Citations
All
Search in:AllTitleAbstractAuthor name
Publications
(3K+)
Patents
Grants
Pathways
Clinical trials
Publication
Journal: Cancer Research
July/11/2001
Abstract
Constitutive IKK activity associated with increased IkappaBalpha phosphorylation and degradation contribute to the high level of endogenous nuclear factor-kappaB (NF-kappaB) activation in Hs294T melanoma cells as compared with RPE cells (R. L. Shattuck-Brandt and A. Richmond, Cancer Res., 57: 3032-3039, 1997; M. N. Devalaraja et al., Cancer Res., 59: 1372-1377, 1999). To determine whether this endogenous NF-kappaB activation was characteristic of melanoma, we examined the level of constitutive activation of NF-kappaB in a number of melanoma cell lines. We demonstrate here that eight melanoma cell lines exhibit increased IkappaB kinase (IKK) activity, enhanced phosphorylation of IkappaBalpha and p65, and enhanced nuclear localization of p65/p50 in comparison to normal human epidermal melanocytes. The chemokines, CXC ligand 1 (CXCL1) and CXCL8, but not CXCL5, are highly expressed in most of the melanoma cell lines, suggesting that the constitutive production of chemokines is highly correlated to endogenous NF-kappaB activity. Our failure to observe a direct relationship between the fold activation of IKK, CXCL1, or CXCL8 mRNA levels and secretion of these chemokines into the culture medium suggest that regulation of chemokine expression also occurs at the posttranscription level of mRNA stability and/or translational control. Moreover, recombinant CXCL1 can directly induce IKK activity in normal human epidermal melanocytes in a concentration-dependent manner after up-modulation of CXCL1 protein expression, whereas inhibition of IKKbeta activity results in down-modulation of CXCL1 protein expression. Finally, CXCL1 antibody blocks IKK activity and inhibits the proliferation of melanoma cells to further support the concept that the constitutive activation of NF-kappaB and autocrine effects of CXCL1 play an important role in the pathogenesis of melanoma.
Publication
Journal: British Journal of Cancer
February/2/2005
Abstract
Interleukin-8/CXCL8 (IL-8) is a chemokine and angiogenic factor. Recently, IL-8 was identified as an autocrine growth factor in several human cancers. Here, we investigated the expression and function of IL-8 in lung cancer cells. The expressions of IL-8 and its receptors, CXCR1 and CXCR2, were examined in a panel of non-small cell lung cancer (NSCLC) and small cell lung cancer (SCLC) cell lines. Using reverse transcription-polymerase chain reaction (RT-PCR) and enzyme-linked immunosorbent assay, we found that all NSCLC cell lines tested produced modest or high levels of IL-8 (up to 51 ng ml(-1) 10(6) cells(-1)). Expression of CXCR1 and CXCR2 was found by RT-PCR and flow cytometry in two out of three cell lines. In contrast, SCLC cell lines produced very low or undetectable levels of IL-8, but expressed CXCR1 and CXCR2. We next investigated whether IL-8 could act as an autocrine growth factor in two NSCLC cell lines (H460 and MOR/P) expressing both IL-8 and its receptors. We found that cell proliferation was attenuated by anti-IL-8 neutralising antibody to 71 and 76% in H460 and MOR/P, respectively (P<0.05). Exogenous IL-8 significantly stimulated cell proliferation in four SCLC cell lines tested in a dose-dependent fashion. Cell proliferation was increased by between 18% (P<0.05) and 37% (P<0.05). Stimulation of cell proliferation by IL-8 was also demonstrated by analysis of proliferating cell nuclear antigen expression and cell cycle in H69 cells. Furthermore, we investigated which receptor(s) mediated the mitogenic function of IL-8 in lung cancer cells. We found that cell proliferation was significantly reduced by anti-CXCR1 antibody but not by anti-CXCR2 antibody. In conclusion, IL-8 can act as an autocrine and/or paracrine growth factor for lung cancer cells, and the mitogenic function of IL-8 in lung cancer is mediated mainly by CXCR1 receptor.
Publication
Journal: Brain
June/9/2005
Abstract
Subsequent to demyelination in multiple sclerosis, myelin repair occurs but, as lesions age, the ability to remyelinate diminishes. Molecular pathways underlying oligodendrocyte behaviour during CNS remyelination remain to be elucidated. In this study, we report for the first time constitutive expression of the CXC/alpha chemokine receptors, CXCR1, CXCR2 and CXCR3, on oligodendrocytes in normal adult human CNS tissue, the levels of which were upregulated in multiple sclerosis and other neurological diseases (OND). In addition, both immature (A2B5+/O4+) and more mature (CNPase+) human oligodendrocytes in vitro expressed the same three receptors. The respective ligands to CXCR1, CXCR2 and CXCR3 [i.e. CXCL8/IL-8, CXCL1/GRO-alpha and CXCL10/IP-10), were absent in CNS tissue from normals and subjects with OND, but were present at high levels on hypertrophic (reactive) astrocytes at the edge of active (but not silent) multiple sclerosis lesions. Astrocytes in vitro could be induced to express chemokines following stimulation with pro-inflammatory cytokines. CXCL8 and CXCL1 production by human astrocytes at both the RNA and protein levels could be induced by interleukin (IL)-1beta, while CXCL10 was induced by both IL-1beta and interferon-gamma. Since these cytokines are integral to inflammatory events occurring at the margins of active multiple sclerosis lesions, their upregulation in these regions may underlie the dynamics of chemokine expression observed herein. The simultaneous expression of different CXC chemokine receptors on oligodendrocytes, and their ligands on astrocytes around multiple sclerosis lesions, may bespeak novel functional roles for these immune system molecules in the recruitment of oligodendrocytes and remyelination.
