Citations
All
Search in:AllTitleAbstractAuthor name
Publications
(132)
Patents
Grants
Pathways
Clinical trials
Publication
Journal: Cancer Cell International
July/20/2020
Abstract
Background: Autophagy is associated with cancer development. Autophagy-related genes play significant roles in endometrial cancer (EC), a major gynecological malignancy worldwide, but little was known about their value as prognostic markers. Here we evaluated the value of a prognostic signature based on autophagy-related genes for EC.
Methods: First, various autophagy-related genes were obtained via the Human Autophagy Database and their expression profiles were downloaded from The Cancer Genome Atlas. Second, key prognostic autophagy-related genes were identified via univariate, LASSO and multivariate Cox regression analyses. Finally, a risk score to predict the prognosis of EC was calculated and validated by using the test and the entire data sets. Besides, the key genes mRNA expression were validated using quantitative real-time PCR in clinical tissue samples.
Results: A total of 40 differentially expressed autophagy-related genes in EC were screened and five of them were prognosis-related (CDKN1B, DLC1, EIF4EBP1, ERBB2 and GRID1). A prognostic signature was constructed based on these five genes using the train set, which stratified EC patients into high-risk and low-risk groups (p < 0.05). In terms of overall survival, the analyses of the test set and the entire set yielded consistent results (test set: p < 0.05; entire set: p < 0.05). Time-dependent ROC analysis suggested that the risk score predicted EC prognosis accurately and independently (0.674 at 1 year, 0.712 at 3 years and 0.659 at 5 years). A nomogram with clinical utility was built. Patients in the high-risk group displayed distinct mutation signatures compared with those in the low-risk group. For clinical sample validation, we found that EIF4EBP1and ERBB2 had higher level in EC than that in normal tissues while CDKN1B, DLC1 and GRID1 had lower level, which was consistent with the results predicted.
Conclusions: Based on five autophagy-related genes (CDKN1B, DLC1, EIF4EBP1, ERBB2 and GRID1), our model can independently predict the OS of EC patients by combining molecular signature and clinical characteristics.
Keywords: Autophagy-related genes; Endometrial cancer; Prognosis.
Publication
Journal: Apoptosis : an international journal on programmed cell death
July/19/2019
Abstract
Sirtuins have emerged as a promising novel class of anti-cancer drug targets. Inhibition of SIRT1 and SIRT2 induces apoptosis in cancer cells and they play multifaceted roles in regulating autophagy. In the present study, we found that salermide, a SIRT1/2-specific inhibitor or small interfering RNAs (siRNAs) to block SIRT1/2 expression could induce autophagy in human NSCLC cells. Moreover, SIRT1/2 inhibition increased the expression levels of ATF4 and DDIT4 and downregulated p-RPS6KB1 and p-EIF4EBP1, two downstream molecules of mTORC1. Moreover, ATF4 or DDIT4 knockdown attenuated salermide-induced autophagy, suggesting that SIRT1/2 inhibition induced autophagy through the ATF4-DDIT4-mTORC1 axis. Mechanistically, SIRT1/2 inhibition led to HSPA5 acetylation and dissociation from EIF2AK3, leading to ER stress response and followed by upregulation of ATF4 and DDIT4, triggering autophagy. Silencing of the autophagic gene ATG5 in lung cancer cells resulted in increased apoptotic cell death induced by SIRT1/2 inhibition. Our data show that inhibition of SIRT1/2 induces pro-survival autophagy via acetylation of HSPA5 and subsequent activation of ATF4 and DDIT4 to inhibit the mTOR signaling pathway in NSCLC cells. These findings suggest that combinatorial treatment with SIRT1/2 inhibitors and pharmacological autophagy inhibitors is an effective therapeutic strategy for cancer therapy.
Publication
Journal: Autophagy
September/20/2019
Abstract
Growing evidence shows that autophagy is deficient in neurodegenerative and psychiatric diseases, and that its induction may have beneficial effects in these conditions. However, as autophagy shares signaling pathways with cell death and interferes with protein synthesis, prolonged use of autophagy inducers available nowadays is considered unwise. The search for novel autophagy inducers indicates that DRD2 (dopamine receptor 2)-DRD3 ligands may also activate autophagy, though critical aspects of the action mechanisms and effects of dopamine ligands on autophagy are still unknown. In order to shed light on this issue, DRD2- and DRD3-overexpressing cells and drd2 KO, drd3 KO and wild-type mice were treated with the DRD2-DRD3 agonist pramipexole. The results revealed that pramipexole induces autophagy through MTOR inhibition and a DRD3-dependent but DRD2-independent mechanism. DRD3 activated AMPK followed by inhibitory phosphorylation of RPTOR, MTORC1 and RPS6KB1 inhibition and ULK1 activation. Interestingly, despite RPS6KB1 inhibition, the activity of RPS6 was maintained through activation of the MAPK1/3-RPS6KA pathway, and the activity of MTORC1 kinase target EIF4EBP1 along with protein synthesis and cell viability, were also preserved. This pattern of autophagy through MTORC1 inhibition without suppression of protein synthesis, contrasts with that of direct allosteric and catalytic MTOR inhibitors and opens up new opportunities for G protein-coupled receptor ligands as autophagy inducers in the treatment of neurodegenerative and psychiatric diseases. Abbreviations: AKT/Protein kinase B: thymoma viral proto-oncogene 1; AMPK: AMP-activated protein kinase; BECN1: beclin 1; EGFP: enhanced green fluorescent protein; EIF4EBP1/4E-BP1: eukaryotic translation initiation factor 4E binding protein 1; GPCR; G protein-coupled receptor; GFP: green fluorescent protein; HEK: human embryonic kidney; MAP1LC3/LC3: microtubule-associated protein 1 light chain 3; MAP2K/MEK: mitogen-activated protein kinase kinase; MAPK1/ERK2: mitogen-activated protein kinase 1; MAPK3/ERK1: mitogen-activated protein kinase 3; MDA: malonildialdehyde; MTOR: mechanistic target of rapamycin kinase; MTT: 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide; PPX: pramipexole; RPTOR/raptor: regulatory associated protein of MTOR, complex 1; RPS6: ribosomal protein S6; RPS6KA/p90S6K: ribosomal protein S6 kinase A; RPS6KB1/p70S6K: ribosomal protein S6 kinase B1; SQSTM1/p62: sequestosome 1; ULK1: unc-51 like autophagy activating kinase 1; WT: wild type.
