Citations
All
Search in:AllTitleAbstractAuthor name
Publications
(2K+)
Patents
Grants
Pathways
Clinical trials
Publication
Journal: Oncogene
August/6/2014
Abstract
Prostate tumors develop resistance to androgen deprivation therapy (ADT) by multiple mechanisms, one of which is to express constitutively active androgen receptor (AR) splice variants lacking the ligand-binding domain. AR splice variant 7 (AR-V7, also termed AR3) is the most abundantly expressed variant that drives prostate tumor progression under ADT conditions. However, the molecular mechanism by which AR-V7 is generated remains unclear. In this manuscript, we demonstrated that RNA splicing of AR-V7 in response to ADT was closely associated with AR gene transcription initiation and elongation rates. Enhanced AR gene transcription by ADT provides a prerequisite condition that further increases the interactions between AR pre-mRNA and splicing factors. Under ADT conditions, recruitment of several RNA splicing factors to the 3' splicing site for AR-V7 was increased. We identified two RNA splicing enhancers and their binding proteins (U2AF65 and ASF/SF2) that had critical roles in splicing AR pre-mRNA into AR-V7. These data indicate that ADT-induced AR gene transcription rate and splicing factor recruitment to AR pre-mRNA contribute to the enhanced AR-V7 levels in prostate cancer cells.
Publication
Journal: Journal of Biological Chemistry
November/24/1996
Abstract
Serine/arginine-rich (SR) proteins are essential for pre-mRNA splicing, and modify the choice of splice site during alternative splicing in a process apparently regulated by protein phosphorylation. Two protein kinases have been cloned that can phosphorylate SR proteins in vitro: SRPK1 and Clk/Sty. Here, we show that these two kinases phosphorylate the same SR proteins in vitro, but that SRPK1 has the higher specific activity toward ASF/SF2. SRPK1, like Clk/Sty, phosphorylates ASF/SF2 in vitro on sites that are also phosphorylated in vivo. Tryptic peptide mapping of ASF/SF2 revealed that three of the phosphopeptides from full-length ASF/SF2 phosphorylated in vitro contain consecutive phosphoserine-arginine residues or phosphoserine-proline residues. In vitro, the Clk/Sty kinase phosphorylated Ser-Arg, Ser-Lys, or Ser-Pro sites, whereas SRPK1 had a strong preference for Ser-Arg sites. These results suggest that SRPK1 and Clk/Sty may play different roles in regulating SR splicing factors, and suggest that Clk/Sty has a broader substrate specificity than SRPK1.
Publication
Journal: Proceedings of the National Academy of Sciences of the United States of America
March/26/1997
Abstract
We showed previously that ASF/SF2, a member of the SR protein family of splicing factors, can activate a splicing enhancer element composed of high-affinity ASF/SF2 binding sites. To determine whether other SR proteins can behave similarly, we selected a high-affinity RNA-binding site (B1) for the SR protein SRp40. Strikingly, the success of this selection was completely dependent on phosphorylation of the RS domain, as unphosphorylated SRp40 failed to select specific sequences. We show that three copies of B1 function as a strong splicing enhancer, activating an intron with suboptimal splicing signals in nuclear extracts. Enhancer activity in S100 extracts (which lack SR proteins) required SRp40 and a nuclear fraction previously found to be required for ASF/SF2-dependent splicing. Importantly, enhancer activity was lost when SRp40 was replaced by ASF/SF2 or SC35, and SRp40 was the only classical SR protein found to be associated with the enhancer. Together, our results indicate that phosphorylation-dependent, sequence-specific RNA binding can impart unique activities to individual SR proteins.
