of the P-TEFb-associated proteins BRD4 and CBP/p300 arrested enhancer seeding and RTK upregulation. BRD4 bromodomain inhibitors overcame trametinib resistance, producing sustained growth inhibition in cells, xenografts, and syngeneic mouse TNBC models. Pharmacologic targeting of P-TEFb members in conjunction with MEK inhibition by trametinib is an effective strategy to durably inhibit epigenomic remodeling required for adaptive resistance.Significance: Widespread transcriptional adaptation to pharmacologic MEK inhibition was observed in TNBC patient tumors. In preclinical models, MEK inhibition induces dramatic genome-wide modulation of chromatin, in the form of de novo enhancer formation and enhancer remodeling. Pharmacologic targeting of P-TEFb complex members at enhancers is an effective strategy to durably inhibit such adaptation. Cancer Discov; 7(3); 302-21. ©2017 AACR.This article is highlighted in the In This Issue feature, p. 235.
Publication
Journal: Nature Cell Biology
August/21/2016
Abstract
Reprogramming somatic cells into induced pluripotent stem cells (iPSCs) is typically inefficient and has been explained by elite-cell and stochastic models. We recently reported that B cells exposed to a pulse of C/EBPα (Bα' cells) behave as elite cells, in that they can be rapidly and efficiently reprogrammed into iPSCs by the Yamanaka factors OSKM. Here we show that C/EBPα post-transcriptionally increases the abundance of several hundred proteins, including Lsd1, Hdac1, Brd4, Med1 and Cdk9, components of chromatin-modifying complexes present at super-enhancers. Lsd1 was found to be required for B cell gene silencing and Brd4 for the activation of the pluripotency program. C/EBPα also promotes chromatin accessibility in pluripotent cells and upregulates Klf4 by binding to two haematopoietic enhancers. Bα' cells share many properties with granulocyte/macrophage progenitors, naturally occurring elite cells that are obligate targets for leukaemic transformation, whose formation strictly requires C/EBPα.
Publication
Journal: Biochimica et Biophysica Acta - General Subjects
July/16/2014
Abstract
Despite recent treatment advances, an increase in cardiovascular diseases (CVD) mortality is expected for the next years. Mediator (MED) complex plays key roles in eukaryotic gene transcription. Currently, while numerous studies have correlated MED alterations with several diseases, like cancer or neurological disorders, fewer studies have investigated MED role in CVD initiation and progression. The first finding of MED involvement in these pathologies was the correlation of missense mutations in <em>MED1</em>3L gene with transposition of the great arteries. Nowadays, also <em>MED1</em>3 and <em>MED1</em>5 have been associated with human congenital heart diseases and others could be added, like <em>MED1</em>2 that is involved in early mouse development and heart formation. Interestingly, a missense mutation in MED30 gene causes a progressive cardiomyopathy in homozygous mice suggesting a potential role for this subunit also in human CVDs. Moreover, several subunits like <em>MED1</em>, <em>MED1</em>3, <em>MED1</em>4, <em>MED1</em>5, MED23, MED25 and CDK8 exert important roles in glucose and lipid metabolism. Although these evidences derive from in vitro and animal model studies, they indicate that their deregulation may have a significant role in human CVD-related metabolic disorders. Finally, alternative transcripts of <em>MED1</em>2, <em>MED1</em>9 and MED30 are differently expressed in circulating endothelial progenitor cells thus suggesting they can play a role in the field of regenerative medicine. Overall, further functional studies exploring MED role in human CVD are warranted. The results could allow identifying novel biomarkers to use in combination with imaging techniques for early diagnosis; otherwise, they could be useful to develop targets for novel therapeutic approaches.
