Citations
All
Search in:AllTitleAbstractAuthor name
Publications
(30K+)
Patents
Grants
Pathways
Clinical trials
Publication
Journal: Science Translational Medicine
March/11/2013
Abstract
Despite the development of highly effective prophylactic vaccines against human papillomavirus (HPV) serotypes 16 and 18, prevention of cervical dysplasia and cancer in women infected with high-risk HPV serotypes remains an unmet medical need. We report encouraging phase 1 safety, tolerability, and immunogenicity results for a therapeutic HPV16/18 candidate vaccine, VGX-3100, delivered by in vivo electroporation (EP). Eighteen women previously treated for cervical intraepithelial neoplasia grade 2 or 3 (CIN2/3) received a three-dose (intramuscular) regimen of highly engineered plasmid DNA encoding HPV16 and HPV18 E6/E7 antigens followed by EP in a dose escalation study (0.3, 1, and 3 mg per plasmid). Immunization was well tolerated with reports of mild injection site reactions and no study-related serious or grade 3 and 4 adverse events. No dose-limiting toxicity was noted, and pain was assessed by visual analog scale, with average scores decreasing from 6.2/10 to 1.4 within 10 min. Average peak interferon-γ enzyme-linked immunospot magnitudes were highest in the 3 mg cohort in comparison to the 0.3 and 1 mg cohorts, suggesting a trend toward a dose effect. Flow cytometric analysis revealed the induction of HPV-specific CD8(+) T cells that efficiently loaded granzyme B and perforin and exhibited full cytolytic functionality in all cohorts. These data indicate that VGX-3100 is capable of driving robust immune responses to antigens from high-risk HPV serotypes and could contribute to elimination of HPV-infected cells and subsequent regression of the dysplastic process.
Publication
Journal: Journal of Clinical Oncology
December/9/2013
Abstract
OBJECTIVE
Entinostat is an oral isoform selective histone deacetylase inhibitor that targets resistance to hormonal therapies in estrogen receptor-positive (ER+) breast cancer. This randomized, placebo-controlled, phase II study evaluated entinostat combined with the aromatase inhibitor exemestane versus exemestane alone.
METHODS
Postmenopausal women with ER+ advanced breast cancer progressing on a nonsteroidal aromatase inhibitor were randomly assigned to exemestane 25 mg daily plus entinostat 5 mg once per week (EE) or exemestane plus placebo (EP). The primary end point was progression-free survival (PFS). Blood was collected in a subset of patients for evaluation of protein lysine acetylation as a biomarker of entinostat activity.
RESULTS
One hundred thirty patients were randomly assigned (EE group, n = 64; EP group, n = 66). Based on intent-to-treat analysis, treatment with EE improved median PFS to 4.3 months versus 2.3 months with EP (hazard ratio [HR], 0.73; 95% CI, 0.50 to 1.07; one-sided P = .055; two-sided P = .11 [predefined significance level of .10, one-sided]). Median overall survival was an exploratory end point and improved to 28.1 months with EE versus 19.8 months with EP (HR, 0.59; 95% CI, 0.36 to 0.97; P = .036). Fatigue and neutropenia were the most frequent grade 3/4 toxicities. Treatment discontinuation because of adverse events was higher in the EE group versus the EP group (11% v 2%). Protein lysine hyperacetylation in the EE biomarker subset was associated with prolonged PFS.
CONCLUSIONS
Entinostat added to exemestane is generally well tolerated and demonstrated activity in patients with ER+ advanced breast cancer in this signal-finding phase II study. Acetylation changes may provide an opportunity to maximize clinical benefit with entinostat. Plans for a confirmatory study are underway.
Publication
Journal: Journal of the American College of Cardiology
April/21/2005
Abstract
OBJECTIVE
We sought to evaluate whether infarct size characterization by cardiac magnetic resonance imaging (MRI) is a better predictor of inducible ventricular tachycardia (VT) than left ventricular ejection fraction (LVEF).
BACKGROUND
Inducibility of VT at electrophysiologic study (EPS) and low LVEF can identify patients with a substrate for VT. Magnetic resonance imaging has been shown to identify, with high precision, areas of myocardial infarction and may therefore be a better tool to evaluate for a substrate for VT.
METHODS
We studied 48 patients with known coronary artery disease who were referred for EPS using cine and gadolinium-enhanced MRI. Wall motion and infarct characteristics were determined blindly and compared among patients with no inducible ventricular arrhythmias (n = 21), those with inducible monomorphic VT (MVT, n = 18), and those with either inducible polymorphic VT or ventricular fibrillation (n = 9).