Publication
Journal: Gene
July/24/2020
Abstract
Background: There exists considerable evidence conforming that autophagy may play an important role in the biological process of breast cancer. This study aimed to construct and evaluate a novel autophagy-related gene signature as a potential prognostic factor and therapeutic target in breast cancer patients based on high-throughput sequencing datasets.
Materials & methods: Autophagy-related genes obtained from the Human Autophagy Database and high-sequencing data obtained from The Cancer Genome Atlas (TCGA) were analyzed to identify differential expressed genes (DEGs) between tumor and normal tissues. Then GO and KEGG analysis were performed to explore potential biological and pathological functions of DEGs. Autophagy-related prognostic genes were identified by univariate COX regression analysis. Subsequently stepwise model selection using the Alkaike information criterion (AIC) and multivariate COX regression model was performed to construct autophagy-related gene signature. Then patients were divided into high- and low-risk groups based on the risk score identified by the autophagy-related gene signature. Multivariate COX regression model and stratification analysis were used to specify the prognostic value of this gene signature in whole cohort and various subgroups. T-test and ANOVA analysis were used to compare the expression differences of continuous variables (5 prognostic genes and risk score) in binary and multiple category groups respectively. Kaplan-Meier analysis, log-rank tests and the area under receiver operating characteristic (ROC) curve (AUC) were conducted to validate the accuracy and precise of the autophagy-related gene signature based on GSE20685 and GSE21653 datasets.
Results: We profiled autophagy-related DEGs in normal and breast tumor tissues. GO and KEGG analysis indicated that autophagy-related DEGs might participate in breast cancer occurrence, development and drug resistance. Then we identified five autophagy-related genes (EIF4EBP1, ATG4A, BAG1, MAP1LC3A and SERPINA1) that had significantly prognostic values for breast cancer. Autophagy-related gene signature was constructed and patients were divided into high- and low- risk groups based on their risk score. Patients in the high-risk group tended to have shorter overall survival (OS) and relapse-free survival (RFS) times than those in the low-risk group (OS: HR=1.620, 95%CIs: 1.345-1.950; P<0.001; RFS: HR=1.487, 95%CIs: 1.248-1.771, P<0.001). Autophagy-related gene signature had significant prognostic value in stratified subgroups especially in advanced breast cancer subgroups (T3∼4; N2∼3; stage III∼IV). Its prognostic value was further confirmed in two GEO validation datasets (GSE20685: P=6.795e-03; GSE21653: P=1.383e-03). Finally, association analysis between clinicopathological factors and gene signature showed the risk score was higher in patients with ER / PR negative, higher clinical stage or T stage (P<0.01).
Conclusion: We established and confirmed a novel autophagy-related gene signature for patients with breast cancer that had independent survival prognostic value especially in advanced breast cancer subgroups. Our research might promote the molecular mechanism study of autophagy-related genes in breast cancer.
Publication
Journal: Frontiers in Oncology
June/16/2021
Abstract
Osteosarcoma is a major malignant tumor of bone and soft tissue, which is presenting with early metastasis and a high mortality rate. Platelet activating factor acetylhydrolase 1B3 (PAFAH1B3), a cancer-relevant molecular, was found to play a vital role in tumorigenesis and aggressiveness in several cancer types. However, the roles and the regulating mechanisms of PAFAH1B3 in osteosarcoma progression remain unclear. PAFAH1B3 expression was detected by immunohistochemistry in 83 osteosarcoma tissues and 44 paired adjacent normal bone tissues. In vitro, loss-of-function assay was performed to explore the role of PAFAH1B3 in osteosarcoma cells. Tumor xenograft growth assay was used to verify the effect of PAFAH1B3 knockdown on osteosarcoma growth in vivo. Chip assay was carried out to investigate the mechanism in osteosarcoma proliferation regulated by PAFAH1B3. PAFAH1B3 was overexpressed in osteosarcoma tissues and cell lines. Moreover, PAFAH1B3 knockdown inhibited osteosarcoma cell proliferation and promoted apoptosis in vitro, and also suppressed osteosarcoma growth in vivo. Furthermore, the proliferative effect of PAFAH1B3 in osteosarcoma was related to the regulation of the expression of EIF4EBP1, MYC, PTGS2 and RPS6KB1. This study demonstrated the biological function of PAFAH1B3 on osteosarcoma proliferation. This research suggested that PAFAH1B3 could be a novel therapeutic target for osteosarcoma patients.
Keywords: apoptosis; cell proliferation; osteosarcoma; platelet activating factor acetylhydrolase 1B3; therapeutic target.
