Citations
All
Search in:AllTitleAbstractAuthor name
Publications
(20K+)
Patents
Grants
Pathways
Clinical trials
Publication
Journal: British Journal of Pharmacology
January/2/1977
Abstract
1 A new in vitro preparation, the isolated lung strip of the cat, is described for investigating the direct effect of drugs on the smooth muscle of the peripheral airways of the lung. The preparation comprises a thin strip of lung parenchyma which can be mounted in a conventional organ bath for isometric tension recording. Its pharmacological responses have been characterized and compared with the isolated tracheal preparation of the cat. 2 The lung strip exhibited an intrinsic tone which was relaxed by catecholamines, aminophylline and flufenamate. It was contracted strongly by histamine, prostaglandin F2alpha, acetylcholine, compound 48/80, potassium depolarizing solution and alternating current field stimulation. In contrast, the cat trachea was unresponsive to histamine and prostaglandin F2alpha and did not exhibit an intrinsic tone. 3 (-)-Isoprenaline and (-)-adrenaline were much more potent in relaxing the lung strip than the trachea. The potency order of relaxation responses to isoprenaline, adrenaline and (+/-)-noradrenaline in the lung strip was isoprenaline greater than adrenaline greater than noradrenaline but in the trachea was isoprenaline greater than noradrenaline greater than or equal to adrenaline. 4 beta2-Adrenoceptor selective agonists salbutamol and terbutaline were more potent in the lung strip than the trachea, suggesting beta2-adrenoceptors predominated in the lung strip. Propranolol was equipotent in inhibiting isoprenaline relexations of the lung strip and trachea, whereas practolol was much less effective in inhibiting lung strip than trachea, further supporting a predominance of beta2-adrenoceptors in lung strip and beta1-adrenoceptors in trachea. 5 Strong Schultz-Dale type contractions were elicited in both lung strips and trachea by Ascaris lumbricoides antigen in actively sensitized cats. The initial phase of the contractile response of the lung strip following challenge was shown to be due to histamine release and was absent in the trachea. The delayed phase of the contraction which took several minutes to develop in both the mepyramine-treated lung strip and trachea was not due to prostaglandins E1, F2alpha or bradykinin, the probable mediator being slow reacting substance of anaphylaxis (SRS-A). 6 It is concluded that the isolated lung strip of the cat is useful as an in vitro model for investigating the effect of drugs on the smooth muscle of the peripheral airways of the lungs.
Publication
Journal: European Journal of Pharmacology
September/24/1981
Abstract
The effect of N-(2-chloroethyl)-N-ethyl-2-bromobenzylamine (DSP4) on monoamine neurons was studied in mice and rats. In mice DSP4 produced acutely a marked reduction of endogenous noradrenaline (NA), [3H]NA uptake and nerve density of the adrenergic nerves in the iris and atrium. Pronounced accumulations of NA were observed in non-terminal axons, which is a degenerative sign, while no changes were found in the NA cell bodies. A marked recovery of all parameters analysed was found as soon as 1 week after DSP4. In the mouse CNS, however, there was a marked and long-lasting NA reduction, especially in the cerebral and cerebellar cortex and spinal cord, leaving dopamine (DA) and serotonin (5-HT) neurons apparently unaffected. Administration of DSP4 to adult rats produced regional changes in the NA levels of the CNS were similar to those observed in the mouse. There were no indications of DSP4 affecting dopamine and adrenaline neurons in rat CNS, although a minor 5-HT depleting effect was noted. DSP4 treatment resulted in an increase in beta-adrenoceptor binding in vitro to homogenates from the cerebral cortex, using [3H]dihydroalprenolol as radioligand. Treatment of newborn rats with DSP4 caused permanent NA disappearance in the cerebral cortex and spinal cord, whereas marked NA increases were found in the pons-medulla and cerebellum. Administration of DSP4 to pregnant rats (gestation day 15) led to a marked and permanent NA depletion in the cerebral cortex and spinal cord in the offspring. The results support the view that DSP4 can produce an acute and relatively selective degeneration of NA nerve terminals in the rat and mouse. The results furthermore indicate that DSP4 (systemically administered) causes a preferential degeneration of NA nerve terminal projections originating from the locus coeruleus in the CNS. Since DSP4 can pass both the blood-brain and blood-placenta barrier and appears to have potent neurotoxic actions on NA neurons, DSP4 may serve as a useful denervation tool for the analysis of NA transmitter functions, particularly in the CNS of both adult and developing animals.
