Citations
All
Search in:AllTitleAbstractAuthor name
Publications
(517)
Patents
Grants
Pathways
Clinical trials
Publication
Journal: Journal of Lipid Research
August/2/2011
Abstract
Inflammation has been proposed to impair HDL function and reverse cholesterol transport (RCT). We investigated the effects of inflammation mediated by zymosan, a yeast glucan, on multiple steps along the RCT pathway in vivo and ex vivo. Acute inflammation with 70 mg/kg zymosan impaired RCT to plasma, liver, and feces similarly by 17-22% (P < 0.05), with no additional block at the liver. Hepatic gene expression further demonstrated no change in ABCG5, ABCB4, and ABCB11 expression but a decline in ABCG8 mRNA (32% P < 0.05). Plasma from zymosan-treated mice had a 21% decrease in cholesterol acceptor ability (P < 0.01) and a 35% decrease in ABCA1-specific efflux capacity (P < 0.01) in vitro. Zymosan treatment also decreased HDL levels and led to HDL remodeling with increased incorporation of serum amyloid A. In addition, cholesterol efflux from cultured macrophages declined with zymosan treatment in a dose dependent manner. Taken together, our results suggest that zymosan impairs in vivo RCT primarily by decreasing macrophage-derived cholesterol entering the plasma, with minimal additional blocks downstream. Our study supports the notion that RCT impairment is one of the mechanisms for the increased atherosclerotic burden observed in inflammatory conditions.
Publication
Journal: Journal of Lipid Research
March/23/2005
Abstract
Fibrates, including bezafibrate (BF), upregulate the expression of ATP binding cassette protein B4 (ABCB4) through gene transcription in mice. To determine the effects of BF on the expression levels of ABCB4 and on the stimulation of biliary phosphatidylcholine (PC) transport in human HepG2 hepatoblastoma cells, mRNA and protein levels as well as subcellular localization were investigated in the cells treated with BF. The canalicular accumulation of a fluorescent PC was assessed by confocal laser scanning microscopy. Treatment with 300 micromol/l BF for 24 h increased levels of ABCB4 mRNA but not protein by up to 151%. BF caused redistribution of ABCB4 into pseudocanaliculi formed between cells. In association with this redistribution, BF accelerated the accumulation of fluorescent PC in bile canaliculi (up to 163% of that in nontreated cells). Suppression of peroxisome proliferator-activated receptor alpha (PPARalpha) expression by either a small interfering RNA duplex or morpholino antisense oligonucleotide attenuated the BF-induced redistribution of ABCB4. These findings suggest that BF may enhance the capacity of human hepatocytes to direct PC into bile canaliculi via PPARalpha-mediated redistribution of ABCB4 to the canalicular membrane. This provides a rationale for the use of BF to improve cholestasis and/or cholangitis that is attributable to hypofunction of ABCB4.
Publication
Journal: Journal of Pediatric Gastroenterology and Nutrition
May/8/2008
Abstract
Three distinct forms of familial intrahepatic cholestasis are the result of mutations in the ATP8B1, ABCB11, and ABCB4 genes. The pathophysiologies of the latter 2 of these diseases are well characterized and are the result of abnormalities in canalicular excretion of bile acids and phospholipids, respectively. The molecular pathophysiology of the systemic disease associated with mutations in ATP8B1 remains unclear. In all of these diseases, wide variations in clinical phenotypes have been observed. The variability can be ascribed at least in part to predicted genotype:phenotype correlations. Disease- and genotype-specific prognoses and therapeutic approaches may exist, although much more information needs to be ascertained before clinicians can confidently make decisions based on genetic information.