Publication
Journal: Journal of Dairy Science
July/21/2019
Abstract
The synthesis of protein requires the availability of specific AA and a large supply of energy in bovine mammary epithelial cells (BMEC). Whether an interaction exists between Lys/Met ratio and glucose level on milk protein synthesis and its potential regulatory mechanism is unclear. We investigated the effects of different Lys/Met ratios and glucose levels on casein synthesis-related gene expression in BMEC to elucidate the underlying molecular mechanisms. Primary BMEC were subjected to 4 treatments for 36 h, arranged in a 2 × 2 factorial design with Lys/Met ratios of 3:1 (1.2:0.4 mM, LM3.0; total AA = 8.24 mM) and 2.3:1 (1.4:0.6 mM, LM2.3; total AA = 8.64 mM) and glucose levels of 17.5 mM (high glucose level) and 2.5 mM (low glucose level). No interactions between Lys/Met ratio and glucose level on cell viability, cell cycle progression, mRNA, or protein expression levels were found. High glucose level increased cell proliferation and promoted cell cycle transition from intermediate phase (G1 phase) to synthesis (S phase) by approximately 50%, whereas Lys/Met ratio had no effect. Both mRNA and protein abundance of αS1-casein and β-casein were positively affected by LM3.0, whereas a high glucose level increased protein abundance of αS1-casein and β-casein and increased gene expression of CSN1S1 but not of CSN2. Furthermore, high glucose increased the mRNA abundance of ELF5 and decreased that of GLUT8, enhanced protein expression of total and phosphorylated mechanistic target of rapamycin (mTOR), and decreased phosphorylated AMP-activated protein kinase (AMPK) levels. Treatment LM3.0 had a stimulatory effect on total and phosphorylated mTOR but did not affect AMPK phosphorylation. The mRNA levels of JAK2, ELF5, and RPS6KB1 were upregulated and mRNA levels of EIF4EBP1 were downregulated with LM3.0 compared with LM2.3. Our results indicate that casein synthesis was regulated by Lys/Met ratio via JAK2/ELF5, mTOR, and its downstream RPS6KB1 and EIF4EBP1 signaling. In contrast, glucose regulated casein synthesis through promoting cell proliferation, accelerating cell cycle progression, and activating the ELF5 and AMPK/mTOR signaling pathways. Within the range of substrate levels in the present study, a change in Lys/Met ratio had a stronger effect on abundance of αS1-casein and β-casein than a change in glucose level.
Publication
Journal: Oncogene
December/6/2018
Abstract
The poor outcomes in infant acute lymphoblastic leukemia (ALL) necessitate new treatments. Here we discover that EIF4E protein is elevated in most cases of infant ALL and test EIF4E targeting by the repurposed antiviral agent ribavirin, which has anticancer properties through EIF4E inhibition, as a potential treatment. We find that ribavirin treatment of actively dividing infant ALL cells on bone marrow stromal cells (BMSCs) at clinically achievable concentrations causes robust proliferation inhibition in proportion with EIF4E expression. Further, we find that ribavirin treatment of KMT2A-rearranged (KMT2A-R) infant ALL cells and the KMT2A-AFF1 cell line RS4:11 inhibits EIF4E, leading to decreases in oncogenic EIF4E-regulated cell growth and survival proteins. In ribavirin-sensitive KMT2A-R infant ALL cells and RS4:11 cells, EIF4E-regulated proteins with reduced levels of expression following ribavirin treatment include MYC, MCL1, NBN, BCL2 and BIRC5. Ribavirin-treated RS4:11 cells exhibit impaired EIF4E-dependent nuclear to cytoplasmic export and/or translation of the corresponding mRNAs, as well as reduced phosphorylation of the p-AKT1, p-EIF4EBP1, p-RPS6 and p-EIF4E signaling proteins. This leads to an S-phase cell cycle arrest in RS4:11 cells corresponding to the decreased proliferation. Ribavirin causes nuclear EIF4E to re-localize to the cytoplasm in KMT2A-AFF1 infant ALL and RS4:11 cells, providing further evidence for EIF4E inhibition. Ribavirin slows increases in peripheral blasts in KMT2A-R infant ALL xenograft-bearing mice. Ribavirin cooperates with chemotherapy, particularly L-asparaginase, in reducing live KMT2A-AFF1 infant ALL cells in BMSC co-cultures. This work establishes that EIF4E is broadly elevated across infant ALL and that clinically relevant ribavirin exposures have preclinical activity and effectively inhibit EIF4E in KMT2A-R cases, suggesting promise in EIF4E targeting using ribavirin as a means of treatment.
Publication
Journal: International Journal of Molecular Sciences
August/15/2018
Abstract
Amino acid transporters play an important role in cell growth and metabolism. MeAIB, a transporter-selective substrate, often represses the adaptive regulation of sodium-coupled neutral amino acid transporter 2 (SNAT2), which may act as a receptor and regulate cellular amino acid contents, therefore modulating cellular downstream signaling. The aim of this study was to investigate the effects of MeAIB to SNAT2 on cell proliferation, protein turnover, and the mammalian target of rapamycin (mTOR) signaling pathway in porcine enterocytes. Intestinal porcine epithelial cells (IPEC)-J2 cells were cultured in a high-glucose Dulbecco's modified Eagle's (DMEM-H) medium with 0 or 5 mmoL/L System A amino acid analogue (MeAIB) for 48 h. Cells were collected for analysis of proliferation, cell cycle, protein synthesis and degradation, intracellular free amino acids, and the expression of key genes involved in the mTOR signaling pathway. The results showed that SNAT2 inhibition by MeAIB depleted intracellular concentrations of not only SNAT2 amino acid substrates but also of indispensable amino acids (methionine and leucine), and suppressed cell proliferation and impaired protein synthesis. MeAIB inhibited mTOR phosphorylation, which might be involved in three translation regulators, EIF4EBP1, IGFBP3, and DDIT4 from PCR array analysis of the 84 genes related to the mTOR signaling pathway. These results suggest that SNAT2 inhibition treated with MeAIB plays an important role in regulating protein synthesis and mTOR signaling, and provide some information to further clarify its roles in the absorption of amino acids and signal transduction in the porcine small intestine.