Publication
Journal: Journal of Immunology
September/17/2009
Abstract
CXCL8 (also known as IL-8) activates CXCR1 and CXCR2 to mediate neutrophil recruitment and trigger cytotoxic effect at sites of infection. Under physiological conditions, CXCL8 could exist as monomers, dimers, or a mixture of monomers and dimers. Therefore, both forms of CXCL8 could interact with CXCR1 and CXCR2 with different affinities and potencies to mediate different cellular responses. In the present study, we have used a "trapped" nonassociating monomer (L25NMe) and a nondissociating dimer (R26C) to investigate their activities for human neutrophils that express both receptors and for RBL-2H3 cells stably expressing either CXCR1(RBL-CXCR1) or CXCR2 (RBL-CXCR2). The monomer was more active than the dimer for activities such as intracellular Ca(2+) mobilization, phosphoinositide hydrolysis, chemotaxis. and exocytosis. Receptor regulation, however, is distinct for each receptor. The rate of monomer-mediated regulation of CXCR1 is greater for activities such as phosphorylation, desensitization, beta-arrestin translocation, and internalization. In contrast, for CXCR2, both monomeric and dimeric CXCL8 mediate these activities to a similar extent. Interestingly, receptor-mediated signal-regulated kinase (ERK) phosphorylation in response to all three CXCL8 variants was more sustained for CXCR2 relative to CXCR1. Taken together, the results indicate that the CXCL8 monomer and dimer differentially activate and regulate CXCR1 and CXCR2 receptors. These distinct properties of the ligand and the receptors play a critical role in orchestrating neutrophil recruitment and eliciting cytotoxic activity during an inflammatory response.
Publication
Journal: Neoplasia
September/23/2013
Abstract
The tumor microenvironment can polarize innate immune cells to a proangiogenic phenotype. Decidual natural killer (dNK) cells show an angiogenic phenotype, yet the role for NK innate lymphoid cells in tumor angiogenesis remains to be defined. We investigated NK cells from patients with surgically resected non-small cell lung cancer (NSCLC) and controls using flow cytometric and functional analyses. The CD56(+)CD16(-) NK subset in NSCLC patients, which represents the predominant NK subset in tumors and a minor subset in adjacent lung and peripheral blood, was associated with vascular endothelial growth factor (VEGF), placental growth factor (PIGF), and interleukin-8 (IL-8)/CXCL8 production. Peripheral blood CD56(+)CD16(-) NK cells from patients with the squamous cell carcinoma (SCC) subtype showed higher VEGF and PlGF production compared to those from patients with adenocarcinoma (AdC) and controls. Higher IL-8 production was found for both SCC and AdC compared to controls. Supernatants derived from NSCLC CD56(+)CD16(-) NK cells induced endothelial cell chemotaxis and formation of capillary-like structures in vitro, particularly evident in SCC patients and absent from controls. Finally, exposure to transforming growth factor-β(1) (TGFβ(1)), a cytokine associated with dNK polarization, upregulated VEGF and PlGF in peripheral blood CD56(+)CD16(-) NK cells from healthy subjects. Our data suggest that NK cells in NSCLC act as proangiogenic cells, particularly evident for SCC and in part mediated by TGFβ(1).
Publication
Journal: Journal of Allergy and Clinical Immunology
November/24/2015
Abstract
BACKGROUND
Inflammation and oxidative stress play critical roles in patients with chronic obstructive pulmonary disease (COPD). Mitochondrial oxidative stress might be involved in driving the oxidative stress-induced pathology.
OBJECTIVE
We sought to determine the effects of oxidative stress on mitochondrial function in the pathophysiology of airway inflammation in ozone-exposed mice and human airway smooth muscle (ASM) cells.
METHODS
Mice were exposed to ozone, and lung inflammation, airway hyperresponsiveness (AHR), and mitochondrial function were determined. Human ASM cells were isolated from bronchial biopsy specimens from healthy subjects, smokers, and patients with COPD. Inflammation and mitochondrial function in mice and human ASM cells were measured with and without the presence of the mitochondria-targeted antioxidant MitoQ.
RESULTS
Mice exposed to ozone, a source of oxidative stress, had lung inflammation and AHR associated with mitochondrial dysfunction and reflected by decreased mitochondrial membrane potential (ΔΨm), increased mitochondrial oxidative stress, and reduced mitochondrial complex I, III, and V expression. Reversal of mitochondrial dysfunction by the mitochondria-targeted antioxidant MitoQ reduced inflammation and AHR. ASM cells from patients with COPD have reduced ΔΨm, adenosine triphosphate content, complex expression, basal and maximum respiration levels, and respiratory reserve capacity compared with those from healthy control subjects, whereas mitochondrial reactive oxygen species (ROS) levels were increased. Healthy smokers were intermediate between healthy nonsmokers and patients with COPD. Hydrogen peroxide induced mitochondrial dysfunction in ASM cells from healthy subjects. MitoQ and Tiron inhibited TGF-β-induced ASM cell proliferation and CXCL8 release.