Publication
Journal: RNA
December/30/1997
Abstract
The splicing reaction that removes introns from pre-messenger RNAs requires the assembly of the spliceosome on the nascent transcript, proper folding of the substrate-enzyme complex, and finally, two transesterification reactions. These stages in the splicing reaction must require careful orchestration. Here we show data that suggest that the sequential phosphorylation and dephosphorylation of SR proteins mark the transition between stages in the splicing reaction. Many data had already led to the idea that phosphorylation of SR proteins could modulate their activity, when we showed that dephosphorylation of these proteins abrogates their activity in a reaction measuring conversion of pre-spliceosomes to spliceosomes (Roscigno RF, Garcia-Blanco MA, 1995, RNA 1:692-706). Subsequently, Xiao and Manley (1997, Genes & Dev 11:334-344) showed that phosphorylated ASF/SF2, but not mock-phosphorylated ASF/SF2, activates the splicing of HIV tat pre-mRNA in reactions challenged with excess random RNA. Here we confirm and extend these two findings. Phosphorylated ASF/SF2 efficiently complemented an SR protein-deficient HeLa S100 extract in promoting the splicing of an adenovirus-2-derived pre-messenger RNA, whereas unphosphorylated ASF/ SF2 did not. Moreover, we show that, whereas unphosphorylated ASF/SF2 inhibited splicing in HeLa nuclear extracts, phosphorylation of the ASF/SF2 reversed the inhibition and enhanced splicing. We also present data that shows that dephosphorylation of ASF/SF2 is required for the first transesterification reaction once the spliceosome has assembled. Thiophosphorylated ASF/SF2, which cannot be readily dephosphorylated, can promote spliceosome assembly, but cannot promote the first transesterification reaction. These data, together with other observations, indicate for the first time a requirement for SR protein dephosphorylation in pre-messenger RNA splicing in vitro.
Publication
Journal: Molecular and Cellular Biology
December/18/2000
Abstract
The first component known to recognize and discriminate among potential 5' splice sites (5'SSs) in pre-mRNA is the U1 snRNP. However, the relative levels of U1 snRNP binding to alternative 5'SSs do not necessarily determine the splicing outcome. Strikingly, SF2/ASF, one of the essential SR protein-splicing factors, causes a dose-dependent shift in splicing to a downstream (intron-proximal) site, and yet it increases U1 snRNP binding at upstream and downstream sites simultaneously. We show here that hnRNP A1, which shifts splicing towards an upstream 5'SS, causes reduced U1 snRNP binding at both sites. Nonetheless, the importance of U1 snRNP binding is shown by proportionality between the level of U1 snRNP binding to the downstream site and its use in splicing. With purified components, hnRNP A1 reduces U1 snRNP binding to 5'SSs by binding cooperatively and indiscriminately to the pre-mRNA. Mutations in hnRNP A1 and SF2/ASF show that the opposite effects of the proteins on 5'SS choice are correlated with their effects on U1 snRNP binding. Cross-linking experiments show that SF2/ASF and hnRNP A1 compete to bind pre-mRNA, and we conclude that this competition is the basis of their functional antagonism; SF2/ASF enhances U1 snRNP binding at all 5'SSs, the rise in simultaneous occupancy causing a shift in splicing towards the downstream site, whereas hnRNP A1 interferes with U1 snRNP binding such that 5'SS occupancy is lower and the affinities of U1 snRNP for the individual sites determine the site of splicing.
Publication
Journal: EMBO Journal
January/10/1999
Abstract
SR proteins are a conserved family of splicing factors that function in both constitutive and activated splicing. We reported previously that phosphorylation of the SR protein ASF/SF2 enhances its interaction with the U1 snRNP-specific 70K protein and is required for the protein to function in splicing, while other studies have provided evidence that subsequent dephosphorylation can also be required for SR protein function, at least in constitutive splicing. We now show that the phosphorylation status of ASF/SF2 can differentially affect several properties of the protein. In keeping with a dynamic cycle of phosphorylation-dephosphorylation during splicing, ASF/SF2 phosphorylation was found to affect interaction with several putative protein targets in different ways: positively, negatively or not at all. Extending these results, we also show that, in contrast to constitutive splicing, dephosphorylation is not required for ASF/SF2 to function as a splicing activator. We discuss these results with respect to the differential protein-protein interactions that must occur during constitutive and activated splicing.