Publication
Journal: Hepatology
October/26/2008
Abstract
Cholestatic liver disease (CLD) is a major cause of progressive liver damage and liver failure. Several forms of biliary cirrhosis are caused by mutations in specific genes. We sought to identify a genetic defect in a family with CLD impossible to assign to a distinct pathogenic entity. Clinical and histopathological characterization of the family members, microarray-based single-nucleotide polymorphism genotyping, and analysis of candidate genes were performed. Among six of 11 siblings severely affected by idiopathic CLD in a family from a population isolate in Transylvania, three died of cirrhosis (aged 5, 7, and 43 years) and three had adult-onset disease with small duct cholangiopathy, including ductopenia. Others were mildly affected and experienced intrahepatic cholestasis of pregnancy, miscarriages, or stillbirth. Pedigree studies revealed distant parental consanguinity. Genome-wide linkage analysis and autozygosity mapping yielded a single maximal lod-score of 3.88 on chromosome 7q21.1-7q22, excluding other genomic loci. Sequencing of ABCB4 at this locus revealed a novel missense mutation c.2362C>T (p.Arg788Trp) which cosegregated with severity of disease. Bile from a mutation homozygote showed a reduced phosphatidylcholine/bile acid ratio, consistent with reduced ABCB4 phosphatidylcholine transport activity.
CONCLUSIONS
We show that a missense mutation in ABCB4 is a cause for ductopenic CLD in adulthood. Allelic status correlated with severity of liver disease ranging from intrahepatic cholestasis of pregnancy through fibrosis to cirrhosis and death in childhood and adulthood. Mutational analysis of ABCB4 should be generally considered in all patients with cholestatic liver disease of unknown etiology regardless of age and onset of disease.
Publication
Journal: Molecules
June/4/2015
Abstract
Sorcin is a penta-EF hand calcium binding protein, which participates in the regulation of calcium homeostasis in cells. Sorcin regulates calcium channels and exchangers located at the plasma membrane and at the endo/sarcoplasmic reticulum (ER/SR), and allows high levels of calcium in the ER to be maintained, preventing ER stress and possibly, the unfolded protein response. Sorcin is highly expressed in the heart and in the brain, and overexpressed in many cancer cells. Sorcin gene is in the same amplicon as other genes involved in the resistance to chemotherapeutics in cancer cells (multi-drug resistance, MDR) such as ABCB4 and ABCB1; its overexpression results in increased drug resistance to a number of chemotherapeutic agents, and inhibition of sorcin expression by sorcin-targeting RNA interference leads to reversal of drug resistance. Sorcin is increasingly considered a useful marker of MDR and may represent a therapeutic target for reversing tumor multidrug resistance.
Publication
Journal: Hepatology
March/24/2012
Abstract
Induction or overexpression of the heme-degrading enzyme, heme oxygenase 1 (HO-1), has been shown to protect mice from liver damage induced by acute inflammation. We have investigated the effects of HO-1 induction in a mouse model of chronic liver inflammation and fibrogenesis with progression to hepatocellular carcinoma (HCC) (Mdr2ko; FVB.129P2-Abcb4(tm1Bor)). HO-1 was induced in vivo by treatment with cobalt protoporphyrin IX, starting at week 5 or 12 of mice lifespan, and continued for 7 weeks. Our results showed that HO-1 induction reduced liver damage and chronic inflammation by regulating immune cell infiltration or proliferation as well as tumor necrosis factor receptor signaling. Fibrosis progression was significantly reduced by HO-1 induction in mice with mild, as well as established, portal and lobular fibrosis. HO-1 induction significantly suppressed hepatic stellate cell activation. During established fibrosis, HO-1 induction was able to revert portal inflammation and fibrosis below levels observed at the start of treatment. Moreover, hepatocellular proliferation and signs of dysplasia were decreased after HO-1 induction.
CONCLUSIONS
Induction of HO-1 interferes with chronic inflammation and fibrogenesis and, in consequence, might delay progression to HCC.