Publication
Journal: British Journal of Pharmacology
December/26/2006
Abstract
A few years after the foundation of the British Pharmacological Society, monoamine oxidase (MAO) was recognized as an enzyme of crucial interest to pharmacologists because it catalyzed the major inactivation pathway for the catecholamine neurotransmitters, noradrenaline, adrenaline and dopamine (and, later, 5-hydroxytryptamine, as well). Within the next decade, the therapeutic value of inhibitors of MAO in the treatment of depressive illness was established. Although this first clinical use exposed serious side effects, pharmacological interest in, and investigation of, MAO continued, resulting in the characterization of two isoforms, MAO-A and -B, and isoform-selective inhibitors. Selective inhibitors of MAO-B have found a therapeutic role in the treatment of Parkinson's disease and further developments have provided reversible inhibitors of MAO-A, which offer antidepressant activity without the serious side effects of the earlier inhibitors. Clinical observation and subsequent pharmacological analysis have also generated the concept of neuroprotection, reflecting the possibility of slowing, halting and maybe reversing, neurodegeneration in Parkinson's or Alzheimer's diseases. Increased levels of oxidative stress in the brain may be critical for the initiation and progress of neurodegeneration and selective inhibition of brain MAO could contribute importantly to lowering such stress. There are complex interactions between free iron levels in brain and MAO, which may have practical outcomes for depressive disorders. These aspects of MAO and its inhibition and some indication of how this important area of pharmacology and therapeutics might develop in the future are summarized in this review.
Publication
Journal: Psychological Review
May/4/1989
Abstract
From W.B. Cannon's identification of adrenaline with "fight or flight" to modern views of stress, negative views of peripheral physiological arousal predominate. Sympathetic nervous system (SNS) arousal is associated with anxiety, neuroticism, the Type A personality, cardiovascular disease, and immune system suppression; illness susceptibility is associated with life events requiring adjustments. "Stress control" has become almost synonymous with arousal reduction. A contrary positive view of peripheral arousal follows from studies of subjects exposed to intermittent stressors. Such exposure leads to low SNS arousal base rates, but to strong and responsive challenge- or stress-induced SNS-adrenal-medullary arousal, with resistance to brain catecholamine depletion and with suppression of pituitary adrenal-cortical responses. That pattern of arousal defines physiological toughness and, in interaction with psychological coping, corresponds with positive performance in even complex tasks, with emotional stability, and with immune system enhancement. The toughness concept suggests an opposition between effective short- and long-term coping, with implications for effective therapies and stress-inoculating life-styles.
Publication
Journal: Journal of Physiology
January/30/1994
Abstract
1. The influence of training-induced adaptations in skeletal muscle tissue on the choice between carbohydrates (CHO) and lipids as well as the extra- vs. intracellular substrate utilization was investigated in seven healthy male subjects performing one-legged knee-extension exercise. In each subject one of the knee extensors was endurance trained for eight weeks, whereafter the trained (T) and non-trained (NT) thighs were investigated a week apart. 2. The activity of beta-hydroxy-acyl-coenzyme A dehydrogenase (HAD) and capillary density in the knee extensors were significantly larger in T than in NT. 3. During dynamic knee-extension exercise, performed at the same absolute intensity for 2 h, femoral venous blood flow was lower in T than in NT (P < 0.05), but oxygen uptake was similar. 4. Respiratory quotient (RQ) values over the exercising thigh, averaging 0.81 (T) vs. 0.91 (NT; P < 0.05) indicated that a shift towards a larger fat combustion occurred with endurance training. 5. Both free fatty acids (FFA) and serum triacylglycerol contributed to the utilization of fat in NT and T muscles with no significant contribution from muscle fibre triacylglycerol. 6. At high plasma FFA concentrations net uptake of FFA plateaued in NT but not in T muscles. 7. The findings suggest that FFA uptake in exercising muscle is a saturable process and that the transport capacity is enhanced by training. The lower CHO utilization in the T leg was mainly a function of the glycogenolysis of the muscle being reduced. Hormones such as insulin, noradrenaline and adrenaline are unlikely to play a role in this shift as differences in plasma levels during T and NT leg exercise were small and insignificant, implying that local structural and functional adaptations of the training muscle are crucial for the observed shifts in the metabolic response to exercise.