Publication
Journal: Journal of Cell Biology
November/9/2010
Abstract
Epithelial-to-mesenchymal transition (EMT) and its reversal (MET) are crucial cell plasticity programs that act during development and tumor metastasis. We have previously shown that the splicing factor and proto-oncogene SF2/ASF impacts EMT/MET through production of a constitutively active splice variant of the Ron proto-oncogene. Using an in vitro model, we now show that SF2/ASF is also regulated during EMT/MET by alternative splicing associated with the nonsense-mediated mRNA decay pathway (AS-NMD). Overexpression and small interfering RNA experiments implicate the splicing regulator Sam68 in AS-NMD of SF2/ASF transcripts and in the choice between EMT/MET programs. Moreover, Sam68 modulation of SF2/ASF splicing appears to be controlled by epithelial cell-derived soluble factors that act through the ERK1/2 signaling pathway to regulate Sam68 phosphorylation. Collectively, our results reveal a hierarchy of splicing factors that integrate splicing decisions into EMT/MET programs in response to extracellular stimuli.
Publication
Journal: Proceedings of the National Academy of Sciences of the United States of America
June/21/2009
Abstract
Eukaryotic gene expression is commonly controlled at the level of RNA polymerase II (RNAPII) pausing subsequent to transcription initiation. Transcription elongation is stimulated by the positive transcription elongation factor b (P-TEFb) kinase, which is suppressed within the 7SK small nuclear ribonucleoprotein (7SK snRNP). However, the biogenesis and functional significance of 7SK snRNP remain poorly understood. Here, we report that LARP7, BCDIN3, and the noncoding 7SK small nuclear RNA (7SK) are vital for the formation and stability of a cell stress-resistant core 7SK snRNP. Our functional studies demonstrate that 7SK snRNP is not only critical for controlling transcription elongation, but also for regulating alternative splicing of pre-mRNAs. Using a transient expression splicing assay, we find that 7SK snRNP disintegration promotes inclusion of an alternative exon via the increased occupancy of P-TEFb, Ser2-phosphorylated (Ser2-P) RNAPII, and the splicing factor SF2/ASF at the minigene. Importantly, knockdown of larp7 or bcdin3 orthologues in zebrafish embryos destabilizes 7SK and causes severe developmental defects and aberrant splicing of analyzed transcripts. These findings reveal a key role for P-TEFb in coupling transcription elongation with alternative splicing, and suggest that maintaining core 7SK snRNP is essential for vertebrate development.
Publication
Journal: Molecular Cell
May/6/2010
Abstract
Both splicing factors and microRNAs are important regulatory molecules that play key roles in posttranscriptional gene regulation. By miRNA deep sequencing, we identified 40 miRNAs that are differentially expressed upon ectopic overexpression of the splicing factor SF2/ASF. Here we show that SF2/ASF and one of its upregulated microRNAs (miR-7) can form a negative feedback loop: SF2/ASF promotes miR-7 maturation, and mature miR-7 in turn targets the 3'UTR of SF2/ASF to repress its translation. Enhanced microRNA expression is mediated by direct interaction between SF2/ASF and the primary miR-7 transcript to facilitate Drosha cleavage and is independent of SF2/ASF's function in splicing. Other miRNAs, including miR-221 and miR-222, may also be regulated by SF2/ASF through a similar mechanism. These results underscore a function of SF2/ASF in pri-miRNA processing and highlight the potential coordination between splicing control and miRNA-mediated gene repression in gene regulatory networks.