Publication
Journal: Pharmacogenetics and Genomics
November/1/2006
Abstract
BACKGROUND
The ATP-binding cassette (ABC) proteins are a superfamily of efflux pumps implicated as a mechanism for multidrug resistance in cytotoxic chemotherapy, immunosuppressive therapy, HIV and epilepsy. Genetic variation in P-glycoprotein, the product of the ABCB1 gene, is proposed to mediate de novo drug resistance, but associations between polymorphisms in ABCB1 and pharmacoresistance have produced conflicting results. Potential explanations for the inconsistency of results include inadequate characterization of gene structure, variation and linkage disequilibrium (LD) in ABCB1, as well as overlap in substrate specificity between ABCB1 and the various other drug transporters.
RESULTS
We undertook a fundamental analysis of gene structure, variation and LD in ABCB1 and four other drug transporter genes implicated in pharmacoresistance: ABCC1, ABCC2, ABCC5 and ABCB4. Manual annotation of the five genes revealed nine shorter alternative transcripts with new untranslated regions and one novel region of coding sequence, demonstrating that on-line annotations are incomplete. Sequencing of exons in 47 Caucasian individuals identified 75 novel single nucleotide polymorphisms (SNPs) previously undescribed in any public database, including 14 new coding sequence SNPs. Genotyping of 502 SNPs in 842 Caucasian individuals across the five genes revealed large blocks of high LD, and low haplotype diversity across all five genes that could be characterized by between 67 and 114 tagging SNPs, depending on the tagging criteria.
CONCLUSIONS
The study illustrates that publicly available data resources on genomic organization of genes and common variation can have important gaps and limitations, and establishes a comprehensive set of tagging SNPs for future association studies in pharmacoresistance.
Publication
Journal: Hepatology
January/22/2007
Abstract
Intrahepatic cholestasis of pregnancy (ICP) is defined as pruritus and elevated bile acid serum concentrations in late pregnancy. Splicing mutations have been described in the multidrug resistance p-glycoprotein 3 (MDR3, ABCB4) gene in up to 20% of ICP women. Pedigrees studied were not large enough for linkage analysis. Ninety-seven family members of a woman with proven ICP were asked about pruritus in earlier pregnancies, birth complications and symptomatic gallstone disease. The familial cholestasis type 1 (FIC1, ATP8B1) gene, bile salt export pump (BSEP, ABCB11) and MDR3 gene were analyzed in 55 relatives. We identified a dominant mode of inheritance with female restricted expression and a new intronic MDR3 mutation c.3486+5G>A resulting in a 54 bp (3465-3518) inframe deletion via cryptic splicing site activation. Linkage analysis of the ICP trait versus this intragenic MDR3 variant yielded a LOD score of 2.48. A Bayesian analysis involving MDR3, BSEP, FIC1 and an unknown locus gave a posterior probability of >0.9966 in favor of MDR3 as causative ICP locus. During the episode of ICP the median gamma-glutamyl transpeptidase (gamma-GT) activity was 10 U/l (95% CI, 6.9 to 14.7 U/l) in the index woman. Four stillbirths were reported in seven heterozygous women (22 pregnancies) and none in five women (14 pregnancies) without MDR3 mutation. Symptomatic gallstone disease was more prevalent in heterozygous relatives (7/21) than in relatives without the mutation (1/34), (P = 0.00341).
CONCLUSIONS
This study demonstrates that splicing mutations in the MDR3 gene can cause ICP with normal gamma-GT and may be associated with stillbirths and gallstone disease.