RESULTS
Patients with MVT had larger infarcts than patients who did not have inducible arrhythmias (mass: 49 +/- 5 g [SE] vs. 28 +/- 5 g, p < 0.005; surface area: 172 +/- 15 cm(2) vs. 93 +/- 14 cm(2), p < 0.0005). Patients with polymorphic VT/fibrillation had intermediate values (mass: 36 +/- 7 g; surface area: 115 +/- 22 cm(2)). Ejection fraction was inversely related to infarct mass and surface area, with R(2) values ranging from 0.21 to 0.27. Logistic regression and receiver-operating characteristic analysis demonstrated that infarct mass and surface area were better predictors of inducibility of MVT than LVEF.
CONCLUSIONS
Infarct surface area and mass, as measured by cardiac MRI, are better identifiers of patients who have a substrate for MVT than LVEF. Further evaluation of infarct size characterization by cardiac MRI as a predictor of sudden cardiac death is warranted.
Publication
Journal: Seminars in Immunopathology
August/4/2013
Abstract
Prostaglandin E(2) (PGE(2)) is a bioactive lipid that elicits a wide range of biological effects associated with inflammation and cancer. PGE(2) exerts diverse effects on cell proliferation, apoptosis, angiogenesis, inflammation, and immune surveillance. This review concentrates primarily on gastrointestinal cancers, where the actions of PGE(2) are most prominent, most likely due to the constant exposure to dietary and environmental insults and the intrinsic role of PGE(2) in tissue homeostasis. A discussion of recent efforts to elucidate the complex and interconnected pathways that link PGE(2) signaling with inflammation and cancer is provided, supported by the abundant literature showing a protective effect of NSAIDs and the therapeutic efficacy of targeting mPGES-1 or EP receptors for cancer prevention. However, suppressing PGE(2) formation as a means of providing chemoprotection against all cancers may not ultimately be tenable, undoubtedly the situation for patients with inflammatory bowel disease. Future studies to fully understand the complex role of PGE(2) in both inflammation and cancer will be required to develop novel strategies for cancer prevention that are both effective and safe.
Publication
Journal: Journal of Bacteriology
March/28/2001
Abstract
The rugose colonial variant of Vibrio cholerae O1 El Tor produces an exopolysaccharide (EPS(ETr)) that enables the organism to form a biofilm and to resist oxidative stress and the bactericidal action of chlorine. Transposon mutagenesis of the rugose variant led to the identification of vpsR, which codes for a homologue of the NtrC subclass of response regulators. Targeted disruption of vpsR in the rugose colony genetic background yielded a nonreverting smooth-colony morphotype that produced no detectable EPS(ETr) and did not form an architecturally mature biofilm. Analysis of two genes, vpsA and vpsL, within the vps cluster of EPS(ETr) biosynthesis genes revealed that their expression is induced above basal levels in the rugose variant, compared to the smooth colonial variant, and requires vpsR. These results show that VpsR functions as a positive regulator of vpsA and vpsL and thus acts to positively regulate EPS(ETr) production and biofilm formation.
Publication
Journal: International Journal of Cancer
October/18/2004
Abstract
With the goal of identifying genes with a differential pattern of expression between ovarian serous papillary carcinomas (OSPCs) and normal ovarian (NOVA) epithelium and using this knowledge for the development of novel diagnostic and therapeutic markers for ovarian cancer, we used oligonucleotide microarrays with probe sets complementary to 12,533 genes to analyze the gene expression profiles of 10 primary OSPC cell lines, 2 established OSPC cell lines (UCI-101, UCI-107) and 5 primary NOVA epithelial cultures. Unsupervised analysis of gene expression data identified 129 and 170 genes that exhibited >5-fold upregulation and downregulation, respectively, in primary OSPC compared to NOVA. Genes overexpressed in established OSPC cell lines had little correlation with those overexpressed in primary OSPC, highlighting the divergence of gene expression that occurs as a result of long-term in vitro growth. Hierarchical clustering of the expression data readily distinguished normal tissue from primary OSPC. Laminin, claudin 3, claudin 4, tumor-associated calcium signal transducers 1 and 2 (TROP-1/Ep-CAM, TROP-2), ladinin 1, S100A2, SERPIN2 (PAI-2), CD24, lipocalin 2, osteopontin, kallikrein 6 (protease M), kallikrein 10, matriptase (TADG-15) and stratifin were among the most highly overexpressed genes in OSPC compared to NOVA. Downregulated genes in OSPC included transforming growth factor-beta receptor III, platelet-derived growth factor receptor alpha, SEMACAP3, ras homolog gene family member I (ARHI), thrombospondin 2 and disabled-2/differentially expressed in ovarian carcinoma 2 (Dab2/DOC2). Differential expression of some of these genes, including claudin 3, claudin 4, TROP-1 and CD24, was validated by quantitative RT-PCR and flow cytometry on primary OSPC and NOVA. Immunohistochemical staining of formalin-fixed, paraffin-embedded tumor specimens from which primary OSPC cultures were derived further confirmed differential expression of CD24 and TROP-1/Ep-CAM markers on OSPC vs. NOVA. These results, obtained with highly purified primary cultures of ovarian cancer, highlight important molecular features of OSPC and may provide a foundation for the development of new type-specific therapies against this disease.