Publication
Journal: Nucleic Acids Research
October/27/2017
Abstract
Histone H3K4me1/2 methyltransferases MLL3/MLL4 and H3K27 acetyltransferases CBP/p300 are major enhancer epigenomic writers. To understand how these epigenomic writers orchestrate enhancer landscapes in cell differentiation, we have profiled genomic binding of MLL4, CBP, lineage-determining transcription factors (EBF2, C/EBPβ, C/EBPα, PPARγ), coactivator MED1, RNA polymerase II, as well as epigenome (H3K4me1/2/3, H3K9me2, H3K27me3, H3K36me3, H3K27ac), transcriptome and chromatin opening during adipogenesis of immortalized preadipocytes derived from mouse brown adipose tissue (BAT). We show that MLL4 and CBP drive the dynamic enhancer epigenome, which correlates with the dynamic transcriptome. MLL3/MLL4 are required for CBP/p300 binding on enhancers activated during adipogenesis. Further, MLL4 and CBP identify super-enhancers (SEs) of adipogenesis and that MLL3/MLL4 are required for SE formation. Finally, in brown adipocytes differentiated in culture, MLL4 identifies primed SEs of genes fully activated in BAT such as Ucp1. Comparison of MLL4-defined SEs in brown and white adipogenesis identifies brown-specific SE-associated genes that could be involved in BAT functions. These results establish MLL3/MLL4 and CBP/p300 as master enhancer epigenomic writers and suggest that enhancer-priming by MLL3/MLL4 followed by enhancer-activation by CBP/p300 sequentially shape dynamic enhancer landscapes during cell differentiation. Our data also provide a rich resource for understanding epigenomic regulation of brown adipogenesis.
Publication
Journal: Nucleic Acids Research
July/7/2016
Abstract
Signal Transducers and Activators of Transcription (STATs) are principal transcription factors downstream of cytokine receptors. Although STAT5A is expressed in most tissues it remains to be understood why its premier, non-redundant functions are restricted to prolactin-induced mammary gland development and function. We report that the ubiquitously expressed Stat5a/b locus is subject to additional lineage-specific transcriptional control in mammary epithelium. Genome-wide surveys of epigenetic status and transcription factor occupancy uncovered a putative mammary-specific enhancer within the intergenic sequences separating the two Stat5 genes. This region exhibited several hallmarks of genomic enhancers, including DNaseI hypersensitivity, H3K27 acetylation and binding by GR, NFIB, ELF5 and MED1. Mammary-specific STAT5 binding was obtained at two canonical STAT5 binding motifs. CRISPR/Cas9-mediated genome editing was used to delete these sites in mice and determine their biological function. Mutant animals exhibited an 80% reduction of Stat5 levels in mammary epithelium and a concomitant reduction of STAT5-dependent gene expression. Transcriptome analysis identified a class of mammary-restricted genes that was particularly dependent on high STAT5 levels as a result of the intergenic enhancer. Taken together, the mammary-specific enhancer enables a positive feedback circuit that contributes to the remarkable abundance of STAT5 and, in turn, to the efficacy of STAT5-dependent mammary physiology.
Publication
Journal: Journal of Biological Chemistry
July/6/2006
Abstract
The TRAP/Mediator coactivator complex serves as a functional interface between DNA-bound transactivators and the RNA polymerase II-associated basal transcription apparatus. TRAP220/MED1 is a variably associated subunit of the complex that plays a specialized role in selectively targeting TRAP/Mediator to specific genes. Ablation of the Trap220/Med1 gene in mice impairs embryonic cell growth, yet the underlying mechanism is unknown. In this report, we identified distinct cell growth regulatory genes whose expression is affected by the loss of TRAP220/MED1 by RNA interference. Among the down-regulated genes revealed by cDNA microarray analyses, we identified Aurora-A, a centrosome kinase that plays a critical role in regulating M phase events and is frequently amplified in several types of cancer. In general, we found that TRAP220/MED1 expression is required for high basal levels of Aurora-A gene expression and that ectopic overexpression of TRAP220/MED1 coactivates transcription from the Aurora-A gene promoter. Furthermore, chromatin immunoprecipitation assays show that TRAP220/MED1-containing TRAP/Mediator complexes directly bind to the Aurora-A promoter in vivo. Finally, we present evidence suggesting that TRAP/Mediator is recruited to the Aurora-A gene via direct interactions between TRAP220/MED1 and the Ets-related transcription factor GABP. Taken together, these findings suggest that TRAP220/MED1 plays a novel coregulatory role in facilitating the recruitment of TRAP/Mediator to specific target genes involved in growth and cell cycle progression.