Publication
Journal: Endoscopy
June/25/2017
Abstract
1 ESGE recommends cold snare polypectomy (CSP) as the preferred technique for removal of diminutive polyps (size ≤ 5 mm). This technique has high rates of complete resection, adequate tissue sampling for histology, and low complication rates. (High quality evidence, strong recommendation.) 2 ESGE suggests CSP for sessile polyps 6 - 9 mm in size because of its superior safety profile, although evidence comparing efficacy with hot snare polypectomy (HSP) is lacking. (Moderate quality evidence, weak recommendation.) 3 ESGE suggests HSP (with or without submucosal injection) for removal of sessile polyps 10 - 19 mm in size. In most cases deep thermal injury is a potential risk and thus submucosal injection prior to HSP should be considered. (Low quality evidence, strong recommendation.) 4 ESGE recommends HSP for pedunculated polyps. To prevent bleeding in pedunculated colorectal polyps with head ≥ 20 mm or a stalk ≥ 10 mm in diameter, ESGE recommends pretreatment of the stalk with injection of dilute adrenaline and/or mechanical hemostasis. (Moderate quality evidence, strong recommendation.) 5 ESGE recommends that the goals of endoscopic mucosal resection (EMR) are to achieve a completely snare-resected lesion in the safest minimum number of pieces, with adequate margins and without need for adjunctive ablative techniques. (Low quality evidence; strong recommendation.) 6 ESGE recommends careful lesion assessment prior to EMR to identify features suggestive of poor outcome. Features associated with incomplete resection or recurrence include lesion size>> 40 mm, ileocecal valve location, prior failed attempts at resection, and size, morphology, site, and access (SMSA) level 4. (Moderate quality evidence; strong recommendation.) 7 For intraprocedural bleeding, ESGE recommends endoscopic coagulation (snare-tip soft coagulation or coagulating forceps) or mechanical therapy, with or without the combined use of dilute adrenaline injection. (Low quality evidence, strong recommendation.)An algorithm of polypectomy recommendations according to shape and size of polyps is given (Fig. 1).
Publication
Journal: Journal of Anatomy
March/5/1967
Publication
Journal: Journal of Pharmacy and Pharmacology
December/27/1970
Publication
Journal: Journal of Physiology
November/30/1996
Publication
Journal: Acta physiologica Scandinavica. Supplementum
April/30/2003
Publication
Journal: Nature
January/11/1987
Abstract
Normal pacemaking in the mammalian heart is driven by spontaneously active cells located in the sino-atrial (SA) node. The rate of firing of these cells and the modulation of this rate by catecholamines are controlled by if, an inward Na- and K-current that turns on at voltages more negative than -40 mV. The 'pacemaker' current if is also present in other types of cell where its ability to produce and modulate a depolarizing process may be useful. For example, in vertebrate photoreceptors if drives the depolarization that terminates the light-induced hyperpolarization. Currents similar to if are also found in hippocampal neurones and DRG neurones. The present report shows for the first time that the opening of single if-channels of low conductance (1 pS) can be resolved using a modification of the patch-clamp technique on isolated SA-node cells. Modulation of if by adrenaline is shown to be mediated by an increase in the probability of channel opening, whereas the single-channel amplitude remains unchanged.
Publication
Journal: Nature
November/23/1980
Abstract
Direct measurements of free Ca2+ in heart cells are needed for an understanding of the regulation of contractility. We developed and used Ca2+ -sensitive microelectrodes with fine tips, stable properties and ample sensitivity to free Ca2+ in the sub-micromolar range. In quiescent ventricular muscle, measurements which passed tests for electrode sealing and cell viability gave a mean free Ca2+ concentration of 0.26 microM. During contractures, we recorded Ca2+ transients rising as high as 10 microM. In studying the effects of catecholamines on free Ca2+ and force, we found evidence that adrenaline can reduce myofibrillar Ca2+ sensitivity in intact heart muscle.