Publication
Journal: FEBS Open Bio
January/17/2019
Abstract
Exercise generates heat, blood flow, and metabolic changes, thereby inducing hypertrophy of skeletal muscle cells. However, the mechanism by which heat incudes hypertrophy in response to heat is not well known. Here, we hypothesized that heat would induce differentiation of myoblast cells. We investigated the underlying mechanism by which myoblast cells respond to heat. When mouse myoblast cells were exposed to 42 °C for over 30 min, the phosphorylation level of protein kinase C (PKC) and heat shock factor 1 (Hsf1) increased, and the mRNA and protein expression level of heat shock protein 70 (Hsp70) increased. Inhibitors of transient receptor potential vanilloid 1 (Trpv1), calmodulin, PKC, and Hsf1, and the small interfering RNA-mediated knockdown of Trpv1 diminished those heat responses. Heat exposure increased the phosphorylation levels of thymoma viral proto-oncogene 1 (Akt), mammalian target of rapamycin (mTOR), eukaryotic translation initiation factor 4E binding protein 1 (Eif4ebp1), and ribosomal protein S6 kinase, polypeptide 1 (S6K1). The knockdown of Trpv1 decreased these heat-induced responses. Antagonists of Hsp70 inhibited the phosphorylation level of Akt. Finally, heat increased the protein expression level of skeletal muscle markers such as myocyte enhancer factor 2D, myogenic factor 5, myogenic factor 6, and myogenic differentiation 1. Heat also increased myotube formation. Knockdown of Trpv1 diminished heat-induced increases of those proteins and myotube formation. These results indicate that heat induces myogenic transcription factors of myoblast cells through the Trpv1, calmodulin, PKC, Hsf1, Hsp70, Akt, mTOR, Eif4ebp1, and S6K1 pathway. Moreover, heat increases myotube formation through Trpv1.
Publication
Journal: International Journal of Medical Sciences
February/24/2021
Abstract
Background: Sorafenib, an oral multi-kinase inhibitor of rapidly accelerated fibrosarcoma; vascular endothelial growth factor receptor-2/3, platelet-derived growth factor receptor, c-Kit, and Flt-3 signaling, is approved for treatment of advanced hepatocellular carcinoma (HCC). However, the benefit of sorafenib is often diminished because of acquired resistance through the reactivation of ERK signaling in sorafenib-resistant HCC cells. In this work, we investigated whether adding LY3214996, a selective ERK1/2 inhibitor, to sorafenib would increase the anti-tumor effectiveness of sorafenib to HCC cells. Methods: The Huh7 cell line was used as a cell model for treatment with sorafenib, LY3214996, and their combination. Phosphorylation of the key kinases in the Ras/Raf/MAPK and PI3K/Akt pathways, protein expression of the cell cycle, and apoptosis migration were assessed with western blot. MTT and colony-formation assays were used to evaluate cell proliferation. Wound-healing assay was used to assess cell migration. Cell cycle and apoptosis analyses were conducted with flow cytometry. Results: LY3214996 decreased phosphorylation of the Ras/Raf/MAPK and PI3K/Akt pathways, including p-c-Raf, p-P90RSK, p-S6K and p-eIF4EBP1 activated by sorafenib, despite increased p-ERK1/2 levels. LY3214996 increased the anti-proliferation, anti-migration, cell-cycle progression, and pro-apoptotic effects of sorafenib on Huh7R cells. Conclusions: Reactivation of ERK1/2 appears to be a molecular mechanism of acquired resistance of HCC to sorafenib. LY3214996 combined with sorafenib enhanced the anti-tumor effects of sorafenib in HCC. These findings form a theoretical basis for trial of LY3214996 combined with sorafenib as second-line treatment of sorafenib-resistant in advanced HCC.
Keywords: LY3214996; Ras/Raf/MAPK pathway; acquired resistance; hepatocellular carcinoma; sorafenib.
Publication
Journal: Molecular Reproduction and Development
November/12/2018
Abstract
Oocytes uniquely accumulate cytoplasmic constituents to support early embryogenesis. This unique specialization is accompanied by acquisition of a large size and by execution of asymmetric meiotic divisions that preserve precious ooplasm through the expulsion of minimal size polar bodies. While often taken for granted, these basic features of oogenesis necessitate unique specializations of the meiotic apparatus. These include a chromatin-sourced RanGTP gradient that restricts spindle size by defining a spatial domain where meiotic spindles form, acentriolar centrosomes that rely on microtubule organizing centers to form spindle poles, and an actin-based mechanism for asymmetric spindle positioning. Additionally, localized protein synthesis to support spindle formation is achieved in the spindle forming region, whilst protein synthesis is reduced elsewhere in the ooplasm. This is achieved through enrichment of spindle-related mRNAs in the spindle forming region combined with local PLK1-mediated phosphorylation and inactivation of the translational repressor EIF4EBP1. This allows PLK1 to function as an important regulatory nexus through which endogenous and exogenous signals can impact spindle formation and function, and highlights the important role that PLK1 may have in maintaining oocyte quality and fertility.
Publication
Journal: Journal of Medical Biochemistry
December/24/2018
Abstract
Sporadic clear-cell renal cell carcinoma (ccRCC) is associated with mutations in the VHL gene, upregulated mammalian target of rapamycin (mTOR) activity and glycolytic metabolism. Here, we analyze the effect of VHL mutational status on the expression level of mTOR, eIF4E-BP1, AMPK, REDD1, and PDK3 proteins.Total proteins were isolated from 21 tumorous samples with biallelic inactivation, 10 with monoallelic inactivation and 6 tumors with a wild-type VHL (wtVHL) gene obtained from patients who underwent total nephrectomy. The expressions of target proteins were assessed using Western blot.Expressions of mTOR, eIF4EBP1 and AMPK were VHL independent. Tumors with monoallelic inactivation of VHL underexpressed REDD1 in comparison to wtVHL tumors (P = 0.042), tumors with biallelic VHL inactivation (P < 0.005) and control tissue (P = 0.004). Additionally, REDD1 expression was higher in tumors with VHL biallelic inactivation than in control tissue (P = 0.008). Only in wt tumor samples PDK3 was overexpressed in comparison to tumors with biallelic inactivation of VHL gene (P = 0.012) and controls (P = 0.016). In wtVHL ccRCC, multivariate linear regression analysis revealed that 97.4% of variability in PDK3 expression can be explained by variations in AMPK amount.Expressions of mTOR, eIF4EBP1 and AMPK were VHL independent. We have shown for the first time VHL dependent expression of PDK3 and we provide additional evidence that VHL mutational status affects REDD1 expression in sporadic ccRCC.