Publication
Journal: Journal of Steroid Biochemistry and Molecular Biology
August/29/2013
Abstract
Transcription factors require coactivators and corepressors to modulate transcription in mammalian cells. The vitamin D receptor (VDR) utilizes coactivators and corepressors to gain tight control over the activity of a diverse set of genes that can regulate calcium transport, slow proliferation and promote immune responses. We have recently established the VDR/RXR cistrome in human colon cancer cells and have linked these binding sites to the genes that are regulated by 1α,25-dihydroxyvitamin D3 (1,25(OH)2D3). In additional studies described herein, we demonstrate that the coactivators SRC1, CBP and MED1 are recruited to upregulated genes to facilitate transcription as expected. SRC1 was the most highly correlated to VDR/RXR binding (50%). However, we also found that corepressor molecules such as NCoR and SMRT were present along with SRC1, CBP or MED1 at these 1,25(OH)2D3 activated gene enhancers. Interestingly, genome-wide NCoR binding mimicked VDR binding by increasing its association with VDR binding in response to 1,25(OH)2D3 treatment. Overall, these data indicate a complex role for corepressor and coactivator complexes in the activation or active repression of 1,25(OH)2D3 responsive genes. This article is part of a Special Issue entitled 'Vitamin D Workshop'.
Publication
Journal: Molecular and Cellular Biology
June/28/2012
Abstract
The Mediator subunit MED1 is essential for mammary gland development and lactation, whose contribution through direct interaction with estrogen receptors (ERs) is restricted to involvement in pubertal mammary gland development and luminal cell differentiation. Here, we provide evidence that the MED24-containing submodule of Mediator functionally communicates specifically with MED1 in pubertal mammary gland development. Mammary glands from MED1/MED24 double heterozygous knockout mice showed profound retardation in ductal branching during puberty, while single haploinsufficient glands developed normally. DNA synthesis of both luminal and basal cells were impaired in double mutant mice, and the expression of ER-targeted genes encoding E2F1 and cyclin D1, which promote progression through the G(1)/S phase of the cell cycle, was attenuated. Luciferase reporter assays employing double mutant mouse embryonic fibroblasts showed selective impairment in ER functions. Various breast carcinoma cell lines expressed abundant amounts of MED1, MED24, and MED30, and attenuated expression of MED1 and MED24 in breast carcinoma cells led to attenuated DNA synthesis and growth. These results indicate functional communications between the MED1 subunit and the MED24-containing submodule that mediate estrogen receptor functions and growth of both normal mammary epithelial cells and breast carcinoma cells.
Publication
Journal: Cell Reports
October/19/2016
Abstract
The Peroxisome proliferator-activated receptor-gamma coactivator 1 alpha (PGC-1α) is a transcriptional co-activator that plays a central role in adapted metabolic responses. PGC-1α is dynamically methylated and unmethylated at the residue K779 by the methyltransferase SET7/9 and the Lysine Specific Demethylase 1A (LSD1), respectively. Interactions of methylated PGC-1α[K779me] with the Spt-Ada-Gcn5-acetyltransferase (SAGA) complex, the Mediator members <em>MED1</em> and <em>MED1</em>7, and the NOP2/Sun RNA methytransferase 7 (NSUN7) reinforce transcription, and are concomitant with the m(5)C mark on enhancer RNAs (eRNAs). Consistently, loss of Set7/9 and NSun7 in liver cell model systems resulted in depletion of the PGC-1α target genes Pfkl, Sirt5, Idh3b, and Hmox2, which was accompanied by a decrease in the eRNAs levels associated with these loci. Enrichment of m(5)C within eRNA species coincides with metabolic stress of fasting in vivo. Collectively, these findings illustrate the complex epigenetic circuitry imposed by PGC-1α at the eRNA level to fine-tune energy metabolism.