Pulse
Views:
1
Posts:
No posts
Rating:
Not rated
Publication
Journal: Cell
April/2/1989
Abstract
We have found that R. meliloti strain Rm1021, which is known to synthesize a Calcofluor-binding exopolysaccharide (EPS I), also has a cryptic capacity to synthesize a second exopolysaccharide (EPS II). Structural analysis of EPS II has shown that it differs in many respects from EPS I. Genetic analysis indicates that EPS II synthesis requires the products of at least seven loci on the second symbiotic megaplasmid of R. meliloti, and is induced by a mutation, expR101, which causes increased transcription of these genes. Synthesis of EPS II suppresses the symbiotic defects of EPS I-deficient strains on Medicago sativa (alfalfa), but not on four other plants that are normally hosts for Rm1021. These observations suggest that structural features of bacterial exopolysaccharides are involved in the determination of host range. The implications of these results for models of exopolysaccharide function, such as serving as signals to the plant or shielding the bacteria from plant defense responses, are discussed.
Publication
Journal: Journal of endotoxin research
February/14/2005
Abstract
For many years, it was thought that bacterial products caused fever via the intermediate production of a host-derived, fever-producing molecule, called endogenous pyrogen (EP). Bacterial products and other fever-producing substances were termed exogenous pyrogens. It was considered highly unlikely that exogenous pyrogens caused fever by acting directly on the hypothalamic thermoregulatory center since there were countless fever-producing microbial products, mostly large molecules, with no common physical structure. In vivo and in vitro, lipopolysaccharides (LPSs) and other microbial products induced EP, subsequently shown to be interleukin-1 (IL-1). The concept of the 'endogenous pyrogen' cause of fever gained considerable support when pure, recombinant IL-1 produced fever in humans and in animals at subnanomolar concentrations. Subsequently, recombinant tumor necrosis factor-alpha (TNF-alpha), IL-6 and other cytokines were also shown to cause fever and EPs are now termed pyrogenic cytokines. However, the concept was challenged when specific blockade of either IL-1 or TNF activity did not diminish the febrile response to LPS, to other microbial products or to natural infections in animals and in humans. During infection, fever could occur independently of IL-1 or TNF activity. The cytokine-like property of Toll-like receptor (TLR) signal transduction provides an explanation by which any microbial product can cause fever by engaging its specific TLR on the vascular network supplying the thermoregulatory center in the anterior hypothalamus. Since fever induced by IL-1, TNF-alpha, IL-6 or TLR ligands requires cyclooxygenase-2, production of prostaglandin E2 (PGE2) and activation of hypothalamic PGE2 receptors provides a unifying mechanism for fever by endogenous and exogenous pyrogens. Thus, fever is the result of either cytokine receptor or TLR triggering; in autoimmune diseases, fever is mostly cytokine mediated whereas both cytokine and TLR account for fever during infection.
Publication
Journal: Frontiers in Microbiology
November/9/2011
Abstract
Pseudomonas aeruginosa thrives in many aqueous environments and is an opportunistic pathogen that can cause both acute and chronic infections. Environmental conditions and host defenses cause differing stresses on the bacteria, and to survive in vastly different environments, P. aeruginosa must be able to adapt to its surroundings. One strategy for bacterial adaptation is to self-encapsulate with matrix material, primarily composed of secreted extracellular polysaccharides. P. aeruginosa has the genetic capacity to produce at least three secreted polysaccharides; alginate, Psl, and Pel. These polysaccharides differ in chemical structure and in their biosynthetic mechanisms. Since alginate is often associated with chronic pulmonary infections, its biosynthetic pathway is the best characterized. However, alginate is only produced by a subset of P. aeruginosa strains. Most environmental and other clinical isolates secrete either Pel or Psl. Little information is available on the biosynthesis of these polysaccharides. Here, we review the literature on the alginate biosynthetic pathway, with emphasis on recent findings describing the structure of alginate biosynthetic proteins. This information combined with the characterization of the domain architecture of proteins encoded on the Psl and Pel operons allowed us to make predictive models for the biosynthesis of these two polysaccharides. The results indicate that alginate and Pel share certain features, including some biosynthetic proteins with structurally or functionally similar properties. In contrast, Psl biosynthesis resembles the EPS/CPS capsular biosynthesis pathway of Escherichia coli, where the Psl pentameric subunits are assembled in association with an isoprenoid lipid carrier. These models and the environmental cues that cause the cells to produce predominantly one polysaccharide over the others are subjects of current investigation.