Publication
Journal: Cancer Letters
July/30/2017
Abstract
Thus far, clinicopathologic and prognostic significance of mTOR signaling pathway in pancreatic ductal adenocarcinoma (PDAC) remains unclear, although it is involved in PDAC. In this study, total (t-) and phosphorylated (p-) mTOR, 4EBP1 and P70S6K, were investigated. It was found that most aforementioned proteins were related to malignant and progressive phenotypes, especially histological grade, in independent development and validation cohorts of PDAC. In the development cohort, high expression and/or phosphorylation of mTOR, 4EBP1 and P70S6K were all univariately associated with poor tumor-specific survival, whereas p-mTOR, p-4EBP1 and p-P70S6K, adjusted for clinicopathologic variables, unlike t-mTOR, t-4EBP1 and t-P70S6K, were shown to be independent prognostic factors in multivariate analysis. Interestingly and importantly, the independently significant impacts of p-mTOR and p-4EBP1 on tumor-specific survival were confirmed in the validation cohort. Contrarily, t-mTOR and t-4EBP1 were only univariately significant, while t-P70S6K and p-P70S6K were not prognostic. Finally, mTOR and EIF4EBP1, genes encoding mTOR and 4EBP1, also serve as prognostic indicators in the publicly available TCGA RNA-sequencing database. Our data indicate that expression and activation, especially the latter, of mTOR and 4EBP1, might have clinicopathologic and prognostic significance in PDAC.
Publication
Journal: Cytogenetic and Genome Research
February/20/2008
Abstract
Twelve loci (11 of type I and 1 of type II) previously FISH-mapped in cattle were comparatively FISH-mapped in both river buffalo chromosome 1p (BBU1p) and homologous chromosome 26 of sheep (OAR26), extending the cytogenetic maps in both chromosome species and providing a more precise localization of these loci in single chromosome bands than previous locations on BTA27. Bovine BAC clones containing DCTD, C4orf20, CASP3, TLR3, MSR1, FAT, LONRF1, DLC1, C8orf41, CSSM036, LSM1 and EIF4EBP1 were used for FISH on RBPI-banded chromosomes. All loci were located on the same homologous chromosome bands (R-band positive) of both species further confirming the high degree of banding and gene (order of loci) homologies among bovids. Detailed cytogenetic maps of OAR26 and BBU1p were performed and compared with that of BTA27 as well as with those of both HSA8p and HSA4q, revealing complex chromosome rearrangements differentiating OAR26/BBU1p/BTA27 from human chromosomes.
Publication
Journal: Oncotarget
January/10/2019
Abstract
Lymph node metastasis (NM) in breast cancer is a clinical predictor of patient outcomes, but how its genetic underpinnings contribute to aggressive phenotypes is unclear. Our objective was to create the first landscape analysis of CNV-associated NM in ductal breast cancer. To assess the role of copy number variations (CNVs) in NM, we compared CNVs and/or associated mRNA expression in primary tumors of patients with NM to those without metastasis.

Results
We found CNV loss in chromosomes 1, 3, 9, 18, and 19 and gains in chromosomes 5, 8, 12, 14, 16-17, and 20 that were associated with NM and replicated in both databases. In primary tumors, per-gene CNVs associated with NM were ten times more frequent than mRNA expression; however, there were few CNV-driven changes in mRNA expression that differed by nodal status. Overlapping regions of CNV changes and mRNA expression were evident for the CTAGE5 gene. In 8q12, 11q13-14, 20q1, and 17q14-24 regions, there were gene-specific gains in CNV-driven mRNA expression associated with NM.

Data on CNV and mRNA expression from the TCGA and the METABRIC consortium of breast ductal carcinoma were utilized to identify CNV-based features associated with NM. Within each dataset, associations were compared across omic platforms to identify CNV-driven variations in gene expression. Only replications across both datasets were considered as determinants of NM.

Conclusions
Gains in CTAGE5, NDUFC2, EIF4EBP1, and PSCA genes and their expression may aid in early diagnosis of metastatic breast carcinoma and have potential as therapeutic targets.

Publication
Journal: BMC Genomics
February/19/2017
Abstract
BACKGROUND
Differences between cattle production systems can influence the nutritional and sensory characteristics of beef, in particular its fatty acid (FA) composition. As beef products derived from pasture-based systems can demand a higher premium from consumers, there is a need to understand the biological characteristics of pasture produced meat and subsequently to develop methods of authentication for these products. Here, we describe an approach to authentication that focuses on differences in the transcriptomic profile of muscle from animals finished in different systems of production of practical relevance to the Irish beef industry. The objectives of this study were to identify a panel of differentially expressed (DE) genes/networks in the muscle of cattle raised outdoors on pasture compared to animals raised indoors on a concentrate based diet and to subsequently identify an optimum panel which can classify the meat based on a production system.