Publication
Journal: Molecular and Cellular Biology
February/13/2000
Abstract
Exonic splicing enhancers (ESEs) are important cis elements required for exon inclusion. Using an in vitro functional selection and amplification procedure, we have identified a novel ESE motif recognized by the human SR protein SC35 under splicing conditions. The selected sequences are functional and specific: they promote splicing in nuclear extract or in S100 extract complemented by SC35 but not by SF2/ASF. They can also function in a different exonic context from the one used for the selection procedure. The selected sequences share one or two close matches to a short and highly degenerate octamer consensus, GRYYcSYR. A score matrix was generated from the selected sequences according to the nucleotide frequency at each position of their best match to the consensus motif. The SC35 score matrix, along with our previously reported SF2/ASF score matrix, was used to search the sequences of two well-characterized splicing substrates derived from the mouse immunoglobulin M (IgM) and human immunodeficiency virus tat genes. Multiple SC35 high-score motifs, but only two widely separated SF2/ASF motifs, were found in the IgM C4 exon, which can be spliced in S100 extract complemented by SC35. In contrast, multiple high-score motifs for both SF2/ASF and SC35 were found in a variant of the Tat T3 exon (lacking an SC35-specific silencer) whose splicing can be complemented by either SF2/ASF or SC35. The motif score matrix can help locate SC35-specific enhancers in natural exon sequences.
Publication
Journal: Molecular Cell
April/5/2009
Abstract
Histone H3 serine 10 phosphorylation is a hallmark of mitotic chromosomes, but its full function remains to be elucidated. We report here that two SR protein splicing factors, SRp20 and ASF/SF2, associate with interphase chromatin, are released from hyperphosphorylated mitotic chromosomes, but reassociate with chromatin late in M-phase. Inhibition of Aurora B kinase diminished histone H3 serine 10 phosphorylation and increased SRp20 and ASF/SF2 retention on mitotic chromosomes. Unexpectedly, we also found that HP1 proteins interact with ASF/SF2 in mitotic cells. Strikingly, siRNA-mediated knockdown of ASF/SF2 caused retention of HP1 proteins on mitotic chromatin. Finally, ASF/SF2-depleted cells released from a mitotic block displayed delayed G0/G1 entry, suggesting a functional consequence of these interactions. These findings underscore the evolving role of histone H3 phosphorylation and demonstrate a direct, functional, and histone-modification-regulated association of SRp20 and ASF/SF2 with chromatin.
Publication
Journal: Medical Physics
February/14/2005
Abstract
Three algorithms for breast tomosynthesis reconstruction were compared in this paper, including (1) a back-projection (BP) algorithm (equivalent to the shift-and-add algorithm), (2) a Feldkamp filtered back-projection (FBP) algorithm, and (3) an iterative Maximum Likelihood (ML) algorithm. Our breast tomosynthesis system acquires 11 low-dose projections over a 50 degree angular range using an a-Si (CsI:Tl) flat-panel detector. The detector was stationary during the acquisition. Quality metrics such as signal difference to noise ratio (SDNR) and artifact spread function (ASF) were used for quantitative evaluation of tomosynthesis reconstructions. The results of the quantitative evaluation were in good agreement with the results of the qualitative assessment. In patient imaging, the superimposed breast tissues observed in two-dimensional (2D) mammograms were separated in tomosynthesis reconstructions by all three algorithms. It was shown in both phantom imaging and patient imaging that the BP algorithm provided the best SDNR for low-contrast masses but the conspicuity of the feature details was limited by interplane artifacts; the FBP algorithm provided the highest edge sharpness for microcalcifications but the quality of masses was poor; the information of both the masses and the microcalcifications were well restored with balanced quality by the ML algorithm, superior to the results from the other two algorithms.
Publication
Journal: RNA
December/27/1995
Abstract
Pre-spliceosomes, formed in HeLa nuclear extracts and isolated by sedimentation on glycerol gradients, were chased into spliceosomes, the macromolecular enzyme that catalyzes intron removal. We demonstrate that the pre-spliceosome to spliceosome transition was dependent on ATP hydrolysis and required both a U-rich small nuclear ribonucleoprotein (U snRNP)-containing fraction and a fraction of non-snRNP factors. The active components in the non-snRNP fraction were identified as SR proteins and were purified to apparent homogeneity. Recombinant SR proteins (ASF, SC35, SRp55), as well as gel-purified SR proteins, with the exception of SRp20, were able to restore efficient spliceosome formation. We also demonstrate that the pre-spliceosome to spliceosome transition requires phosphorylated SR proteins. This is the first evidence that SR proteins are required for the pre-spliceosome to spliceosome transition, the step at which the U4/U6.U5 tri-snRNP assembles on the pre-mRNA. The results shown here, together with previous data, suggest U snRNPs require SR proteins as escorts to enter the assembling spliceosome.