Publication
Journal: Journal of Bacteriology
December/11/1997
Abstract
The general secretion pathway (GSP) of Vibrio cholerae is required for secretion of proteins including chitinase, enterotoxin, and protease through the outer membrane. In this study, we report the cloning and sequencing of a DNA fragment from V. cholerae, containing 12 open reading frames, epsC to -N, which are similar to GSP genes of Aeromonas, Erwinia, Klebsiella, Pseudomonas, and Xanthomonas spp. In addition to the two previously described genes, epsE and epsM (M. Sandkvist, V. Morales, and M. Bagdasarian, Gene 123: 81-86, 1993; L. J. Overbye, M. Sandkvist, and M. Bagdasarian, Gene 132:101-106, 1993), it is shown here that epsC, epsF, epsG, and epsL also encode proteins essential for GSP function. Mutations in the eps genes result in aberrant outer membrane protein profiles, which indicates that the GSP, or at least some of its components, is required not only for secretion of soluble proteins but also for proper outer membrane assembly. Several of the Eps proteins have been identified by use of the T7 polymerase-promoter system in Escherichia coli. One of them, a pilin-like protein, EpsG, was analyzed also in V. cholerae and found to migrate as two bands on polyacrylamide gels, suggesting that in this organism it might be processed or otherwise modified by a prepilin peptidase. We believe that TcpJ prepilin peptidase, which processes the subunit of the toxin-coregulated pilus, TcpA, is not involved in this event. This is supported by the observations that apparent processing of EpsG occurs in a tcpJ mutant of V. cholerae and that, when coexpressed in E. coli, TcpJ cannot process EpsG although the PilD peptidase from Neisseria gonorrhoeae can.
Publication
Journal: Molecular Psychiatry
December/2/2010
Abstract
This paper provides a conceptual analysis of the endophenotype (EP) construct that is having an increasing role in genetic strategies for unraveling the etiology of psychiatric disorders (PDs). We make six major points illustrated through the method of path analysis. First, it is important to distinguish between mediational and liability-index (or 'risk indicator') models for EP, as only the former requires genetic risk for PD to pass through EP. Second, the relative reliability of EP and PD can have a critical role in the interpretation of results. Ignoring them can lead to substantial errors of inference. Third, we need to consider bidirectional relationships between an EP and a PD, and the possibility that genetic effects on PD are only partially mediated by EP. Fourth, EP models typically assume that all genetic effects that have an impact on EP also alter risk for PD. However, among the genetic influences on EP and PD, it is also plausible that some will influence only EP, some only PD and some both. Fifth, we should also consider models incorporating multiple EPs and PDs, which can be well captured by multivariate genetic methods. Sixth, EPs may also reflect the impact of the environment on risk for PDs. The EP concept has important potential lessons for etiological research in PDs that can be optimized by considering it as a special case of a broader set of multivariate genetic models, which can be fitted using currently available methodology.
Publication
Journal: Proceedings of the National Academy of Sciences of the United States of America
April/24/2002
Abstract
Our initial studies with cisplatin + vinblastine + bleomycin began 27 years ago in 1974, changing the cure rate for disseminated disease from 5 to 60%. Subsequently, through random prospective clinical trials, we have modified the treatment regimen to reduce both the duration and dosages of the chemotherapy drugs. Cisplatin + etoposide was first used at Indiana University as salvage chemotherapy in 1978, representing the first time that a solid tumor had been cured with second-line chemotherapy. We next did a clinical trial comparing bleomycin + etoposide + cisplatin (BEP) to cisplatin + vinblastine + bleomycin. The BEP regimen was proven to have less toxicity and a higher cure rate and therefore, since 1984, has been standard chemotherapy. More recent studies have evaluated the use of lesser chemotherapy to maintain the same cure rate for patients with good-prognosis disease. Standard therapy for these patients is either three courses of BEP or four courses of EP, and over 90% of these patients will be cured of their disease. Patients who are not cured with their initial BEP chemotherapy are usually treated with salvage chemotherapy. Approximately 50% of these testicular cancer patients will subsequently be cured with salvage chemotherapy with tandem transplant of high-dose chemotherapy with peripheral stem cell rescue. Testicular cancer has become a model for a curable neoplasm. In the early 1970s, metastatic testicular cancer was associated with only 5% survival. Today, with modern chemotherapy and surgery techniques, 80% of patients will survive their disease.