CONCLUSIONS
Mitochondrial dysfunction in patients with COPD is associated with excessive mitochondrial ROS levels, which contribute to enhanced inflammation and cell hyperproliferation. Targeting mitochondrial ROS represents a promising therapeutic approach in patients with COPD.
Publication
Journal: Lab on a Chip - Miniaturisation for Chemistry and Biology
August/8/2005
Abstract
An understanding of chemotaxis at the level of cell-molecule interactions is important because of its relevance in cancer, immunology, and microbiology, just to name a few. This study quantifies the effects of flow on cell migration during chemotaxis in a microfluidic device. The chemotaxis gradient within the device was modeled and compared to experimental results. Chemotaxis experiments were performed using the chemokine CXCL8 under different flow rates with human HL60 promyelocytic leukemia cells expressing a transfected CXCR2 chemokine receptor. Cell trajectories were separated into x and y axis components. When the microchannel flow rates were increased, cell trajectories along the x axis were found to be significantly affected (p < 0.05). Total migration distances were not affected. These results should be considered when using similar microfluidic devices for chemotaxis studies so that flow bias can be minimized. It may be possible to use this effect to estimate the total tractile force exerted by a cell during chemotaxis, which would be particularly valuable for cells whose tractile forces are below the level of detection with standard techniques of traction-force microscopy.
Publication
Journal: European Journal of Immunology
February/16/2006
Abstract
Psoriasis is an immune-mediated skin disease characterized by lymphocytic infiltration and altered keratinocyte differentiation. Using immunohistochemical techniques we found that the cellular infiltrate in acute psoriatic plaques includes 5-8% CD3(-)CD56(+) natural killer (NK) cells, mostly localized in the mid and papillary dermis. NK lymphocytes isolated from punch biopsy specimens of psoriatic plaques showed a CD56(bright)CD16(-)CD158b(-) phenotype, failed to express the skin homing cutaneous lymphocyte-associated antigen and released abundant IFN-gamma upon stimulation. Supernatants from psoriatic NK cells induced MHC class II and ICAM-1 expression and release of CXCL10 and CCL5 by cultured psoriatic keratinocytes. Skin NK cells expressed high levels of the chemokines receptors CXCR3 and CCR5, intermediate amounts of CXCR1, CCR6 and CCR8, and low levels of CCR1, CCR2, CCR4, CCR7 and CX3CR1. In addition, they promptly migrated in vitro toward CXCL10, CCL5, supernatants of IFN-gamma-activated psoriatic keratinocytes and, to a lower extent, CCL20 and CCL4. In contrast, they failed to migrate toward CXCL8, CCL1, CCL2, CCL3, CCL17, CCL19 and CX3CL1. Taken together, our results implicate NK lymphocytes as newly identified protagonists in the pathogenesis of psoriasis. Their distinctive homing properties should be taken into account in the design of specific therapy aimed at blocking pathogenic cell accumulation in the skin.
Publication
Journal: Proceedings of the National Academy of Sciences of the United States of America
May/20/2012
Abstract
Respiratory syncytial virus (RSV) is the major viral cause of severe pulmonary disease in young infants worldwide. However, the mechanisms by which RSV causes disease in humans remain poorly understood. To help bridge this gap, we developed an ex vivo/in vitro model of RSV infection based on well-differentiated primary pediatric bronchial epithelial cells (WD-PBECs), the primary targets of RSV infection in vivo. Our RSV/WD-PBEC model demonstrated remarkable similarities to hallmarks of RSV infection in infant lungs. These hallmarks included restriction of infection to noncontiguous or small clumps of apical ciliated and occasional nonciliated epithelial cells, apoptosis and sloughing of apical epithelial cells, occasional syncytium formation, goblet cell hyperplasia/metaplasia, and mucus hypersecretion. RSV was shed exclusively from the apical surface at titers consistent with those in airway aspirates from hospitalized infants. Furthermore, secretion of proinflammatory chemokines such as CXCL10, CCL5, IL-6, and CXCL8 reflected those chemokines present in airway aspirates. Interestingly, a recent RSV clinical isolate induced more cytopathogenesis than the prototypic A2 strain. Our findings indicate that this RSV/WD-PBEC model provides an authentic surrogate for RSV infection of airway epithelium in vivo. As such, this model may provide insights into RSV pathogenesis in humans that ultimately lead to successful RSV vaccines or therapeutics.
Publication
Journal: Molecular Biology of the Cell
March/18/2008
Abstract
Interleukin-8 (IL-8/CXCL8) is a chemokine that increases endothelial permeability during early stages of angiogenesis. However, the mechanisms involved in IL-8/CXCL8-induced permeability are poorly understood. Here, we show that permeability induced by this chemokine requires the activation of vascular endothelial growth factor receptor-2 (VEGFR2/fetal liver kinase 1/KDR). IL-8/CXCL8 stimulates VEGFR2 phosphorylation in a VEGF-independent manner, suggesting VEGFR2 transactivation. We investigated the possible contribution of physical interactions between VEGFR2 and the IL-8/CXCL8 receptors leading to VEGFR2 transactivation. Both IL-8 receptors interact with VEGFR2 after IL-8/CXCL8 treatment, and the time course of complex formation is comparable with that of VEGFR2 phosphorylation. Src kinases are involved upstream of receptor complex formation and VEGFR2 transactivation during IL-8/CXCL8-induced permeability. An inhibitor of Src kinases blocked IL-8/CXCL8-induced VEGFR2 phosphorylation, receptor complex formation, and endothelial permeability. Furthermore, inhibition of the VEGFR abolishes RhoA activation by IL-8/CXCL8, and gap formation, suggesting a mechanism whereby VEGFR2 transactivation mediates IL-8/CXCL8-induced permeability. This study points to VEGFR2 transactivation as an important signaling pathway used by chemokines such as IL-8/CXCL8, and it may lead to the development of new therapies that can be used in conditions involving increases in endothelial permeability or angiogenesis, particularly in pathological situations associated with both IL-8/CXCL8 and VEGF.