Publication
Journal: EMBO Journal
May/14/2000
Abstract
The SR proteins constitute a family of nuclear phosphoproteins, which are required for constitutive splicing and also influence alternative splicing regulation. Initially, it was suggested that SR proteins were functionally redundant in constitutive splicing. However, differences have been observed in alternative splicing regulation, suggesting unique functions for individual SR proteins. Homology searches of the Caenorhabditis elegans genome identified seven genes encoding putative orthologues of the human factors SF2/ASF, SRp20, SC35, SRp40, SRp75 and p54, and also several SR-related genes. To address the issue of functional redundancy, we used dsRNA interference (RNAi) to inhibit specific SR protein function during C.elegans development. RNAi with CeSF2/ASF caused late embryonic lethality, suggesting that this gene has an essential function during C.elegans development. RNAi with other SR genes resulted in no obvious phenotype, which is indicative of gene redundancy. Simultaneous interference of two or more SR proteins in certain combinations caused lethality or other developmental defects. RNAi with CeSRPK, an SR protein kinase, resulted in early embryonic lethality, suggesting an essential role for SR protein phosphorylation during development.
Publication
Journal: Molecular and Cellular Biology
October/7/2002
Abstract
Splicing factors of the SR protein family share a modular structure consisting of one or two RNA recognition motifs (RRMs) and a C-terminal RS domain rich in arginine and serine residues. The RS domain, which is extensively phosphorylated, promotes protein-protein interactions and directs subcellular localization and-in certain situations-nucleocytoplasmic shuttling of individual SR proteins. We analyzed mutant versions of human SF2/ASF in which the natural RS repeats were replaced by RD or RE repeats and compared the splicing and subcellular localization properties of these proteins to those of SF2/ASF lacking the entire RS domain or possessing a minimal RS domain consisting of 10 consecutive RS dipeptides (RS10). In vitro splicing of a pre-mRNA that requires an RS domain could take place when the mutant RD, RE, or RS10 domain replaced the natural domain. The RS10 version of SF2/ASF shuttled between the nucleus and the cytoplasm in the same manner as the wild-type protein, suggesting that a tract of consecutive RS dipeptides, in conjunction with the RRMs of SF2/ASF, is necessary and sufficient to direct nucleocytoplasmic shuttling. However, the SR protein SC35 has two long stretches of RS repeats, yet it is not a shuttling protein. We demonstrate the presence of a dominant nuclear retention signal in the RS domain of SC35.
Publication
Journal: Archives of Virology
May/29/2003
Abstract
A PCR-based sequencing method was developed which permits detection and characterization of African swine fever virus (ASFV) variants within 5 and 48 h, respectively, of receipt of a clinical specimen. Amplification of a 478 bp fragment corresponding to the C-terminal end of the p72 gene, confirms virus presence with genetic characterization being achieved by nucleotide sequence determination and phylogenetic analysis. The method was applied to 55 viruses including those representative of the major ASF lineages identified previously by restriction fragment length polymorphism (RFLP) analysis. Results confirmed that the p72 genotyping method identifies the same major viral groupings. Characterization of additional viruses of diverse geographical, species and temporal origin using the PCR-based method indicated the presence of ten major ASF genotypes on the African continent, the largest of which comprised a group of genetically homogeneous viruses recovered from outbreaks in Europe, South America, the Caribbean and West Africa (the ESAC-WA genotype). In contrast, viruses from southern and East African countries were heterogeneous, with multiple genotypes being present within individual countries. This study provides a rapid and accurate means of determining the genotype of field and outbreak strains of ASF and is therefore useful for molecular epidemiological clarification of ASF.