Publication
Journal: Seminars in Liver Disease
August/2/2010
Abstract
Intrahepatic cholestasis of pregnancy and drug-induced cholestasis are two clinically important forms of acquired cholestatic liver disease. The understanding of the underlying mechanisms of acquired cholestasis has recently made considerable progress by the identification of canalicular ATP-binding cassette (ABC) transporters as likely targets for these forms of cholestasis. Cholestasis of pregnancy is linked to estrogen and progesterone metabolites. These metabolites have been shown to impair the bile salt export pump (BSEP) function by an indirect mechanism. In addition, genetic variants (as well as mutants) of the genes coding for the phosphatidylcholine translocator MDR3 and BSEP and for the farnesoid X receptor, which is critical in the transcriptional activation of MDR3 ( ABCB4) and BSEP ( ABCB11) have been associated with intrahepatic cholestasis of pregnancy. The pathogenesis of drug-induced liver injury encompasses a wide spectrum of mechanisms, some of which are still poorly understood. BSEP is now known to be subject to drug inhibition in susceptible patients. Information on genetic factors rendering individuals susceptible to inhibition of BSEP by drugs or their metabolites is still scarce. Besides rare mutations that have been linked to drug-induced cholestasis, the common p.V444A polymorphism of BSEP has been identified as a potential risk factor. In this review, the authors summarize key concepts of physiology of bile formation, diagnostic principles to indentify these forms of acquired cholestasis, as well as pathogenetic mechanisms leading to intrahepatic cholestasis of pregnancy or drug-induced cholestasis. In addition, they review the current knowledge on genetic susceptibility factors for these two forms of cholestasis.
Publication
Journal: Gastroenterology
July/17/2018
Abstract
Variants at the ABCB4 or MDR2 locus, which encodes a biliary transport protein, are associated with a spectrum of cholestatic liver diseases. Exacerbation of liver disease has been linked to increased hepatic levels of interleukin (IL) 17, yet the mechanisms of this increase are not understood. We studied mice with disruption of Mdr2 to determine how defects in liver and alteration in the microbiota contribute to production of IL17 by intrahepatic γδ T cells.
We performed studies with Mdr2-/- and littermate FVB/NJ (control) mice. IL17 was measured in serum samples by an enzyme-linked immunosorbent assay. Mice were injected with neutralizing antibodies against the γδ T-cell receptor (TCR; anti-γδ TCR) or mouse IL17A (anti-IL17A). Livers were collected and bacteria were identified in homogenates by culture procedures; TCRγδ+ cells were isolated by flow cytometry. Fecal samples were collected from mice and analyzed by 16S ribosomal DNA sequencing. Cells were stimulated with antibodies or bacteria, and cytokine production was measured. We obtained tissues from 10 patients undergoing liver transplantation for primary sclerosing cholangitis or chronic hepatitis C virus infection. Tissues were analyzed for cytokine production by γδ TCR+ cells.
Mdr2-/- mice had collagen deposition around hepatic bile ducts and periportal-bridging fibrosis with influx of inflammatory cells and increased serum levels of IL17 compared with control mice. Administration of anti-IL17A reduced hepatic fibrosis. Livers from Mdr2-/- mice had increased numbers of IL17A+ γδTCR+ cells-particularly of IL17A+ Vγ6Jγ1 γδ TCR+ cells. Fecal samples from Mdr2-/- mice were enriched in Lactobacillus, and liver tissues were enriched in Lactobacillus gasseri compared with control mice. Mdr2-/- mice also had increased intestinal permeability. The γδ TCR+ cells isolated from Mdr2-/- livers produced IL17 in response to heat-killed L gasseri. Intraperitoneal injection of control mice with L gasseri led to increased serum levels of IL17 and liver infiltration by inflammatory cells; injection of these mice with anti-γδ TCR reduced serum level of IL17. Intravenous injections of Mdr2-/- mice with anti-γδ TCR reduced fibrosis; liver levels of IL17, and inflammatory cells; and serum levels of IL17. γδTCR+ cells isolated from livers of patients with primary sclerosing cholangitis, but not hepatitis C virus infection, produced IL17.
In Mdr2-/- mice, we found development of liver fibrosis and inflammation to require hepatic activation of γδ TCR+ cells and production of IL17 mediated by exposure to L gasseri. This pathway appears to contribute to development of cholestatic liver disease in patients.
Publication
Journal: Journal of Hepatology
January/13/2014
Abstract
OBJECTIVE
The quest for effective drugs to treat cholangiopathies led to the development of norUDCA previously shown to have potent choleretic effects and to heal cholangiopathy in Abcb4 knockout (Abcb4(-/-)) mice. Its mother compound UDCA had detrimental effects in common bile duct ligated (CBDL) mice, presumably related to its choleretic effects. norUDCA choleretic effects may therefore raise safety concerns when used in cholangiopathies with biliary obstruction. We therefore aimed at comparing the effects of UDCA and norUDCA in clear-cut obstructive cholestasis.