RESULTS
A comparison of the muscle transcriptome of outdoor/pasture-fed and Indoor/concentrate-fed cattle resulted in the identification of 26 DE genes. Functional analysis of these genes identified two significant networks (1: Energy Production, Lipid Metabolism, Small Molecule Biochemistry; and 2: Lipid Metabolism, Molecular Transport, Small Molecule Biochemistry), both of which are involved in FA metabolism. The expression of selected up-regulated genes in the outdoor/pasture-fed animals correlated positively with the total n-3 FA content of the muscle. The pathway and network analysis of the DE genes indicate that peroxisome proliferator-activated receptor (PPAR) and FYN/AMPK could be implicit in the regulation of these alterations to the lipid profile. In terms of authentication, the expression profile of three DE genes (ALAD, EIF4EBP1 and NPNT) could almost completely separate the samples based on production system (95 % authentication for animals on pasture-based and 100 % for animals on concentrate- based diet) in this context.
CONCLUSIONS
The majority of DE genes between muscle of the outdoor/pasture-fed and concentrate-fed cattle were related to lipid metabolism and in particular β-oxidation. In this experiment the combined expression profiles of ALAD, EIF4EBP1 and NPNT were optimal in classifying the muscle transcriptome based on production system. Given the overall lack of comparable studies and variable concordance with those that do exist, the use of transcriptomic data in authenticating production systems requires more exploration across a range of contexts and breeds.
Publication
Journal: Journal of Dairy Science
July/28/2019
Abstract
The supply and profile of absorbed AA may affect milk protein synthesis through hormonal changes and mammalian target of rapamycin (mTOR) signaling pathways; and Ile, Leu, Met, and Thr (ILMT) are the 4 AA that have been reported to have the greatest effect on mammary mTOR signaling. The extent to which ILMT and the other remaining AA (RAA) differ in their effects on milk protein synthesis needs to be systematically investigated. In this study, 5 lactating goats, averaging 120 ± 10 d in milk, fitted with jugular vein and carotid artery catheters, were fasted for 24 h, followed by intravenous infusions of a mixture containing AA and glucose for 8 h in a 5 × 5 Latin square design. The AA mixtures were formulated according to the profile of casein. The amounts of AA infused were calculated based on supplies of AA when metabolizable protein (MP) was at requirement (MR). Treatments were an infusate containing glucose without AA (NTAA); an infusate containing 3 × the MR of Ile, Leu, Met and Thr (3F0R); and infusates containing 3F0R plus 1, 2, or 3 × MR of RAA (3F1R, 3F2R, and 3F3R, respectively) according to amounts provided when fed to meet MP requirements for maintenance and lactation for each goat. Milk, arterial blood, and mammary tissue samples were collected immediately after halting the infusion. Relative to NTAA, supplementation of ILMT tended to increase milk protein production and plasma glucose concentrations, and increased milk and lactose production, but had no effects on production or content of milk fat. Graded supplementation of RAA tended to quadratically affect production of milk and lactose. Arterial glucose and glucagon concentrations decreased linearly, and plasma insulin concentrations decreased quadratically with increased RAA. Mammary p70-S6K1 phosphorylation was decreased by addition of ILMT compared with NTAA but increased linearly with increased RAA infusion. Furthermore, EIF4EBP1 gene expression was much lower for 3F-treated goats than for the NTAA treatment. Both MTOR and RPS6KB1 gene expressions were decreased quadratically with increased RAA supply. These results suggested that short-term milk protein yield tended to be increased by elevated ILMT availability, and this trend was not explained by variations in mammary mTOR signaling or pancreatic hormone secretions, whereas graded increase of RAA in combination with ILMT appeared to regulate the efficiency of conversion of glucose to lactose in a manner not involving milk protein production.
Authors
Publication
Journal: Journal of Ovarian Research
July/22/2018
Abstract
BACKGROUND
TEK signaling plays a very important role in folliculogenesis. It activates Ras/ERK/MYC, PI3K/AKT/mTORC1 and ovarian steroidogenesis activation pathways. These are the main pathways for cell growth, differentiation, migration, adhesion, proliferation, survival and protein synthesis.
RESULTS
TEK signaling on each of the two important pathways where levels of pERK, pMYC, pAkt, pMCL1 and pEIF4EBP1 are increased in dominant follicles and pMYC is decreased in dominant follicles. Over activation of ERK and MYC which are the main cell growth and proliferation and over activation of Akt, MCl1, mTORC1 and EIF4EBP1 which are the main cell survival and protein synthesis factors act as promoting factors for folliculogenesis. In case of over expression of hsa-miR-30d-3p and hsa-miR-451a, MYC activity level is considerably increased in subordinate follicles. Our simulation results show that in the presence of has-miR-548v and bta-miR-22-3p, downstream factors of pathways are inhibited.
CONCLUSIONS
Our work offers insight into the design of natural biological procedures and makes predictions that can guide further experimental studies on folliculogenesis pathways. Moreover, it defines a simple signal processing unit that may be useful for engineering synthetic biology and genes circuits to carry out cell-based computation.