Publication
Journal: PLoS Computational Biology
September/29/2010
Abstract
Metazoan genomes encode hundreds of RNA-binding proteins (RBPs). These proteins regulate post-transcriptional gene expression and have critical roles in numerous cellular processes including mRNA splicing, export, stability and translation. Despite their ubiquity and importance, the binding preferences for most RBPs are not well characterized. In vitro and in vivo studies, using affinity selection-based approaches, have successfully identified RNA sequence associated with specific RBPs; however, it is difficult to infer RBP sequence and structural preferences without specifically designed motif finding methods. In this study, we introduce a new motif-finding method, RNAcontext, designed to elucidate RBP-specific sequence and structural preferences with greater accuracy than existing approaches. We evaluated RNAcontext on recently published in vitro and in vivo RNA affinity selected data and demonstrate that RNAcontext identifies known binding preferences for several control proteins including HuR, PTB, and Vts1p and predicts new RNA structure preferences for SF2/ASF, RBM4, FUSIP1 and SLM2. The predicted preferences for SF2/ASF are consistent with its recently reported in vivo binding sites. RNAcontext is an accurate and efficient motif finding method ideally suited for using large-scale RNA-binding affinity datasets to determine the relative binding preferences of RBPs for a wide range of RNA sequences and structures.
Publication
Journal: Human Molecular Genetics
March/13/2008
Abstract
Homozygous deletion or mutation of the survival of motor neuron 1 gene (SMN1) causes spinal muscular atrophy. SMN1 has been duplicated in humans to create SMN2, which produces a low level of functional SMN protein. However, most SMN2 transcripts lack exon 7, resulting in a non-functional protein. A single nucleotide difference near the 5' end of exon 7 largely accounts for SMN2 exon 7 skipping, an effect that has been attributed to loss of an exonic splicing enhancer (ESE) dependent on the SR protein splicing factor ASF/SF2 or to the creation of an exonic splicing silencer (ESS) element that functions by binding of the splicing repressor hnRNP A1. Our earlier experiments favored the latter mechanism and here we provide further evidence supporting the ESS model. We demonstrate that the striking effect of hnRNP A1 depletion on SMN2 exon 7 splicing is specific, as hnRNP A1 depletion has little or no effect on other inefficient splicing events tested, and ASF/SF2 depletion does not affect SMN1/2 splicing. By two different methods, we find a strong and specific interaction of hnRNPA1 with SMN2 exon 7 and only weak and equivalent interactions between ASF/SF2 and other SR proteins with the 5' ends of SMN1 and SMN2 exon 7. Finally, we describe two disease-related exon-skipping mutations that create hnRNP A1 binding sites, but show that splicing can be restored only modestly or not at all by hnRNP A1 depletion. Together our results provide strong support for the idea that SMN2 exon 7 splicing is repressed by an hnRNPA1-dependent ESS, but also indicate that creation of such elements is context-dependent.
Publication
Journal: Genes and Development
May/31/1999
Abstract
SR proteins are nuclear phosphoproteins with a characteristic Ser/Arg-rich domain and one or two RNA recognition motifs. They are highly conserved in animals and plants and play important roles in spliceosome assembly and alternative splicing regulation. We have now isolated and partially sequenced a plant protein, which crossreacts with antibodies to human SR proteins. The sequence of the corresponding cDNA and genomic clones from Arabidopsis revealed a protein, atSRp30, with strong similarity to the human SR protein SF2/ASF and to atSRp34/SR1, a previously identified SR protein, indicating that plants possess two SF2/ASF-like proteins. atSRp30 expresses alternatively spliced mRNA isoforms that are expressed differentially in various organs and during development. Overexpression of atSRp30 via a strong constitutive promoter resulted in changes in alternative splicing of several endogenous plant genes, including atSRp30 itself. Interestingly, atSRp30 overexpression resulted in a pronounced down-regulation of endogenous mRNA encoding full-length atSRp34/SR1 protein. Transgenic plants overexpressing atSRp30 showed morphological and developmental changes affecting mostly developmental phase transitions. atSRp30- and atSRp34/SR1-promoter-GUS constructs exhibited complementary expression patterns during early seedling development and root formation, with overlapping expression in floral tissues. The results of the structural and expression analyses of both genes suggest that atSRp34/SR1 acts as a general splicing factor, whereas atSRp30 functions as a specific splicing modulator.