METHODS
0.5% UDCA- or norUDCA-fed wild type and Abcb4(-/-) mice were subjected to CBDL or selective bile duct ligation (SBDL) and compared to controls with regard to liver injury. Bile flow, bile composition, and biliary manometry were compared in UDCA-fed, norUDCA-fed and control mice. Toxicity of UDCA and norUDCA was compared in vitro.
RESULTS
Compared to UDCA, liver injury in CBDL mice was significantly lower in almost all norUDCA groups. In SBDL mice, only UDCA induced bile infarcts in the ligated lobes, whereas norUDCA even ameliorated liver injury. In vitro, UDCA induced cellular ATP depletion and was significantly more toxic than norUDCA in HepG2 cells, mouse bile duct epithelial cells, and primary human hepatocytes.
CONCLUSIONS
Compared to norUDCA, UDCA is significantly more toxic in CBDL mice. norUDCA, in contrast to UDCA, significantly ameliorates liver injury in SBDL mice. Our findings uncover profound differences in metabolism and therapeutic mechanisms of both bile acids with important clinical consequences.
Publication
Journal: Digestive and Liver Disease
July/2/2008
Abstract
BACKGROUND
Intrahepatic cholestasis of pregnancy is a multifactorial disorder of pregnancy associated with a genetic background.
OBJECTIVE
To evaluate the genetic contribution of ABCB4, MDR3 gene in the development of intrahepatic cholestasis of pregnancy in a large cohort of Italian subjects.
METHODS
This study represents an extension of a previous multicentre-prospective study including three Italian referral centres. In all, we enrolled 96 women at the 3rd trimester of pregnancy. Genomic DNA was extracted from peripheral venous blood leucocytes by standard procedures. Polymerase chain reaction was used to amplify exon 14, 15 and 16 of MDR3 gene.
RESULTS
We found 3 non-synonymous heterozygous mutations in exon 14 (E528D, R549H, G536A), 1 in exon 15 (R590Q) and 2 in exon 16 (R652G, T6671). MDR3 gene variants in exons 14, 15 and 16 occurred in 7/96 of pregnant mothers with intrahepatic cholestasis of pregnancy (7.2%), and in none of 96 pregnant controls matched for age and parity. All seven patients had normal gamma-glutamyl transpeptidase, normal bilirubin, but high levels of both alanine transferase and serum bile acids. One had cholesterol biliary lithiasis. The outcome of pregnancy was normal in four cases (with vaginal delivery), while there was one fetal distress.
CONCLUSIONS
MDR3 mutations are responsible for the development of intrahepatic cholestasis of pregnancy in only a small percentage of Italian women. Further genetic studies are warranted, however, to clarify the role of different mutations in intrahepatic cholestasis of pregnancy.
Publication
Journal: Molecular Pharmacology
February/21/2011
Abstract
Biliary secretion of bile acids and phospholipids, both of which are essential components of biliary micelles, are mediated by the bile salt export pump (BSEP/ABCB11) and multidrug resistance 3 P-glycoprotein (MDR3/ABCB4), respectively, and their genetic dysfunction leads to the acquisition of severe cholestatic diseases. In the present study, we found two patients with itraconazole (ITZ)-induced cholestatic liver injury with markedly high serum ITZ concentrations. To characterize the effect of ITZ on bile formation in vivo, biliary bile acids and phospholipids were analyzed in ITZ-treated rats, and it was revealed that biliary phospholipids, rather than bile acids, were drastically reduced in the presence of clinically relevant concentrations of ITZ. Moreover, by using MDR3-expressing LLC-PK1 cells, we found that MDR3-mediated efflux of [¹⁴C]phosphatidylcholine was significantly reduced by ITZ. In contrast, BSEP-mediated transport of [³H]taurocholate was not significantly affected by ITZ, which is consistent with our in vivo observations. In conclusion, this study suggests the involvement of the inhibition of MDR3-mediated biliary phospholipids secretion in ITZ-induced cholestasis. Our approach may be useful for analyzing mechanisms of drug-induced cholestasis and evaluating the cholestatic potential of clinically used drugs and drug candidates.