Publication
Journal: Autophagy
August/11/2021
Abstract
Lipid accumulation often leads to lipotoxic injuries to hepatocytes, which can cause nonalcoholic steatohepatitis. The association of inflammation with lipid accumulation in liver tissue has been studied for decades; however, key mechanisms have been identified only recently. In particular, it is still unknown how hepatic inflammation regulates lipid metabolism in hepatocytes. Herein, we found that PA treatment or direct stimulation of STING1 promoted, whereas STING1 deficiency impaired, MTORC1 activation, suggesting that STING1 is involved in PA-induced MTORC1 activation. Mechanistic studies revealed that STING1 interacted with several components of the MTORC1 complex and played an important role in the complex formation of MTORC1 under PA treatment. The involvement of STING1 in MTORC1 activation was dependent on SQSTM1, a key regulator of the MTORC1 pathway. In SQSTM1-deficient cells, the interaction of STING1 with the components of MTORC1 was weak. Furthermore, the impaired activity of MTORC1 via rapamycin treatment or STING1 deficiency decreased the numbers of LDs in cells. PA treatment inhibited lipophagy, which was not observed in STING1-deficient cells or rapamycin-treated cells. Restoration of MTORC1 activity via treatment with amino acids blocked lipophagy and LDs degradation. Finally, increased MTORC1 activation concomitant with STING1 activation was observed in liver tissues of nonalcoholic fatty liver disease patients, which provided clinical evidence for the involvement of STING1 in MTORC1 activation. In summary, we identified a novel regulatory loop of STING1-MTORC1 and explain how hepatic inflammation regulates lipid accumulation. Our findings may facilitate the development of new strategies for clinical treatment of hepatic steatosis.Abbreviations: AA: amino acid; ACTB: actin beta; cGAMP: cyclic GMP-AMP; CGAS: cyclic GMP-AMP synthase; DEPTOR: DEP domain containing MTOR interacting protein; EIF4EBP1: eukaryotic translation initiation factor 4E binding protein 1; FFAs: free fatty acids; GFP: green fluorescent protein; HFD: high-fat diet; HT-DNA: herring testis DNA; IL1B: interleukin 1 beta; LAMP1: lysosomal associated membrane protein 1; LDs: lipid droplets; MAP1LC3: microtubule associated protein 1 light chain 3; MAP1LC3B: microtubule associated protein 1 light chain 3 beta; MEFs: mouse embryonic fibroblasts; MLST8: MTOR associated protein, LST8 homolog; MT-ND1: mitochondrially encoded NADH: ubiquinone oxidoreductase core subunit 1; mtDNA: mitochondrial DNA; MTOR: mechanistic target of rapamycin kinase; MTORC1: MTOR complex 1; NAFL: nonalcoholic fatty liver; NAFLD: nonalcoholic fatty liver disease; NASH: nonalcoholic steatohepatitis; NPCs: non-parenchymal cells; PA: palmitic acid; PLIN2: perilipin 2; RD: regular diet; RELA: RELA proto-oncogene, NF-kB subunit; RPS6: ribosomal protein S6; RPS6KB1: ribosomal protein S6 kinase B1; RPTOR: regulatory associated protein of MTOR complex 1; RRAGA: Ras related GTP binding A; RRAGC: Ras related GTP binding C; SQSTM1: sequestosome 1; STING1: stimulator of interferon response cGAMP interactor 1; TBK1: TANK binding kinase 1; TGs: triglycerides; TREX1: three prime repair exonuclease 1.
Keywords: Lipophagy; MTORC1; NAFLD; STING1; TBK1.
Publication
Journal: Journal of Dairy Science
August/19/2018
Abstract
The study investigated whether methionine supply during late pregnancy is associated with liver mammalian target of rapamycin (MTOR) pathway phosphorylation, plasma biomarkers, and growth in heifer calves born to cows fed a control diet (CON) or the control diet plus ethylcellulose rumen-protected methionine (MET; 0.09% of dry matter intake) for the last 28 d prepartum. Calves were fed and managed similarly during the first 56 d of age. Plasma was harvested at birth and 2, 7, 21, 42, and 50 d of age and was used for biomarker profiling. Liver biopsies were harvested at 4, 14, 28, and 50 d of age and used for protein expression. Body weight, hip height, hip width, wither height, body length, rectal temperature, fecal score, and respiratory score were measured weekly. Starter intake was measured daily, and average daily gain was calculated during the first 8 wk of age. During the first 7 wk of age, compared with calves in the CON group, calves in the MET group had greater body weight, hip height, wither height, and average daily gain despite similar daily starter intake. Concentration of methionine in plasma was lower at birth but increased markedly at 2 and 7 d of age in MET calves. Plasma insulin, glucose, free fatty acids, and hydroxybutyrate did not differ. A greater ratio of phosphorylated α-serine/threonine kinase (AKT):total AKT protein expression was detected in MET calves, namely due to differences at 4 d of age. The phosphorylated MTOR:total MTOR ratio also was greater in MET calves due to differences at 28 and 50 d (8 d postweaning). The decrease in phosphorylated MTOR:total MTOR between 14 and 28 d in CON calves agreed with the increase in phosphorylated eukaryotic translation initiation factor 4E binding protein 1 (EIF4EBP1):total EIF4EBP1 ratio during the same time frame. The overall expression of phosphorylated ribosomal protein S6 kinase B1 (RPS6KB1):total RPS6KB1 and phosphorylated eukaryotic translation elongation factor 2 (EEF2):total EEF2 was lower in MET calves. Regardless of methionine supply prepartum, there was an 11-fold temporal decrease from 4 to 50 d in phosphorylated AKT:total AKT. Similarly, regardless of methionine supply, there were overall decreases in phosphorylation ratios of AKT, MTOR, RPS6KB1, and eukaryotic translation initiation factor 2A (EIF2A) over time. Data provide evidence of a positive effect of methionine supply during the last month of pregnancy on rates of growth during the first 7 wk of age. Phosphorylation status of some components of the MTOR pathway in neonatal calf liver also was associated with greater maternal supply of methionine. Thus, the data suggest that molecular mechanisms in the liver might be programmed by supply of methionine during late pregnancy. The exact mechanisms coordinating the observed responses remain to be determined.
Publication
Journal: Aging
July/10/2020
Abstract
Emerging evidence suggests that the dysregulation of autophagy-related genes (ARGs) is coupled with the carcinogenesis and progression of breast cancer (BRCA). We constructed three subtype-specific risk models using differentially expressed ARGs. In Luminal, Her-2, and Basal-like BRCA, four- (BIRC5, PARP1, ATG9B, and TP63), three- (ITPR1, CCL2, and GAPDH), and five-gene (PRKN, FOS, BAX, IFNG, and EIF4EBP1) risk models were identified, which all have a receiver operating characteristic > 0.65 in the training and testing dataset. Multivariable Cox analysis showed that those risk models can accurately and independently predict the overall survival of BRCA patients. Comprehensive analysis showed that the 12 identified ARGs were correlated with the overall survival of BRCA patients; six of the ARGs (PARP1, TP63, CCL2, GAPDH, FOS, and EIF4EBP1) were differentially expressed between BRCA and normal breast tissue at the protein level. In addition, the 12 identified ARGs were highly interconnected and displayed high frequency of copy number variation in BRCA samples. Gene set enrichment analysis suggested that the deactivation of the immune system was the important driving force for the progression of Basal-like BRCA. This study demonstrated that the 12 ARG signatures were potential multi-dimensional biomarkers for the diagnosis, prognosis, and treatment of BRCA.