Publication
Journal: European Urology
May/3/2007
Abstract
OBJECTIVE
This prospective study quantified cytokine and chemokine levels in seminal plasma of patients with chronic prostatitis/chronic pelvic pain syndrome (CP/CPPS) and benign prostatic hyperplasia (BPH), to evaluate inflammatory mediators as possible surrogate markers for diagnosis and treatment efficacy.
METHODS
Seminal plasma levels of eight cytokines and nine chemokines were evaluated by multiplex arrays in 83 men: 20 healthy controls and 9 men with CP/CPPS IIIA, 31 with CP/CPPS IIIB, and 23 with BPH. Prostate samples obtained by transurethral resection of the prostate from 13 patients with BPH were analysed by immunohistochemistry to detect interleukin 8 (IL-8)-producing cells and characterise inflammatory infiltrates.
RESULTS
Significantly increased levels of cytokines (IL-1alpha, IL-1beta, IL-6, IL-10, IL12p70) and chemokines (CCL1, CCL3, CCL4, CCL17, CCL22, CXCL8/IL-8) were observed in seminal plasmas from patients with CP/CPPS or BPH. However, only IL-8 was significantly elevated compared to controls (median [quartiles] 1984 [1164-2444] pg/ml), in patients with CP/CPPS IIIA (15,240 [10,630-19,501] pg/ml; p<0.0001), CP/CPPS IIIB (2983 [2033-5287] pg/ml; p=0.008), and BPH (5044 [3063-11,795] pg/ml, p<0.0001), discriminating CP/CPPS IIIA versus IIIB (accuracy=0.882+/-0.078; p=0.001). Inflammatory infiltrates were detected in prostate samples from 13 of 13 BPH patients, and IL-8-producing prostate cells in 11 of 13 samples. IL-8 concentration in seminal plasma was positively correlated with symptom score and prostate-specific antigen levels both in CP/CPPS and BPH patients.
CONCLUSIONS
IL-8 is expressed in situ by epithelial and stromal prostate cells and is functional, as shown by recruitment of cells expressing cognate receptors in BPH prostate tissue, indicating its involvement in disease pathogenesis. Among all the cytokines and chemokines analysed, IL-8 appears to be the most reliable and predictive surrogate marker to diagnose prostate inflammatory conditions, such as CP/CPPS and BPH.
Publication
Journal: Endocrine-Related Cancer
February/24/2008
Abstract
Recent data suggest that chemokines could be essential players in breast carcinogenesis. We previously showed that the CXC chemokine CXCL8 (interleukin-8) was overexpressed in estrogen receptor alpha (ERalpha)-negative breast cell lines. Analysis of CXCL8 chromosomal location showed that several CXC chemokines (CXCL1, CXCL2, CXCL3, CXCL4, CXCL4V1, CXCL5, CXCL6, CXCL7, and CXCL8) were localized in the same narrow region (360 kb in size) of chromosome 4. We thus hypothesized that they could belong to the same cluster. Quantification of these chemokines in breast tumors showed that samples expressing high CXCL8 also produced elevated levels of CXCL1, CXCL3, and CXCL5, and displayed low content of ERalpha. CXCL1, CXCL2, CXCL3, CXCL5, and CXCL8 were co-regulated both in tumors and in breast cancer cell lines. CXCL5 and CXCL8 were mainly produced by epithelial cells, whereas CXCL1, CXCL2, and CXCL3 had a high expression in blood cells. The overexpression of these chemokines in tumor cells was not the result of gene amplification, but rather of an enhanced gene transcription. Our data suggest that high CXCL8 expression in tumors is mainly correlated to activating protein-1 (AP-1) pathway and to a minor extent to NF-kappaB pathway. Interestingly, CXCL1, CXCL2, CXCL3, CXCL5, CXCL6, and CXCL8 chemokines were present at higher levels in metastases when compared with grade I and III biopsies. High levels of CXCL8, CXCL1, and CXCL3 accounted for a shorter relapse-free survival of ERalpha-positive patients treated with tamoxifen. In summary, we present evidences that multiple CXC chemokines are co-expressed in CXCL8-positive breast tumors. In addition, these chemokines could account for the higher aggressiveness of these types of tumors.