Publication
Journal: Blood
May/14/2008
Abstract
The relative contribution of yolk sac (YS)-derived cells to the circulating definitive hematopoietic progenitor cell (HPC) pool that seeds the fetal liver remains controversial due to the presence of systemic circulation and the onset of hematopoiesis within the embryo proper (EP) before liver seeding. Ncx1-/- embryos fail to initiate a heartbeat on embryonic day (E) 8.25, but continue to develop through E10. We detected normal numbers of primitive erythroid progenitors in Ncx1-/- versus wild type (WT) YS, but primitive erythroblasts did not circulate in the Ncx1-/- EP. While there was no significant difference in the number of definitive HPCs in Ncx1-/- versus WT YS through E9.5, the Ncx1-/- EP was nearly devoid of HPCs. Thus, primitive erythroblasts and essentially all definitive HPCs destined to initially seed the fetal liver after E9.5 are generated in the YS between E7.0-E9.5 and are redistributed into the EP via the systemic circulation.
Publication
Journal: Proceedings of the National Academy of Sciences of the United States of America
June/28/2010
Abstract
Mitochondrial DNAs were prepared from maize lines with normal cytoplasm and with the T, C, S, and EP sources of male-sterile cytoplasms. Agarose gel electrophoresis of these preparations revealed a main high-molecular-weight DNA band. In addition, the S cytoplasm was characterized by the presence of two faster migrating DNAs of molecular weight 3.42 to 3.48 x 10(6) and 4.01 to 4.10 x 10(6). Electron microscopy showed these unique DNAs to be of different length, but their molecular configuration was not clearly established. It is possible that these unique DNAs represent physical evidence of an episomal system previously postulated to function in the S male-sterile cytoplasm.
Publication
Journal: Journal of Dental Research
December/10/2006
Abstract
Dental caries is a biofilm-dependent oral disease, and fermentable dietary carbohydrates are the key environmental factors involved in its initiation and development. However, among the carbohydrates, sucrose is considered the most cariogenic, because, in addition to being fermented by oral bacteria, it is a substrate for the synthesis of extracellular (EPS) and intracellular (IPS) polysaccharides. Therefore, while the low pH environment triggers the shift of the resident plaque microflora to a more cariogenic one, EPS promote changes in the composition of the biofilms' matrix. Furthermore, it has recently been shown that the biofilm formed in the presence of sucrose presents low concentrations of Ca, P(i), and F, which are critical ions involved in de- and remineralization of enamel and dentin in the oral environment. Thus, the aim of this review is to explore the broad role of sucrose in the cariogenicity of biofilms, and to present a new insight into its influence on the pathogenesis of dental caries.
Publication
Journal: Molecular Psychiatry
August/3/2009
Abstract
We conducted a systematic review and meta-analysis of randomized controlled trials that compared second-generation antipsychotic (SGA) drugs with placebo in schizophrenic patients and which considered 13 different outcome measures. Thirty-eight randomized controlled trials with 7323 participants were included. All SGA drugs were more effective than placebo, but the pooled effect size (ES) for overall symptoms (primary outcome) was moderate (-0.51). The absolute difference (RD) in responder rates was at 18% (41% responded to drug compared with 24% to placebo, number needed to treat=6). Similar ESs were found for the other efficacy parameters: negative symptoms (ES=-0.39), positive symptoms (ES=-0.48), depression (ES=-0.26), relapse (RD 20%) and discontinuation due to inefficacy (RD 17%). Curiously, the efficacy of haloperidol for negative and depressive symptoms was similar to that of the SGA drugs. In contrast to haloperidol, there was no difference in terms of EPS between any SGA drugs and placebo, and there was also no difference in terms of dropouts due to adverse events. Meta-regression showed a decline in treatment response over time, and a funnel plot suggested the possibility of publication bias. We conclude that the drug versus placebo difference of SGA drugs and haloperidol in recent trials was moderate, and that there is much room for more efficacious compounds. Whether methodological issues account in part for the relatively low efficacy ESs and the scarcity of adverse event differences compared with placebo needs to be established.