Publication
Journal: Medical Physics
December/4/2006
Abstract
Digital tomosynthesis mammography (DTM) is a promising new modality for breast cancer detection. In DTM, projection-view images are acquired at a limited number of angles over a limited angular range and the imaged volume is reconstructed from the two-dimensional projections, thus providing three-dimensional structural information of the breast tissue. In this work, we investigated three representative reconstruction methods for this limited-angle cone-beam tomographic problem, including the backprojection (BP) method, the simultaneous algebraic reconstruction technique (SART) and the maximum likelihood method with the convex algorithm (ML-convex). The SART and ML-convex methods were both initialized with BP results to achieve efficient reconstruction. A second generation GE prototype tomosynthesis mammography system with a stationary digital detector was used for image acquisition. Projection-view images were acquired from 21 angles in 3 degrees increments over a +/- 30 degrees angular range. We used an American College of Radiology phantom and designed three additional phantoms to evaluate the image quality and reconstruction artifacts. In addition to visual comparison of the reconstructed images of different phantom sets, we employed the contrast-to-noise ratio (CNR), a line profile of features, an artifact spread function (ASF), a relative noise power spectrum (NPS), and a line object spread function (LOSF) to quantitatively evaluate the reconstruction results. It was found that for the phantoms with homogeneous background, the BP method resulted in less noisy tomosynthesized images and higher CNR values for masses than the SART and ML-convex methods. However, the two iterative methods provided greater contrast enhancement for both masses and calcification, sharper LOSF, and reduced interplane blurring and artifacts with better ASF behaviors for masses. For a contrast-detail phantom with heterogeneous tissue-mimicking background, the BP method had strong blurring artifacts along the x-ray source motion direction that obscured the contrast-detail objects, while the other two methods can remove the superimposed breast structures and significantly improve object conspicuity. With a properly selected relaxation parameter, the SART method with one iteration can provide tomosynthesized images comparable to those obtained from the ML-convex method with seven iterations, when BP results were used as initialization for both methods.
Publication
Journal: Genes and Development
December/19/2005
Abstract
ASF/SF2 is an SR protein splicing factor that participates in constitutive and alternative pre-mRNA splicing and is essential for cell viability. Using a genetically modified chicken B-cell line, DT40-ASF, we now show that ASF/SF2 inactivation results in a G2-phase cell cycle arrest and subsequent programmed cell death. However, although several hallmarks of apoptosis are apparent, internucleosomal DNA fragmentation was not detected. Furthermore, inactivation of ASF/SF2 also blocks DNA fragmentation normally induced by a variety of apoptotic stimuli. Notably, mRNA encoding the inhibitor of caspase-activated DNase-L (ICAD-L), which acts as an inhibitor as well as a chaperone of caspase-activated DNase (CAD), decreased in abundance, whereas the level of mRNA encoding ICAD-S, which has only inhibitory activity, increased upon ASF/SF2 depletion. Strikingly, expression of appropriate levels of exogenous human ICAD-L restored apoptotic DNA laddering in ASF/SF2-depleted cells. These results not only indicate that loss of an SR protein splicing factor can induce cell cycle arrest and apoptosis, but also illustrate the important role of ICAD and its regulation by alternative splicing in the process of apoptotic DNA fragmentation.