Publication
Journal: Journal of Lipid Research
August/11/2009
Abstract
ABCA1 plays a major role in HDL metabolism. Cholesterol secretion by ABCA1 is dependent on the presence of extracellular acceptors, such as lipid-free apolipoprotein A-I (apoA-I). However, the importance of the direct interaction between apoA-I and ABCA1 in HDL formation remains unclear. In contrast, ABCB4 mediates the secretion of phospholipids and cholesterol in the presence of sodium taurocholate (NaTC) but not in the presence of apoA-I. In this study, we analyzed apoA-I binding and NaTC-dependent lipid efflux by ABCA1. ABCA1 mediated the efflux of cholesterol and phospholipids in the presence of NaTC as well as in the presence of apoA-I in an ATP-dependent manner. The Tangier disease mutation W590S, which resides in the extracellular domain and impairs apoA-I-dependent lipid efflux, greatly decreased NaTC-dependent cholesterol and phospholipid efflux. However, the W590S mutation did not impair apoA-I binding and, conversely, retarded the dissociation of apoA-I from ABCA1. These results suggest that the W590S mutation impairs ATP-dependent lipid translocation and that lipid translocation or possibly lipid loading, facilitates apoA-I dissociation from ABCA1. NaTC is a good tool for analyzing ABCA1-mediated lipid efflux and allows dissection of the steps of HDL formation by ABCA1.
Publication
Journal: Clinics and Research in Hepatology and Gastroenterology
August/31/2011
Abstract
Liver disorders occurring during pregnancy may be specifically pregnancy-related, or may be due to an intercurrent or chronic liver disease, which may present in anyone, pregnant or not. This review focuses on the liver diseases unique to pregnancy. Hyperemesis gravidarum, which occurs during early pregnancy, may be associated with liver dysfunction. Intrahepatic cholestasis of pregnancy typically occurs during the second or third trimester. Pruritus and the associated biological signs of cholestasis improve rapidly after delivery. Mutations in gene encoding biliary transporters, especially ABCB4 encoding the multidrug resistance 3 protein, have been found to be associated with this complex disease. Ursodeoxycholic acid is currently the most effective medical treatment in improving pruritus and liver tests. Pre-eclampsia, which presents in late pregnancy frequently involves the liver, and HELLP syndrome (Hemolysis-Elevated Liver enzymes-Low Platelets) is a life-threatening complication. Prognosis of acute fatty liver of pregnancy has been radically transformed by early delivery, and clinicians must have a high index of suspicion for this condition when a woman presents nausea or vomiting, epigastric pain, jaundice, or polyuria-polydipsia during the third trimester. Acute fatty liver of pregnancy has been found to be associated with a defect of long-chain 3-hydroxyacyl coenzyme A dehydrogenase in the fetus, and mothers and their offspring should undergo DNA testing at least for the main associated genetic mutation (c.1528G>C).