Publication
Journal: Neoplasia
November/4/2009
Abstract
It is well known that cancer cells secrete angiogenic factors to recruit and sustain tumor vascular networks. However, little is known about the effect of endothelial cell-secreted factors on the phenotype and behavior of tumor cells. The hypothesis underlying this study is that endothelial cells initiate signaling pathways that enhance tumor cell survival and migration. Here, we observed that soluble mediators from primary human dermal microvascular endothelial cells induce phosphorylation of signal transducer and activator of transcription 3 (STAT3), Akt, and extracellular signal-regulated kinase (ERK) in a panel of head and neck squamous cell carcinoma (HNSCC) cells (OSCC-3, UM-SCC-1, UM-SCC-17B, UM-SCC-74A). Gene expression analysis demonstrated that interleukin-6 (IL- 6), interleukin-8 (CXCL8), and epidermal growth factor (EGF) are upregulated in endothelial cells cocultured with HNSCC. Blockade of endothelial cell-derived IL-6, CXCL8, or EGF by gene silencing or neutralizing antibodies inhibited phosphorylation of STAT3, Akt, and ERK in tumor cells, respectively. Notably, activation of STAT3, Akt, and ERK by endothelial cells enhanced migration and inhibited anoikis of tumor cells. We have previously demonstrated that Bcl-2 is upregulated in tumor microvessels in patients with HNSCC. Here, we observed that Bcl-2 signaling induces expression of IL-6, CXCL8, and EGF, providing a mechanism for the upregulation of these cytokines in tumor-associated endothelial cells. This study expands the contribution of endothelial cells to the pathobiology of tumor cells. It unveils a new mechanism in which endothelial cells function as initiators of molecular crosstalks that enhance survival and migration of tumor cells.
Publication
Journal: Osteoarthritis and Cartilage
February/19/2009
Abstract
OBJECTIVE
To provide a more complete picture of the effect of interleukin-1 beta (IL-1beta) on adult human articular chondrocyte gene expression, in contrast to the candidate gene approach.
METHODS
Chondrocytes from human knee cartilage were cultured in medium containing IL-1beta. Changes in gene expression were analyzed by microarray and reverse transcriptase-polymerase chain reaction analysis. The ability of transforming growth factor beta-1 (TGF-beta1), fibroblast growth factor (FGF)-18, and bone morphogenetic protein 2 (BMP-2) to alter the effects of IL-1beta was analyzed. Computational analysis of the promoter regions of differentially expressed genes for transcription factor binding motifs was performed.
RESULTS
IL-1beta-treated human chondrocytes showed significant increases in the expression of granulocyte colony stimulating factor-3, endothelial leukocyte adhesion molecule 1 and leukemia inhibitory factor as well as for a large group of chemokines that include CXCL1, CXCL2, CXCL3, CXCL5, CXCL6, CXCL8, CCL2, CCL3, CCL4, CCL5, CCL8, CCL20, CCL3L1, CX3CL1 and the cytokine IL-6. As expected, the mRNA for matrix metalloproteinase (MMP)-13 and BMP-2 also increased while mRNA for the matrix genes COL2A1 and aggrecan was down-regulated. A subset of chemokines increased rapidly at very low levels of IL-1beta. The phenotype induced by IL-1beta was partially reversed by TGF-beta1, but not by BMP-2. In the presence of IL-1beta, FGF-18 increased expression of ADAMTS-4, aggrecan, BMP-2, COL2A1, CCL3, CCL4, CCL20, CXCL1, CXCL3, CXCL6, IL-1beta, IL-6, and IL-8 and decreased ADAMTS-5, MMP-13, CCL2, and CCL8. Computational analysis revealed a high likelihood that the most up-regulated chemokines are regulated by the transcription factors myocyte enhancer binding factor-3 (MEF-3), CCAAT/enhancer binding protein (C/EBP) and nuclear factor-kappa B (NF-kappaB).
CONCLUSIONS
IL-1beta has a diverse effect on gene expression profile in human chondrocytes affecting matrix genes as well as chemokines and cytokines. TGF-beta1 has the ability to antagonize some of the phenotype induced by IL-1beta.
Publication
Journal: American Journal of Respiratory and Critical Care Medicine
September/13/2010
Abstract
BACKGROUND
Airway inflammation is a central feature of chronic obstructive pulmonary disease (COPD). COPD exacerbations are often triggered by rhinovirus (RV) infection.
OBJECTIVE
We hypothesized that airway epithelial cells from patients with COPD maintain a proinflammatory phenotype compared with control subjects, leading to greater RV responses.
METHODS
Cells were isolated from tracheobronchial tissues of 12 patients with COPD and 10 transplant donors. Eight patients with COPD had severe emphysema, three had mild to moderate emphysema, and one had no emphysema. All had moderate to severe airflow obstruction, and six met criteria for chronic bronchitis or had at least one exacerbation the previous year. Cells were grown at air-liquid interface and infected with RV serotype 39. Cytokine and IFN expression was measured by ELISA. Selected genes involved in inflammation, oxidative stress, and proteolysis were assessed by focused gene array and real-time polymerase chain reaction.
RESULTS
Compared with control subjects, cells from patients with COPD demonstrated increased mRNA expression of genes involved in oxidative stress and the response to viral infection, including NOX1, DUOXA2, MMP12, ICAM1, DDX58/RIG-I, STAT1, and STAT2. COPD cells showed elevated baseline and RV-stimulated protein levels of IL-6, IL-8/CXCL8, and growth-related oncogene-alpha/CXCL1. COPD cells demonstrated increased viral titer and copy number after RV infection, despite increased IL-29/IFN-lambda1, IL-28A/IFN-lambda2, and IFN-inducible protein-10/CXCL10 protein levels. Finally, RV-infected COPD cultures showed increased mRNA expression of IL28A/IFNlambda2, IL29/IFNlambda1, IFIH1/MDA5, DDX58/RIG-I, DUOX1, DUOX2, IRF7, STAT1, and STAT2.