Publication
Journal: Sports Medicine
September/10/2002
Abstract
The effect of physical exercise on mental function has been widely studied from the beginning of the 20th century. However, the contradictory findings of experimental research have led authors to identify several methodological factors to control in such studies including: (i) the nature of the psychological task; and (ii) the intensity and duration of physical exercise. The purpose of this article is to provide information, from the perspective of performance optimisation, on the main effects of physical task characteristics on cognitive performance. Within this framework, some consistent results have been observed during the last decade. Recent studies, using mainly complex decisional tasks, have provided the research community with clear support for an improvement of cognitive performance during exercise. Diverse contributing factors have been suggested to enhance cognitive efficacy. First, an increase in arousal level related to physical exertion has been hypothesised. Improvement in decisional performance has been observed immediately after the adrenaline threshold during incremental exercise. Such positive effects could be enhanced by nutritional factors, such as carbohydrate or fluid ingestion, but did not seem to be influenced by the level of fitness. Second, the mediating role of resource allocation has been suggested to explain improvement in cognitive performance during exercise. This effect highlights the importance of motivational factors in such tasks. Finally, when the cognitive performance was performed during exercise, consistent results have indicated that the dual task effect was strongly related to energetic constraints of the task. The greater the energy demand, the more attention is used to control movements.
Publication
Journal: British heart journal
August/21/2008
Publication
Journal: Neuroscience
May/29/1984
Abstract
The distribution of neuropeptide Y immunoreactive cell bodies in relation to various types of catecholamine-containing cell bodies in the rat brain was analyzed immunohistochemically using antisera to tyrosine hydroxylase, dopamine beta-hydroxylase and phenylethanolamine N-methyltransferase. Coexistence of the peptide in catecholamine cell bodies was established by using an elution-restaining procedure. Neuropeptide Y-like immunoreactivity was observed in most noradrenergic cell bodies of the Al/Cl cell groups in the ventro lateral medulla oblongata. Similarly this peptide immunoreactivity was also observed in the majority of the adrenergic cell bodies of the C2 group. In the dorsal and dorsal-lateral part of the nucleus of the solitary tract, where a group of small adrenergic cells is present, several small neuropeptide Y immunoreactive cells were also observed. The possibility of coexistence of adrenaline and neuropeptide Y in these cells remains to be established. The majority of the noradrenergic cell bodies of the A2 group, as well as the presumptive dopaminergic cells within its ventromedial part, seemed to lack neuropeptide Y-like immunoreactivity. Many noradrenergic cell bodies of the A6 group in the locus coeruleus proper were neuropeptide Y-immunoreactive, whereas the peptide could not be observed in the subcoeruleus group. Neither the A5 and A7 noradrenergic cells in the pons, nor any of the dopaminergic cell groups in the mesencephalon and forebrain (A8-A15) seemed to contain a neuropeptide Y-like peptide. The findings indicate that central catecholamine neurons can be subdivided into distinct sub-groups based upon the coexistence of a specific peptide.
Publication
Journal: Cell Metabolism
September/7/2010
Abstract
Glucagon secretion is inhibited by glucagon-like peptide-1 (GLP-1) and stimulated by adrenaline. These opposing effects on glucagon secretion are mimicked by low (1-10 nM) and high (10 muM) concentrations of forskolin, respectively. The expression of GLP-1 receptors in alpha cells is <0.2% of that in beta cells. The GLP-1-induced suppression of glucagon secretion is PKA dependent, is glucose independent, and does not involve paracrine effects mediated by insulin or somatostatin. GLP-1 is without much effect on alpha cell electrical activity but selectively inhibits N-type Ca(2+) channels and exocytosis. Adrenaline stimulates alpha cell electrical activity, increases [Ca(2+)](i), enhances L-type Ca(2+) channel activity, and accelerates exocytosis. The stimulatory effect is partially PKA independent and reduced in Epac2-deficient islets. We propose that GLP-1 inhibits glucagon secretion by PKA-dependent inhibition of the N-type Ca(2+) channels via a small increase in intracellular cAMP ([cAMP](i)). Adrenaline stimulates L-type Ca(2+) channel-dependent exocytosis by activation of the low-affinity cAMP sensor Epac2 via a large increase in [cAMP](i).
Publication
Journal: Gut
August/25/2004
Abstract
OBJECTIVE
Stress often worsens the symptoms of irritable bowel syndrome (IBS). We hypothesised that this might be explained by altered neuroendocrine and visceral sensory responses to stress in IBS patients.