Publication
Journal: Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie
January/11/2015
Abstract
Ovarian cancer is characterized by the higher mortality among gynecological cancers. In results of MDR development during chemotherapy cancer cells become resistant to further treatment. Microarray techniques can provide information about MDR development at gene expression level. ABC and SLC transporters are most important proteins responsible for this phenomenon. In this study changes of ABC and SLC genes expression pattern in drugs resistant sublines of the A2780 ovarian cancer cell line were demonstrated. The cytostatic resistant sublines were generated by culture of A2780 cell line with an increasing concentration of the indicated drugs. As screening methods, we used Affymetrix U219 Human Genome microarrays. Independent t-tests were used to determinate statistical significances of results. Genes that expression levels were higher than assumed threshold (upregulated above threefold and downregulated under -3 fold) were visualized using scatter plot method, selected and listed in table. Between the ABC genes increased expression of seven genes and decreased expression of three genes were observed. Expression of two genes was increased or decreased depending on the cell line. We observed significant (more than tenfold) increase in expression of four ABC genes: ABCA8, ABCB1, ABCB4 and ABCG2 and decreased expression of ABCA3 gene. We also observed changes in expression of 32 SLC genes. Between them we observe increased expression of 17 genes and decreased expression of 15 genes. Expression of four genes was increased or decreased dependent on cell line. The expression of nine SLC genes increased or decreased very significantly (more than tenfold). Five genes were significantly upregulated: SLC2A9, SLC16A3, SLC16A14, SLC38A4 and SLC39A8. Four additional genes were significantly downregulated: SLC2A14, SLC6A15, SLC8A1 and SLC27A2. Expression profiles of these genes give strong arguments for assumption of correlation between expression of ABC and SLC genes and drug resistance phenomenon. Identifying correlations between specific drug transporters and cytostatic drug resistance will require further investigation.
Publication
Journal: Journal of Lipid Research
November/22/2012
Abstract
Peroxisome proliferator-activated receptor α (PPARα) is a nuclear receptor that regulates fatty acid transport and metabolism. Previous studies revealed that PPARα can affect bile acid metabolism; however, the mechanism by which PPARα regulates bile acid homeostasis is not understood. In this study, an ultraperformance liquid chromatography coupled with electrospray ionization qua dru pole time-of-flight mass spectrometry (UPLC-ESI-QTOFMS)-based metabolomics approach was used to profile metabolites in urine, serum, and bile of wild-type and Ppara-null mice following cholic acid (CA) dietary challenge. Metabolomic analysis showed that the levels of several serum bile acids, such as CA (25-fold) and taurocholic acid (16-fold), were significantly increased in CA-treated Ppara-null mice compared with CA-treated wild-type mice. Phospholipid homeostasis, as revealed by decreased serum lysophos phati dylcholine (LPC) 16:0 (1.6-fold) and LPC 18:0 (1.6-fold), and corticosterone metabolism noted by increased urinary excretion of 11β-hydroxy-3,20-dioxopregn-4-en-21-oic acid (20-fold) and 11β,20α-dihydroxy-3-oxo-pregn-4-en-21-oic acid (3.6-fold), were disrupted in CA-treated Ppara-null mice. The hepatic levels of mRNA encoding transporters Abcb11, Abcb4, Abca1, Abcg5, and Abcg8 were diminished in Ppara-null mice, leading to the accumulation of bile acids in the liver during the CA challenge. These observations revealed that PPARα is an essential regulator of bile acid biosynthesis, transport, and secretion.
Publication
Journal: World Journal of Hepatology
July/13/2011
Abstract
OBJECTIVE
To investigate the proteolytic contribution of tumor-associated macrophages (TAM) in tumor invasion, we analyzed whether TAM at the invasive front of small HCC in Abcb4(-/-)-mice show an enhanced expression of MMP-9.
METHODS
Liver cryosections of the hepatocellular carcinoma (HCC) invasive front from 12 mo old Abcb4(-/-)-mice were stained for collagen type I and MMP-9 using Alexa488 and Alexa568 labeled secondary antibodies. Afterwards, the Alexa568 dye was bleached and the macrophage marker F4/80 was visualized using Alexa568 labeled secondary antibodies. Finally, photographs of the invasive tumor front were digitally overlaid and analyzed.
RESULTS
After complete bleaching of the primary dye, specific fluorescence staining of a third antigen, here F4/80, was successfully performed on the same histological section. With this method, we were able to identify conglomerates of matrix metalloproteinase (MMP-9) expressing macrophages within the tumor capsule of HCC.