CONCLUSIONS
Airway epithelial cells from patients with COPD show higher baseline levels of cytokine expression and increased susceptibility to RV infection, despite an increased IFN response.
Publication
Journal: Journal of Immunology
July/26/2004
Abstract
The angiogenic activity of CXC-ELR(+) chemokines, including CXCL8/IL-8, CXCL1/macrophage inflammatory protein-2 (MIP-2), and CXCL1/growth-related oncogene-alpha in the Matrigel sponge angiogenesis assay in vivo, is strictly neutrophil dependent, as neutrophil depletion of the animals completely abrogates the angiogenic response. In this study, we demonstrate that mice deficient in the src family kinases, Hck and Fgr (hck(-/-)fgr(-/-)), are unable to develop an angiogenic response to CXCL1/MIP-2, although they respond normally to vascular endothelial growth factor-A (VEGF-A). Histological examination of the CXCL1/MIP-2-containing Matrigel implants isolated from wild-type or hck(-/-)fgr(-/-) mice showed the presence of an extensive neutrophil infiltrate, excluding a defective neutrophil recruitment into the Matrigel sponges. Accordingly, neutrophils from hck(-/-)fgr(-/-) mice normally migrated and released gelatinase B in response to CXCL1/MIP-2 in vitro, similarly to wild-type neutrophils. However, unlike wild-type neutrophils, those from hck(-/-)fgr(-/-) mice were completely unable to release VEGF-A upon stimulation with CXCL1/MIP-2. Furthermore, neutralizing anti-VEGF-A Abs abrogated the angiogenic response to CXCL1/MIP-2 in wild-type mice and CXCL1/MIP-2 induced angiogenesis in the chick embryo chorioallantoic membrane assay, indicating that neutrophil-derived VEGF-A is a major mediator of CXCL1/MIP-2-induced angiogenesis. Finally, in vitro kinase assays confirmed that CXCL1/MIP-2 activates Hck and Fgr in murine neutrophils. Taken together, these data demonstrate that CXCL1/MIP-2 leads to recruitment of neutrophils that, in turn, release biologically active VEGF-A, resulting in angiogenesis in vivo. Our observations delineate a novel mechanism by which CXCL1/MIP-2 induces neutrophil-dependent angiogenesis in vivo.
Publication
Journal: Blood
September/12/2007
Abstract
Human blood contains 2 populations of dendritic cells (DCs): plasmacytoid and myeloid (mDC). mDCs are subdivided into 3 subsets using the surface markers CD16, CD1c, and BDCA-3. Their role as pathogen sentinels and adjuvant targets was tested by phenotypic and functional analysis. We show that mDC subsets are immature and express mRNA for most toll-like receptors (TLRs), except for TLR3 in CD16-mDCs. The most represented subsets, CD16- and CD1c-mDCs, are similarly responsive to all TLR agonists. Among 31 cytokines tested, both subsets produce CXCL8 (IL-8)/tumor necrosis factor-alpha (TNF-alpha)/IL-6/CCL3 (MIP-1 alpha)/CCL4 (MIP-1beta)/IL-1 beta. CXCL8 (IL-8) is the predominant cytokine produced by CD1c-mDCs on TLR engagement, whereas all other cytokines, particularly TNF-alpha, are secreted in 10-fold to 100-fold higher amounts by CD16-mDCs. CD16-mDCs cocultured with human umbilical vein endothelial cells induce a significantly higher production of CXCL10 (IP-10), granulocyte-macrophage colony-stimulating factor, and granulocyte colony-stimulating factor than CD1c-mDCs. In addition, interleukin-3 and type I interferons are stimuli specifically for DC maturation rather than cytokine secretion, whereas TNF-alpha is almost ineffective in inducing either function, suggesting a mechanism of T-cell-DC crosstalk and of rapid induction of antigen-presenting cell function during viral infection rather than inflammation. In conclusion, CD16-mDCs show strong proinflammatory activity, whereas CD1c-mDCs appear to be mainly inducers of chemotaxis.
Publication
Journal: Journal of Immunology
March/21/2006
Abstract
The multiligand receptor for advanced glycation end products (RAGE) mediates certain chronic vascular and neurologic degenerative diseases accompanied by low-grade inflammation. RAGE ligands include S100/calgranulins, a class of low-molecular-mass, calcium-binding polypeptides, several of which are chondrocyte expressed. Here, we tested the hypothesis that S100A11 and RAGE signaling modulate osteoarthritis (OA) pathogenesis by regulating a shift in chondrocyte differentiation to hypertrophy. We analyzed human cartilages and cultured human articular chondrocytes, and used recombinant human S100A11, soluble RAGE, and previously characterized RAGE-specific blocking Abs. Normal human knee cartilages demonstrated constitutive RAGE and S100A11 expression, and RAGE and S100A11 expression were up-regulated in OA cartilages studied by immunohistochemistry. CXCL8 and TNF-alpha induced S100A11 expression and release in cultured chondrocytes. Moreover, S100A11 induced cell size increase and expression of type X collagen consistent with chondrocyte hypertrophy in vitro. CXCL8-induced, IL-8-induced, and TNF-alpha-induced but not retinoic acid-induced chondrocyte hypertrophy were suppressed by treatment with soluble RAGE or RAGE-specific blocking Abs. Last, via transfection of dominant-negative RAGE and dominant-negative MAPK kinase 3, we demonstrated that S100A11-induced chondrocyte type X collagen expression was dependent on RAGE-mediated p38 MAPK pathway activation. We conclude that up-regulated chondrocyte expression of the RAGE ligand S100A11 in OA cartilage, and RAGE signaling through the p38 MAPK pathway, promote inflammation-associated chondrocyte hypertrophy. RAGE signaling thereby has the potential to contribute to the progression of OA.