Publication
Journal: Molecular and Cellular Biology
March/24/1999
Abstract
We report striking differences in the substrate specificities of two human SR proteins, SF2/ASF and SC35, in constitutive splicing. beta-Globin pre-mRNA (exons 1 and 2) is spliced indiscriminately with either SR protein. Human immunodeficiency virus tat pre-mRNA (exons 2 and 3) and immunoglobulin mu-chain (IgM) pre-mRNA (exons C3 and C4) are preferentially spliced with SF2/ASF and SC35, respectively. Using in vitro splicing with mutated or chimeric derivatives of the tat and IgM pre-mRNAs, we defined specific combinations of segments in the downstream exons, which mediate either positive or negative effects to confer SR protein specificity. A series of recombinant chimeric proteins consisting of domains of SF2/ASF and SC35 in various combinations was used to localize trans-acting domains responsible for substrate specificity. The RS domains of SF2/ASF and SC35 can be exchanged without effect on substrate specificity. The RNA recognition motifs (RRMs) of SF2/ASF are active only in the context of a two-RRM structure, and RRM2 has a dominant role in substrate specificity. In contrast, the single RRM of SC35 can function alone, but its substrate specificity can be influenced by the presence of an additional RRM. The RRMs behave as modules that, when present in different combinations, can have positive, neutral, or negative effects on splicing, depending upon the specific substrate. We conclude that SR protein-specific recognition of specific positive and negative pre-mRNA exonic elements via one or more RRMs is a crucial determinant of the substrate specificity of SR proteins in constitutive splicing.
Publication
Journal: EMBO Journal
July/25/1994
Abstract
By adopting a monoclonal antibody approach, we have identified a novel splicing factor of 35 kDa which we have termed 9G8. The isolation and characterization of cDNA clones indicate that 9G8 is a novel member of the serine/arginine (SR) splicing factor family because it includes an N-terminal RNA binding domain (RBD) and a C-terminal SR domain. The RNA binding domain of 9G8 is highly homologous to those of the SRp20 and RBP1 factors (79-71% identity), but the homology is less pronounced in the cases of SF2/ASF and SC35/PR264 (45-37% identity). Compared with the other SR splicing factors, 9G8 presents some specific sequence features because it contains an RRSRSXSX consensus sequence repeated six times in the SR domain, and a CCHC motif in its median region, similar to the zinc knuckle found in the SLU7 splicing factor in yeast. Complete immunodepletion of 9G8 from a nuclear extract, which is accompanied by a substantial depletion of other SR factors, results in a loss of splicing activity. We show that a recombinant 9G8 protein, expressed using a baculovirus vector and excluding other SR factors, rescues the splicing activity of a 9G8-depleted nuclear extract and an S100 cytoplasmic fraction. This indicates that 9G8 plays a crucial role in splicing, similar to that of the other SR splicing factors. This similarity was confirmed by the fact that purified human SC35 also rescues the 9G8-depleted extract. The identification of the 9G8 factor enlarges the essential family of SR splicing factors, whose members have also been proposed to play key roles in alternative splicing.
Publication
Journal: Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie
April/17/2016
Abstract
The functions of long non-coding RNAs (lncRNAs) in gastric cancer (GC) remain largely unknown. MALAT1 is a kind of lncRNA that had been validated as a pivotal metastasis and prognosis mark in lung adenocarcinoma. In this study, we found that MALAT1 was aberrantly highly expressed in GC cell lines (SGC-7901, MKN-45 and SUN-16), and induced specific distribution and over-expression of SF2/ASF in nucleolus. Knock-down of MALAT1 or SF2/ASF in SGC-7901 cells respectively induced significant arrest of cell cycle in G0/G1 phase along with a remarkable suppression of cell proliferation, and the nuclear distribution and expression of SF2/ASF was significantly impaired when MALAT1 was depleted. However, over-expression of SF2/ASF exhibited no effect on rescuing the cell proliferation suppression by MALAT1 depletion. These results suggest that MALAT1 may function as a promoter of GC cell proliferation partly by regulating SF2/ASF, and our findings may provide us a likely biomarker and a potential target for GC diagnosis and therapeutic treatment.
load more...