METHODS
Eighteen IBS patients and 22 control subjects were assessed using rectal balloon distensions before, during, and after mental stress. Ten controls and nine patients were studied in supplementary sessions. Rectal sensitivity (thresholds and intensity-visual analogue scale (VAS)) and perceived stress and arousal (VAS) were determined. Plasma levels of corticotropin releasing factor (CRF), adrenocorticotropic hormone (ACTH), cortisol, noradrenaline, and adrenaline were analysed at baseline, immediately after stress, and after the last distension. Heart rate was recorded continuously.
RESULTS
Thresholds were increased during stress in control subjects (p<0.01) but not in IBS patients. Both groups showed lower thresholds after stress (p<0.05). Repeated distensions without stress did not affect thresholds. Both groups showed increased heart rate (p<0.001) and VAS ratings for stress and arousal (p<0.05) during stress. Patients demonstrated higher ratings for stress but lower for arousal than controls. Basal CRF levels were lower in patients (p<0.05) and increased significantly during stress in patients (p<0.01) but not in controls. Patients also responded with higher levels of ACTH during stress (p<0.05) and had higher basal levels of noradrenaline than controls (p<0.01). Controls, but not patients, showed increased levels of adrenaline and noradrenaline in response to stress (p<0.05).
CONCLUSIONS
Stress induced exaggeration of the neuroendocrine response and visceral perceptual alterations during and after stress may explain some of the stress related gastrointestinal symptoms in IBS.
Publication
Journal: Nature
May/20/1997
Abstract
Adrenaline and noradrenaline, the main effectors of the sympathetic nervous system and adrenal medulla, respectively, are thought to control adiposity and energy balance through several mechanisms. They promote catabolism of triglycerides and glycogen, stimulate food intake when injected into the central nervous system, activate thermogenesis in brown adipose tissue, and regulate heat loss through modulation of peripheral vasoconstriction and piloerection. Thermogenesis in brown adipose tissue occurs in response to cold and overeating (diet induced), and there is an inverse relationship between diet-induced thermogenesis and obesity both in humans and in animal models. As a potential model for obesity, we generated mice that cannot synthesize noradrenaline or adrenaline by inactivating the gene that encodes dopamine beta-hydroxylase. These mice are cold intolerant because they have impaired peripheral vasoconstriction and are unable to induce thermogenesis in brown adipose tissue through uncoupling protein (UCP1). The mutants have increased food intake but do not become obese because their basal metabolic rate is also elevated. The unexpected increase in basal metabolic rate is not due to hyperthyroidism, compensation by the widely expressed uncoupling protein UCP2, or shivering.
Publication
Journal: Pflugers Archiv European Journal of Physiology
October/18/1984
Abstract
In bovine, cat and guinea pig myocytes the effect of bath application of adrenaline or isoprenaline and of injection of cAMP on the Ca channel was studied with the patch clamp (Hamill et al. 1981), and the following results were obtained. On beta-adrenergic stimulation more activity of the single channel on repeated depolarizations and less records without activity were observed. Correspondingly, the average currents were increased. When the patch contained only one channel as judged from the lack of superpositions during all depolarizations, beta-adrenergic stimulation never produced superpositions indicating that the total number of channels did not increase. Also, it was never possible to activate a channel in the mute patch. The single channel conductance was not changed by catecholamines or cAMP. Increase in probability during depolarization of the channel to be in the open state was proven by non-stationary fluctuation analysis. The kinetic analysis showed a prolongation of the open times and shortening of the shut times by catecholamines, indicating that the rate constants in a three state model C1 in equilibrium C2 in equilibrium O are changed in such a way that the equilibrium shifted towards the open state. In some patches clusters of channels were observed, and activity was greatly increased by adrenaline, isoprenaline and cAMP-injection. The decay of the mean current was either mono-exponential or, in most cases, double-exponential. When the decay was mono-exponential, fluctuation analysis showed an increase in open probability on beta-stimulation.(ABSTRACT TRUNCATED AT 250 WORDS)
Publication
Journal: JAMA - Journal of the American Medical Association
May/13/1998
Abstract
BACKGROUND
One of the controversies in preventive medicine is whether a general reduction in sodium intake can decrease the blood pressure of a population and thereby reduce the number of strokes and myocardial infarctions. In recent years the debate has been extended by studies indicating that reduced sodium intake has adverse effects.