Publication
Journal: Clinical Journal of the American Society of Nephrology
April/9/2009
Abstract
OBJECTIVE
The aim of our study was to examine serum markers of the TNF and Fas pathways for association with cystatin-C based estimated glomerular filtration rate (cC-GFR) in subjects with type 1 diabetes (T1DM) and no proteinuria.
METHODS
The study group (the 2nd Joslin Kidney Study) comprised patients with T1DM and normoalbuminuria (NA) (n = 363) or microalbuminuria (MA) (n = 304). Impaired renal function (cC-GFR <90 ml/min) was present in only 10% of patients with NA and 36% of those with MA. We measured markers of the tumor necrosis factor alpha (TNFalpha) pathway [TNFalpha, soluble TNF receptor 1 (sTNFR1), and 2 (sTNFR2)], its downstream effectors [soluble intercellular and soluble vascular adhesion molecules (sICAM-1 and sVCAM-1), interleukin 8 (IL8/CXCL8), monocytes chemoattractant protein-1 (MCP1), and IFNgamma inducible protein-10 (IP10/CXCL10)], the Fas pathway [soluble Fas (sFas) and Fas ligand (sFasL)], CRP, and IL6.
RESULTS
Of these, TNFalpha, sTNFRs, sFas, sICAM-1, and sIP10 were associated with cC-GFR. However, only the TNF receptors and sFas were associated with cC-GFR in multivariate analysis. Variation in the concentration of the TNF receptors had a much stronger impact on GFR than clinical covariates such as age and albumin excretion.
CONCLUSIONS
Elevated concentrations of serum markers of the TNFalpha and Fas-pathways are strongly associated with decreased renal function in nonproteinuric type 1 diabetic patients. These effects are independent of those of urinary albumin excretion. Follow-up studies are needed to characterize the role of these markers in early progressive renal function decline.
Publication
Journal: Current Topics in Microbiology and Immunology
December/5/2010
Abstract
Natural killer (NK) cells represent a major subpopulation of lymphocytes. These cells have effector functions as they recognize and kill transformed cells as well as microbially infected cells. In addition, alloreactive NK cells have been successfully used to treat patients with acute myeloid leukemia and other hematological malignancies. NK cells are also endowed with immunoregulatory functions since they secrete cytokines such as IFN-γ, which favor the development of T helper 1 (Th1) cells, and chemokines such as CCL3/MIP-1α and CCL4/MIP-1β, which recruit various inflammatory cells into sites of inflammation. In human blood, NK cells are divided into CD56(bright) CD16(dim) and CD56(dim) CD16(bright) subsets. These subsets have different phenotypic expression and may have different functions; the former subset is more immunoregulatory and the latter is more cytolytic. The CD56(bright)CD16(dim) NK cells home into tissues such as the peripheral lymph nodes (LNs) under physiological conditions because they express the LN homing receptor CCR7 and they respond to CCL19/MIP-3β and CCL21/SLC chemokines. They also distribute into adenoid tissues or decidual uterus following the CXCR3/CXCL10 or CXCR4/CXCL12 axis. On the other hand, both NK cell subsets migrate into inflammatory sites, with more CD56(dim)CD16(bright) NK cells distributing into inflamed liver and lungs. CCR5/CCL5 axis plays an important role in the accumulation of NK cells in virally infected sites as well as during parasitic infections. CD56(bright)CD16(dim) cells also migrate into autoimmune sites such as inflamed synovial fluids in patients having rheumatoid arthritis facilitated by the CCR5/CCL3/CCL4/CCL5 axis, whereas they distribute into inflamed brains aided by the CX₃CR1/CX₃CL1 axis. On the other hand, CD56(dim)CD16(bright) NK cells accumulate in the liver of patients with primary biliary disease aided by the CXCR1/CXCL8 axis. However, the types of chemokines that contribute to their accumulation in target organs during graft vs. host (GvH) disease are not known. Further, chemokines activate NK cells to become highly cytolytic cells known as CC chemokine-activated killer (CHAK) cells that kill tumor cells. In summary, chemokines whether secreted in an autocrine or paracrine fashion regulate various biological functions of NK cells. Depending on the tissue and the chemokine secreted, NK cells may ameliorate the disease such as their roles in combating tumors or virally infected cells, and their therapeutic potentials in treating leukemias and other hematological malignancies, as well as reducing the incidence of GvH disease. In contrast, they may exacerbate the disease by damaging the affected tissues through direct cytotoxicity or by the release of multiple inflammatory cytokines and chemokines. Examples are their deleterious roles in autoimmune diseases such as rheumatoid arthritis and primary biliary cirrhosis.
Publication
Journal: Clinical Cancer Research
August/1/2016
Abstract
Myeloid-derived suppressor cells (MDSC) are considered an important T-cell immunosuppressive component in cancer-bearing hosts. The factors that attract these cells to the tumor microenvironment are poorly understood. IL8 (CXCL8) is a potent chemotactic factor for neutrophils and monocytes.