Publication
Journal: Molecular Microbiology
February/7/2001
Abstract
The synthesis of extracellular enzymes and extracellular polysaccharide (EPS) in Xanthomonas campestris pv. campestris (Xcc) is regulated by a cluster of genes called rpf (for regulation of pathogenicity factors). Two of the genes, rpfF and rpfB, have previously been implicated in the synthesis of a diffusible regulatory molecule, DSF. Here, we describe a screen of transposon insertion mutants of Xcc that identified two DSF-overproducing strains. In each mutant, the gene disrupted is rpfC, which encodes a hybrid two-component regulatory protein in which the sensor and regulator domains are fused and which contains an additional C-terminal phosphorelay (HPt) domain. We show that rpfC is in an operon with rpfH and rpfG. The predicted protein RpfG has a regulatory input domain attached to a specialized version of an HD domain, previously suggested to function in signal transduction. The predicted protein RpfH is structurally related to the sensory input domain of RpfC. We show that RpfC and RpfG act positively to regulate the synthesis of extracellular enzymes and EPS, but that RpfC acts negatively to regulate the synthesis of DSF. We propose that RpfGHC is a signal transduction system that couples the synthesis of pathogenicity factors to sensing of environmental signals that may include DSF itself.
Publication
Journal: Journal of Neuroscience
November/1/1990
Abstract
Individual neostriatal-matrix spiny neurons were stained intracellularly with biocytin after intracellular recording in vivo, and their axons were traced into the globus pallidus (GP), entopeduncular nucleus (EP), and/or substantia nigra (SN). The locations of the neurons within the matrix compartment of the neostriatum (NS) were established by immunocytochemical counterstaining of sections containing the cell bodies using antibodies for calbindin-D28K. This allowed nearly complete visualization of the axonal projections of single NS neurons. On the basis of their intrastriatal axonal arborizations, matrix spiny neurons could be divided into 2 types. One type, which was the more common, had local axonal arborizations restricted to the region of the dendritic field, often with axon collaterals arborizing within the dendritic field of the cells of origin. A second, less common, cell type in the matrix had local axon collaterals distributed widely in the NS. Among matrix neurons with restricted local collateral fields, 3 subtypes could be distinguished on the basis of their efferent axonal projections. Type I cells projected only to the GP. Type IIa cells projected to the GP, EP, and SN pars reticulata. Type IIb cells projected to the GP and SN but not to the EP. The shapes and densities of the GP arborizations varied in the 3 cell types, with the cells projecting only to the GP (type I) projecting more heavily and filling a larger volume there than type II cells. The dendrites and intrastriatal axon collaterals of 3 subtypes were similar in morphology. The class of matrix spiny neurons with intrastriatal axon collaterals distributed widely in the NS were observed to project to the GP. Projections beyond the GP were not identified for this cell type, but could not be ruled out. Somatodendritic morphologies of neurons did not differ according to the projection site. These results demonstrate that NS matrix spiny cells are more heterogeneous in their efferent projection patterns than previously suspected on the basis of retrograde axonal tracing and immunocytochemical studies. As predicted by those previous studies, there is a class of matrix neurons that projects only to the GP. Presumably, these cells contain enkephalin. Cells projecting to the SN and EP, and so presumably containing substance P, give off a small projection to the GP, as well, and differ in their collateralization patterns within the 3 major target nuclei.
Publication
Journal: Blood
September/11/2002
Abstract
Migration of antigen (Ag)-loaded dendritic cells (DCs) from sites of infection into draining lymphoid tissues is fundamental to the priming of T-cell immune responses. We evaluated monocyte-derived DCs (MoDCs) and peripheral blood DCs (PBDCs) to respond to proinflammatory mediators, CD40L, and intact bacteria. All classes of stimuli induced DC phenotypic maturation. However, for MoDCs, only prostaglandin E(2) (PGE(2))-containing stimuli induced migratory-type DCs. Thus, immature MoDCs that encountered proinflammatory cytokines or CD40L or intact bacteria in the presence of PGE(2) acquired migratory capacity but secreted low levels of cytokines. Conversely, MoDCs that encountered pathogens or CD40L alone become nonmigratory cytokine-secreting cells (proinflammatory type). Interestingly, both migratory- and proinflammatory-type DCs expressed equivalent levels of chemokine receptors, suggesting that the role of PGE(2) was to switch on migratory function. We demonstrate that PGE(2) induces migration via the E-prostanoid 2/E-prostanoid 4 (EP(2)/EP(4)) receptors and the cAMP pathway. Finally, migratory-type MoDCs stimulated T-cell proliferation and predominantly IL-2 secretion, whereas proinflammatory-type MoDCs induced IFN-gamma production. In contrast, CD1b/c(+) PBDC rapidly acquired migratory capacity irrespective of the class of stimulus encountered and secreted low levels of cytokines. This suggests that not all mature stages of DCs are destined to migrate to lymphoid organs and that the sequence in which stimuli are encountered significantly affects which functions are expressed. Thus, certain immature DC subsets recruited from the resting precursor pool may have multiple functional fates that play distinct roles during the induction and effector phases of the immune response. These findings have important implications for the clinical utility of DCs in immunotherapy.