OBJECTIVE
To estimate the effects of reduced sodium intake on systolic and diastolic blood pressure (SBP and DBP), body weight, and plasma or serum levels of renin, aldosterone, catecholamines, cholesterols, and triglyceride, and to evaluate the stability of the blood pressure effect in relation to additional trials.
METHODS
MEDLINE search from 1966 through December 1997 and reference lists of relevant articles.
METHODS
Studies randomizing persons to high-sodium and low-sodium diets were included if they evaluated at least one of the effect parameters.
METHODS
Two authors independently recorded data.
RESULTS
In 58 trials of hypertensive persons, the effect of reduced sodium intake as measured by urinary sodium excretion (mean, 118 mmol/24 h) on SBP was 3.9 mm Hg (95% confidence interval [CI], 3.0-4.8 mm Hg) (P<.001) and on DBP was 1.9 mm Hg (95% CI, 1.3-2.5 mm Hg) (P<.001). In 56 trials of normotensive persons, the effect of reduced sodium intake (mean, 160 mmol/24 h) on SBP was 1.2 mm Hg (95% CI, 0.6-1.8 mm Hg) (P<.001) and on DBP was 0.26 mm Hg (95% CI, -0.3-0.9 mm Hg) (P=.12). The cumulative analysis showed that this effect size has been stable since 1985. In plasma, the renin level increased 3.6-fold (P<.001), and the aldosterone level increased 3.2-fold (P<.001); the increases were proportional to the degree of sodium reduction for both renin (r=0.66; P<.001) and aldosterone (r=0.64; P<.001). Body weight decreased significantly, and noradrenaline, cholesterol, and low-density lipoprotein cholesterol levels increased. There was no effect on adrenaline, triglyceride, and high-density lipoprotein cholesterol.
CONCLUSIONS
These results do not support a general recommendation to reduce sodium intake. Reduced sodium intake may be used as a supplementary treatment in hypertension. Further long-term studies of the effects of high reduction of sodium intake on blood pressure and metabolic variables may clarify the disagreements as to the role of reduced sodium intake, but ideally trials with hard end points such as morbidity and survival should end the controversy.
Publication
Journal: Journal of Physiology
October/5/2006
Abstract
Chronic intermittent hypoxia (CIH) augments physiological responses to low partial pressures of O2 in the arterial blood. Adrenal medullae from adult rats, however, are insensitive to direct effects of acute hypoxia. In the present study, we examined whether CIH induces hypoxic sensitivity in the adult rat adrenal medulla and, if so, by what mechanism(s). Experiments were performed on adult male rats exposed to CIH (15 s of 5% O2 followed by 5 min of 21% O2; 9 episodes h(-1); 8 h d(-1); for 3 or 10 days) or to comparable, cumulative durations of continuous hypoxia (CH; 4 h of 7% O2 followed by 20 h of 21% O2 for 1 or 10 days). Noradrenaline (NA) and adrenaline (ADR) effluxes were monitored from ex vivo adrenal medullae. In adrenal medullae of rats exposed to CIH, acute hypoxia evoked robust NA and ADR effluxes, whereas these responses were absent in control rats or in those exposed to CH for 1 or 10 days. Hypercapnia (10% CO2; either acidic, pH 6.8, or isohydric, pH 7.4) was ineffective in eliciting catecholamine (CA) efflux from control, CIH or CH rats. Nicotine (100 microM) evoked NA and ADR effluxes in control rats, and this response was abolished in CIH but not in CH rats. Systemic administration of 2-deoxyglucose depleted ADR content in control rats, and CIH attenuated this response, indicating downregulation of neurally regulated CA secretion. Cytosolic and mitochondrial aconitase enzyme activities decreased in CIH adrenal medullae, suggesting increased generation of superoxide anions. Systemic administration of antioxidants reversed the effect of CIH on the adrenal medulla. Rats exposed to CIH exhibited increased blood pressures and elevated plasma CA, and antioxidants abolished these responses. These observations demonstrate that CIH induces hypoxic sensing in the adult rat adrenal medulla via mechanisms involving increased generation of superoxide anions and suggest that hypoxia-evoked CA efflux from the adrenal medulla contributes, in part, to elevated blood pressure and plasma CA.