Keywords: TCGA database; autophagy; autophagy related genes; breast cancer; prognosis.
Publication
Journal: Lymphatic Research and Biology
August/5/2019
Abstract
Background: Lymphatic malformations (LMs) are congenital low-flow vascular anomalies resulting from abnormal embryogenesis. Clinical researches have shown that rapamycin, a specific inhibitor of mTOR, is effective in treating LMs. It suggests the abnormality of mTOR signal pathway in LMs. Methods and Results: From January 2009 to December 2018, 10 patients who accepted the resection of LMs were enrolled into the study. Samples of each subtype of LMs (macrocystic, microcystic, and mixed subtypes) were further investigated. Expression of molecules in mTOR signal pathway-mTORC1, p70 S6, p-p70 S6, elF4EBP1, and p-elF4EBP1-in LMs were investigated by immunohistochemical staining. Location of mTORC1, p70 S6, and elF4EBP1 in LMs were shown by immunofluorescence co-staining. Phosphorylation level of mTOR signal pathway in LMs was examined by Western blotting. Immunohistochemical staining showed the expression of mTORC1, p70 S6, p-p70 S6, eIF4EBP1, and p-eIF4EBP1 in LMs. Immunofluorescence staining further verified the co-expression of mTORC1, p70 S6, and eIF4EBP1 in the lymphatic endothelium of LMs. Western blotting analysis revealed obviously higher phosphorylation level of mTOR signal pathway in LMs than that in normal skins (P < 0.05). Conclusions: The results showed that the mTOR signal pathway was overactivated in LMs. The study provides compelling evidence for treating LMs or syndromes with lymphatic anomalies by inhibiting mTOR signaling.
Publication
Journal: Metabolic Brain Disease
August/18/2020
Abstract
Various genetic and epigenetic mechanisms have been suggested to play roles as the underlying pathophysiology of Multiple Sclerosis (MS). Changes in different parts of the mTOR signaling pathway are among the potential suggested mechanisms based on the specific roles of this pathway in CNS. MTOR, RPS6KB1, and EIFEBP1 genes are among important genes in the mTOR pathway, responsible for the proper function of acting proteins in this signaling pathway. This study aimed to investigate the relative expression levels of these genes in the blood samples of relapsing-remitting MS (RRMS) patients compared to healthy controls. In this case-control study blood samples were collected from 30 newly diagnosed RRMS patients and 30 age and sex-matched healthy controls. mRNA level of MTOR, RPS6KB1, and EIFEBP1 genes were assessed using Real-Time PCR. The expression of MTOR, RPS6KB1, and EIF4EBP1 genes was up regulated in MS patients compared to healthy controls (p < 0.001 for all mentioned genes). Considering gender differences, expression of the mentioned genes was increased among female patients (all P < 0.001). However, no statistically significant changes were observed among male patients. Based on the receiver operating characteristic, MTOR gene had the highest diagnostic value followed by EIF4EBP1 and RPS6KB1 genes in differentiating RRMS patients from controls. In conclusion, we found the simultaneous upregulation of MTOR, RPS6KB1, and EIF4EBP1 genes among RRMS patients. MTOR showed to have the highest diagnostic value compared to other 2 genes in differentiating RRMS patients. Further studies evaluating the importance of these findings from pharmacological and prognostic perspectives are necessary.
Keywords: EIF4EBP1; Gene expression; MTOR; Multiple sclerosis; RPS6KB1.
Publication
Journal: Journal of Natural Medicines
July/15/2020
Abstract
Lung adenocarcinoma (LUAD) is the top prevalent histological kind of lung cancer worldwide. Recent evidences have demonstrated that Sauchinone plays an anticancer role in tumor cell invasion and migration. Therefore, we performed this investigation to explain the potential role of Sauchinone in LUAD as well as the potential mechanism involved. Cell counting kit 8 (CCK-8) and transwell experiments were implemented to measure the proliferative, invasive and migratory abilities of LUAD cells. qRT-PCR and Western blot were performed to detect the transfection efficiency of si-EIF4EBP1s. Additionally, Western blot was also implemented to evaluate the effect of Sauchinone on EIF4EBP1 expression level as well as cell cycle-related proteins. Our findings showed that Sauchinone remarkably suppressed the proliferative ability of LUAD cells in a dose-dependent and time-dependent manner. EIF4EBP1 was a candidate target gene of Sauchinone. EIF4EBP1 expression was increased in LUAD tissues, and its high expression induced a poorer prognosis of LUAD patients. EIF4EBP1 expression was positively associated with cell cycle in LUAD. Sauchinone treatment attenuated EIF4EBP1 expression and cell cycle-related protein levels. Knockdown of EIF4EBP1 repressed the proliferation, invasion and migration of LUAD cells; furthermore, Sauchinone stimulation enforced its inhibitory effect. Meanwhile, the treatment of Sauchinone intensified the arrest of cell cycle induced by EIF4EBP1 knockdown. To sum up, our discovery indicated that Sauchinone exerts an anticancer role through down-regulating EIF4EBP1 and mediating cell cycle in LUAD.
Keywords: Cell cycle; EIF4EBP1; Lung adenocarcinoma; Prognosis; Sauchinone.
load more...