MDSC were characterized and sorted by multicolor flow cytometry on ficoll-gradient isolated blood leucokytes from healthy volunteers (n = 10) and advanced cancer patients (n = 28). In chemotaxis assays, sorted granulocytic and monocytic MDSC were tested in response to recombinant IL8, IL8 derived from cancer cell lines, and patient sera. Neutrophil extracellular traps (NETs) formation was assessed by confocal microscopy, fluorimetry, and time-lapse fluorescence confocal microscopy on short-term MDSC cultures.
IL8 chemoattracts both granulocytic (GrMDSC) and monocytic (MoMDSC) human MDSC. Monocytic but not granulocytic MDSC exerted a suppressor activity on the proliferation of autologous T cells isolated from the circulation of cancer patients. IL8 did not modify the T-cell suppressor activity of human MDSC. However, IL8 induced the formation of NETs in the GrMDSC subset.
IL8 derived from tumors contributes to the chemotactic recruitment of MDSC and to their functional control. Clin Cancer Res; 22(15); 3924-36. ©2016 AACR.
Publication
Journal: Journal of Infectious Diseases
May/9/2005
Abstract
BACKGROUND
Respiratory syncytial virus (RSV) bronchiolitis in infants is characterized by a massive neutrophilic infiltrate into the airways. Chemokines direct migration of leukocytes and contribute to the pathogenesis of RSV disease. However, little is known about pulmonary chemokine responses to RSV in humans. Our aim was to characterize the production of chemokines in the lungs of infants with RSV bronchiolitis and how this production changes over time.
METHODS
Chemokine mRNA and the concentration of chemokines were measured in nonbronchoscopic bronchoalveolar lavage (BAL) samples from infants with RSV bronchiolitis and from control infants. In infants with RSV bronchiolitis, changes in the concentrations of chemokines during the 7 days after intubation and between the days of intubation and extubation were examined.
RESULTS
The production of chemokines within the lower respiratory tract was shown in all patients with RSV bronchiolitis. CXC chemokines (particularly CXCL10/interferon-inducible protein 10 and CXCL8/interleukin-8) were found to be the most abundant, but CC chemokines (CCL2/monocyte chemotactic protein 1 and CCL3/macrophage inflammatory protein-1 alpha) were also present. Concentrations of some of these chemokines remained elevated over the course of the illness, whereas others decreased steadily. No differences in the concentrations were found between the days of intubation and extubation.
CONCLUSIONS
CXC chemokines predominate within the RSV-infected lung. Much of this response comes from inflammatory cells within the lower respiratory tract. Chemokine response patterns vary over time, possibly indicating different cellular sources for individual chemokines in the RSV-infected lung.
Publication
Journal: Journal of Virology
October/20/2005
Abstract
Rhinoviruses (RV) are the major cause of the common cold and acute exacerbations of asthma and chronic obstructive pulmonary disease. Toll-like receptors (TLRs) are a conserved family of receptors that recognize and respond to a variety of pathogen-associated molecular patterns. TLR3 recognizes double-stranded RNA, an important intermediate of many viral life cycles (including RV). The importance of TLR3 in host responses to virus infection is not known. Using BEAS-2B (a human bronchial epithelial cell-line), we demonstrated that RV replication increased the expression of TLR3 mRNA and TLR3 protein on the cell surface. We observed that blocking TLR3 led to a decrease in interleukin-6, CXCL8, and CCL5 in response to poly(IC) but an increase following RV infection. Finally, we demonstrated that TLR3 mediated the antiviral response. This study demonstrates an important functional requirement for TLR3 in the host response against live virus infection and indicates that poly(IC) is not always a good model for studying the biology of live virus infection.
Publication
Journal: Biochimica et Biophysica Acta - General Subjects
April/5/2012
Abstract
Chronic inflammation may increase the risk to develop cancer, for instance esophagitis or gastritis may lead to development of esophageal or gastric cancer, respectively. The key molecules attracting leukocytes to local inflammatory sites are chemokines. We here provide a systematic review on the impact of CXC chemokines (binding the receptors CXCR1, CXCR2, CXCR3 and CXCR4) on the transition of chronic inflammation in the upper gastrointestinal tract to neoplasia. CXCR2 ligands, including GRO-α,β,γ/CXCL1,2,3, ENA-78/CXCL5 and IL-8/CXCL8 chemoattract pro-tumoral neutrophils. In addition, angiogenic CXCR2 ligands stimulate the formation of new blood vessels, facilitating tumor progression. The CXCR4 ligand SDF-1/CXCL12 also promotes tumor development by stimulating angiogenesis and by favoring metastasis of CXCR4-positive tumor cells to distant organs producing SDF-1/CXCL12. Furthermore, these angiogenic chemokines also directly enhance tumor cell survival and proliferation. In contrast, the CXCR3 ligands Mig/CXCL9, IP-10/CXCL10 and I-TAC/CXCL11 are angiostatic and attract anti-tumoral T lymphocytes and may therefore mediate tumor growth retardation and regression. Thus, chemokines exert diverging, sometimes dual roles in tumor biology as described for esophageal and gastric cancer. Therefore extensive research is needed to completely unravel the complex chemokine code in specific cancers. Possibly, chemokine-targeted cancer therapy will have to be adapted to the individual's chemokine profile.
load more...