Publication
Journal: World Allergy Organization Journal
December/18/2013
Abstract
While food allergies and eczema are among the most common chronic non-communicable diseases in children in many countries worldwide, quality data on the burden of these diseases is lacking, particularly in developing countries. This 2012 survey was performed to collect information on existing data on the global patterns and prevalence of food allergy by surveying all the national member societies of the World Allergy Organization, and some of their neighbouring countries. Data were collected from 89 countries, including published data, and changes in the health care burden of food allergy. More than half of the countries surveyed (52/89) did not have any data on food allergy prevalence. Only 10% (9/89) of countries had accurate food allergy prevalence data, based on oral food challenges (OFC). The remaining countries (23/89) had data largely based on parent-reporting of a food allergy diagnosis or symptoms, which is recognised to overestimate the prevalence of food allergy. Based on more accurate measures, the prevalence of clinical (OFC proven) food allergy in preschool children in developed countries is now as high as 10%. In large and rapidly emerging societies of Asia, such as China, where there are documented increases in food allergy, the prevalence of OFC-proven food allergy is now around 7% in pre-schoolers, comparable to the reported prevalence in European regions. While food allergy appears to be increasing in both developed and developing countries in the last 10-15 years, there is a lack of quality comparative data. This survey also highlights inequities in paediatric allergy services, availability of adrenaline auto-injectors and standardised National Anaphylaxis Action plans. In conclusion, there remains a need to gather more accurate data on the prevalence of food allergy in many developed and developing countries to better anticipate and address the rising community and health service burden of food allergy.
Publication
Journal: British Journal of Pharmacology
January/22/2007
Abstract
Classical biogenic amines (adrenaline, noradrenaline, dopamine, serotonin and histamine) interact with specific families of G protein-coupled receptors (GPCRs). The term 'trace amines' is used when referring to p-tyramine, beta-phenylethylamine, tryptamine and octopamine, compounds that are present in mammalian tissues at very low (nanomolar) concentrations. The pharmacological effects of trace amines are usually attributed to their interference with the aminergic pathways, but in 2001 a new gene was identified, that codes for a GPCR responding to p-tyramine and beta-phenylethylamine but not to classical biogenic amines. Several closely related genes were subsequently identified and designated as the trace amine-associated receptors (TAARs). Pharmacological investigations in vitro show that many TAAR subtypes may not respond to p-tyramine, beta-phenylethylamine, tryptamine or octopamine, suggesting the existence of additional endogenous ligands. A novel endogenous thyroid hormone derivative, 3-iodothyronamine, has been found to interact with TAAR1 and possibly other TAAR subtypes. In vivo, micromolar concentrations of 3-iodothyronamine determine functional effects which are opposite to those produced on a longer time scale by thyroid hormones, including reduction in body temperature and decrease in cardiac contractility. Expression of all TAAR subtypes except TAAR1 has been reported in mouse olfactory epithelium, and several volatile amines were shown to interact with specific TAAR subtypes. In addition, there is evidence that TAAR1 is targeted by amphetamines and other psychotropic agents, while genetic linkage studies show a significant association between the TAAR gene family locus and susceptibility to schizophrenia or bipolar affective disorder.
Publication
Journal: British Journal of Surgery
December/7/1994
Abstract
Laparoscopic cholecystectomy has rapidly become established as the treatment of choice for cholecystolithiasis. There is very little evidence, however, to support the claimed benefit to patients. In the present study 30 consecutive patients below the age of 65 years without acute cholecystitis and with no signs of common bile duct stones were randomized to laparoscopic or conventional open cholecystectomy. Median (interquartile range) intravenous consumption of pethidine with a patient-controlled injection device between 13 and 24 h after surgery was 125 (62-175) mg in patients who underwent the laparoscopic procedure and 200 (150-250) mg in those who had open operation. Urinary adrenaline and cortisol levels as well as those of plasma glucose, C-reactive protein and interleukin 6 were increased after surgery in both groups of patients, but without any significant difference between them. The mean(s.d.) duration of postoperative hospital stay (2.8(0.8) versus 1.8(0.6) days) and sick leave (24.0(4.4) versus 11.7(4.1) days) was significantly longer with open than laparoscopic cholecystectomy. The findings demonstrate obvious advantages of laparoscopic surgery as regards postoperative pain and convalescence, although factors reflecting the magnitude of trauma did not differ.
load more...