Publication
Journal: Academic Emergency Medicine
February/27/2008
Abstract
BACKGROUND
Measurements of the optic nerve sheath diameter (ONSD) using bedside ultrasound (US) have been shown to correlate with clinical and radiologic signs and symptoms of increased intracranial pressure (ICP).
OBJECTIVE
Previous literature has identified 5 mm as the ONSD measurement above which patients exhibit either clinical or radiologic signs of elevated ICP. The goals of this study were to evaluate the association between ONSD and ICP and to validate the commonly used ONSD threshold of 5 mm using direct measurements of ICP as measured by ventriculostomy.
METHODS
A prospective blinded observational study was performed using a convenience sample of adult patients in both the emergency department (ED) and the neurologic intensive care unit (ICU) who had invasive intracranial monitors placed as part of their clinical care. Ocular USs were performed with a 10(-5) MHz linear probe. Emergency physicians (EPs) with previous ocular US experience performed ONSD measurements while blinded to the contemporaneous ICP reading obtained directly from invasive monitoring. The association between ONSD and ICP was assessed with the Spearman rank correlation coefficient, and a receiver operator characteristic (ROC) curve was created to determine the optimal ONSD cutoff to detect ICP>> 20 cm H2O.
RESULTS
Thirty-eight ocular USs were performed on 15 individual patients. Spearman rank correlation coefficient of ONSD and ICP was 0.59 (p < 0.0005) demonstrating a significant positive correlation. An ROC curve was created to assess the ability of ONSD to distinguish an abnormal ICP greater than 20 cm H2O. The area under the ROC curve was 0.93 (95% confidence interval [CI] = 0.84 to 0.99). Based on inspection of the ROC curve, ONSD>> 5 mm performed well to detect ICP>> 20 cm H(2)O with a sensitivity of 88% (95% CI = 47% to 99%) and specificity of 93% (95% CI = 78% to 99%).
CONCLUSIONS
Using an ROC curve the authors systematically confirmed the commonly used threshold of ONSD>> 5 mm to detect ICP>> 20 cm H2O. This study directly correlates ventriculostomy measurements of ICP with US ONSD measurements and provides further support for the use of ONSD measurements as a noninvasive test for elevated ICP.
Publication
Journal: Cell Research
July/8/2012
Abstract
Recent epigenomic studies have predicted thousands of potential enhancers in the human genome. However, there has not been systematic characterization of target promoters for these potential enhancers. Using H3K4me2 as a mark for active enhancers, we identified genome-wide EP interactions in human CD4(+) T cells. Among the 6 520 long-distance chromatin interactions, we identify 2 067 enhancers that interact with 1 619 promoters and enhance their expression. These enhancers exist in accessible chromatin regions and are associated with various histone modifications and polymerase II binding. The promoters with interacting enhancers are expressed at higher levels than those without interacting enhancers, and their expression levels are positively correlated with the number of interacting enhancers. Interestingly, interacting promoters are co-expressed in a tissue-specific manner. We also find that chromosomes are organized into multiple levels of interacting domains. Our results define a global view of EP interactions and provide a data set to further understand mechanisms of enhancer targeting and long-range chromatin organization. The Gene Expression Omnibus accession number for the raw and analyzed chromatin interaction data is GSE32677.
Publication
Journal: Free Radical Biology and Medicine
October/9/1996
Abstract
Flavonoids, a group of naturally occurring antioxidants and iron chelators, might be used as cardioprotective agents in doxorubicin-induced cardiotoxicity, which is believed to be caused by the formation of oxygen free radicals. To investigate the underlying molecular mechanism, we tested a large group of flavonoids from all major structural subclasses on their ability to inhibit doxorubicin (enzymatically)-induced and Fe2+/ascorbate (nonenzymatically)-induced microsomal lipid peroxidation (LPO) and to chelate Fe2+. In addition, we measured half peak oxidation potentials (Ep/2). LPO inhibition data gave a good qualitative correlation with the oxidation potentials. Most flavonoids tested chelated Fe2+, but there were large differences in the chelating capacity. For good scavenging activity, a catechol moiety on ring B is required. The 3-OH moiety can function as a chelation site and can also be oxidized. The 3-OH group in combination with a C2 C3 double bond, increases the scavenging activity. Fe2+ chelation only plays a role in the LPO inhibition by less active scavengers. Chelation can then raise the activity to the level of the most active scavengers, possibly by site-specific scavenging. It can be concluded that Ep/2 values and iron chelating activity can almost completely describe the LPO inhibiting behaviour of the flavonoids.