Publication
Journal: ACS Nano
September/27/2017
Abstract
Most breast cancers express estrogen receptor (ER) α, and the antiestrogen drug tamoxifen has been widely used for their treatment. Unfortunately, up to half of all ERα-positive tumors have intrinsic or acquired endocrine therapy resistance. Our recent studies revealed that the ER coactivator Mediator Subunit 1 (MED1) plays a critical role in tamoxifen resistance through cross-talk with HER2. Herein, we assembled a three-way junction (3-WJ) pRNA-HER2apt-siMED1 nanoparticle to target HER2-overexpressing human breast cancer via an HER2 RNA aptamer to silence MED1 expression. We found that these ultracompact RNA nanoparticles are very stable under RNase A, serum, and 8 M urea conditions. These nanoparticles specifically bound to HER2-overexpressing breast cancer cells, efficiently depleted MED1 expression, and significantly decreased ERα-mediated gene transcription, whereas point mutations of the HER2 RNA aptamer on these nanoparticles abolished such functions. The RNA nanoparticles not only reduced the growth, metastasis, and mammosphere formation of the HER2-overexpressing breast cancer cells but also sensitized them to tamoxifen treatment. These biosafe nanoparticles efficiently targeted and penetrated into HER2-overexpressing tumors after systemic administration in orthotopic xenograft mouse models. In addition to their ability to greatly inhibit tumor growth and metastasis, these nanoparticles also led to a dramatic reduction in the stem cell content of breast tumors when combined with tamoxifen treatment in vivo. Overall, we have generated multifunctional RNA nanoparticles that specifically targeted HER2-overexpressing human breast cancer, silenced MED1, and overcame tamoxifen resistance.
Publication
Journal: The Journal of investigative dermatology
May/20/2012
Abstract
The transcriptional coactivator complex Mediator (MED) facilitates transcription of nuclear hormone receptors and other transcription factors. We have previously isolated the MED complex from primary keratinocytes (KCs) as the vitamin D receptor-interacting protein complex. We identified a role for MED in KC proliferation and differentiation in cultured KCs. Here, we investigated the in vivo role of MED by generating a conditional null mice model in which a critical subunit of the MED complex, MED1, is deleted from their KCs. The MED1 ablation resulted in aberrant hair differentiation and cycling, leading to hair loss. During the first hair follicle (HF) cycle, MED1 deletion resulted in a rapid regression of the HFs. Hair differentiation was reduced, and β-catenin/vitamin D receptor (VDR)-regulated gene expression was markedly decreased. In the subsequent adult hair cycle, MED1 ablation activated the initiation of HF cycling. Shh signaling was increased, but terminal differentiation was not sufficient. Deletion of MED1 also caused hyperproliferation of interfollicular epidermal KCs, and increased the expression of epidermal differentiation markers. These results indicate that MED1 has a critical role in regulating hair/epidermal proliferation and differentiation.
Publication
Journal: Cancer Letters
December/3/2002
Abstract
MBD4/MED1 is a newly identified mismatch repair gene, which is mutated in colon, endometrial, and pancreatic high-frequency microsatellite instability (MSI-H) tumors. To assess its role in gastric cancers, we investigated MBD4/MED1 mutations in sporadic gastric cancers, compared with colon cancers. Frameshift mutations were found in 29% of gastric and 20% of colon MSI-H cancers, but not in any low-frequency microsatellite instability/microsatellite stable cancers. MBD4/MED1 is mutated in gastric cancers as frequently as in colon cancers; these mutations reduce the accuracy of DNA repair, and may lead to cancer progression.
load more...