Publication
Journal: Journal of Biological Chemistry
February/24/2002
Abstract
Recently we have shown that the FP(B) prostanoid receptor, a G-protein-coupled receptor that couples to Galpha(q), activates T-cell factor (Tcf)/lymphoid enhancer factor (Lef)-mediated transcriptional activation (Fujino, H., and Regan, J. W. (2001) J. Biol. Chem. 276, 12489-12492). We now report that the EP(2) and EP(4) prostanoid receptors, which couple to Galpha(s), also activate Tcf/Lef signaling. By using a Tcf/Lef-responsive luciferase reporter gene, transcriptional activity was stimulated approximately 10-fold over basal by 1 h of treatment with prostaglandin E(2) (PGE(2)) in HEK cells that were stably transfected with the human EP(2) and EP(4) receptors. This stimulation of reporter gene activity was accompanied by a PGE(2)-dependent increase in the phosphorylation of both glycogen synthase kinase-3 (GSK-3) and Akt kinase. H-89, an inhibitor of protein kinase A (PKA), completely blocked the agonist-dependent phosphorylation of GSK-3 in both EP(2)- and EP(4)-expressing cells. However, H-89 pretreatment only blocked PGE(2)-stimulated Lef/Tcf reporter gene activity by 20% in EP(4)-expressing cells compared with 65% inhibition in EP(2)-expressing cells. On the other hand wortmannin, an inhibitor of phosphatidylinositol 3-kinase, had the opposite effect and inhibited PGE(2)-stimulated reporter gene activity to a much greater extent in EP(4)-expressing cells as compared with EP(2)-expressing cells. These findings indicate that the activation of Tcf/Lef signaling by EP(2) receptors occurs primarily through a PKA-dependent pathway, whereas EP(4) receptors activate Tcf/Lef signaling mainly through a phosphatidylinositol 3-kinase-dependent pathway. This is the first indication of a fundamental difference in the signaling potential of EP(2) and EP(4) prostanoid receptors.
Publication
Journal: Journal of Cell Biology
December/29/1997
Abstract
The contribution of noncadherin-type, Ca2+-independent cell-cell adhesion molecules to the organization of epithelial tissues is, as yet, unclear. A homophilic, epithelial Ca2+-independent adhesion molecule (Ep-CAM) is expressed in most epithelia, benign or malignant proliferative lesions, or during embryogenesis. Here we demonstrate that ectopic Ep-CAM, when expressed in cells interconnected by classic cadherins (E- or N-cadherin), induces segregation of the transfectants from the parental cell type in coaggregation assays and in cultured mixed aggregates, respectively. In the latter assay, Ep-CAM-positive transfectants behave like cells with a decreased strength of cell-cell adhesion as compared to the parental cells. Using transfectants with an inducible Ep-CAM-cDNA construct, we demonstrate that increasing expression of Ep-CAM in cadherin-positive cells leads to the gradual abrogation of adherens junctions. Overexpression of Ep-CAM has no influence on the total amount of cellular cadherin, but affects the interaction of cadherins with the cytoskeleton since a substantial decrease in the detergent-insoluble fraction of cadherin molecules was observed. Similarly, the detergent-insoluble fractions of alpha- and beta-catenins decreased in cells overexpressing Ep-CAM. While the total beta-catenin content remains unchanged, a reduction in total cellular alpha-catenin is observed as Ep-CAM expression increases. As the cadherin-mediated cell-cell adhesions diminish, Ep-CAM-mediated intercellular connections become predominant. An adhesion-defective mutant of Ep-CAM lacking the cytoplasmic domain has no effect on the cadherin-mediated cell-cell adhesions. The ability of Ep-CAM to modulate the cadherin-mediated cell-cell interactions, as demonstrated in the present study, suggests a role for this molecule in development of the proliferative, and probably malignant, phenotype of epithelial cells, since an increase of Ep-CAM expression was observed in vivo in association with hyperplastic and malignant proliferation of epithelial cells.
load more...