CONCLUSIONS
MMP-9 expressing macrophages are involved in matrix remodelling at the invasive tumor front of HCC. The described staining protocol provides a simple yet powerful extension of conventional immuno-histochemistry, facilitating visualization of at least three different antigens plus nuclei in one single histological section.
Publication
Journal: PLoS ONE
August/1/2011
Abstract
BACKGROUND
ABCB5 is a member of the ABC protein superfamily, which includes the transporters ABCB1, ABCC1 and ABCG2 responsible for causing drug resistance in cancer patients and also several other transporters that have been linked to human disease. The ABCB5 full transporter (ABCB5.ts) is expressed in human testis and its functional significance is presently unknown. Another variant of this transporter, ABCB5 beta possess a "half-transporter-like" structure and is expressed in melanoma stem cells, normal melanocytes, and other types of pigment cells. ABCB5 beta has important clinical implications, as it may be involved with multidrug resistance in melanoma stem cells, allowing these stem cells to survive chemotherapeutic regimes.
RESULTS
We constructed and examined in detail topological structures of the human ABCB5 protein and determined in-silico the cSNPs (coding single nucleotide polymorphisms) that may affect its function. Evolutionary analysis of ABCB5 indicated that ABCB5, ABCB1, ABCB4, and ABCB11 share a common ancestor, which began duplicating early in the evolutionary history of chordates. This suggests that ABCB5 has evolved as a full transporter throughout its evolutionary history.
CONCLUSIONS
From our in-silco analysis of cSNPs we found that a large number of non-synonymous cSNPs map to important functional regions of the protein suggesting that these SNPs if present in human populations may play a role in diseases associated with ABCB5. From phylogenetic analyses, we have shown that ABCB5 evolved as a full transporter throughout its evolutionary history with an absence of any major shifts in selection between the various lineages suggesting that the function of ABCB5 has been maintained during mammalian evolution. This finding would suggest that ABCB5 beta may have evolved to play a specific role in human pigment cells and/or melanoma cells where it is predominantly expressed.
Publication
Journal: Epigenetics
December/4/2008
Abstract
Drug transporters have been implicated in resistance of solid and non-solid tumors to a variety of chemotherapeutic agents. Higher expression of the ABCB1 drug transporter is often observed in drug-resistant tumor cells, although the precise mechanism remains unclear. During selection of MCF-7 cells for survival in increasing concentrations of docetaxel (MCF-7TXT cells), we observed in this study a temporal correlation between the acquisition of docetaxel resistance at selection dose 9 and the increased expression of ABCB1. Both the magnitude of docetaxel resistance and the level of ABCB1 expression then rose as the selection dose was further elevated. We also observed through bisulfite sequencing experiments that the ABCB1 downstream promoter became increasingly methylated following the acquisition of drug resistance (selection doses 10-12). Transcription was solely attributed to the upstream ABCB1 promoter within MCF-7TXT cells at the highest selection dose suggesting that hypermethylation caused a shift in promoter usage. The hypermethylation was also accompanied by regional amplification of chromosome 7 containing the ABCB1 gene and its neighbor ABCB4 but not DBF-4. The amplification of the ABCB1 gene correlated positively both with the hypermethylation of the ABCB1 downstream promoter (r=0.90) and the increased expression of ABCB1 (r=0.78). Moreover demethylation of the ABCB1 downstream promoter induced by 5-aza-2A'deoxycytidine treatment decreased the expression of ABCB1 mRNA in MCF-7TXT cells. Taken together, our findings suggest that the increased expression of ABCB1 upon acquisition of docetaxel resistance in breast tumor cells can be multifactorial, involving both epigenetic changes in promoter usage and regional chromosome amplification.
Publication
Journal: Chronobiology International
October/30/2005
Abstract
Recent studies have shown the gene expression of several transporters to be circadian rhythmic. However, it remains to be elucidated whether the expression of P-glycoprotein, which is involved in the transport of many medications, undergoes 24 h rhythmicity. To address this issue, we investigated daily profiles of P-glycoprotein mRNA and protein levels in peripheral mouse tissues. In the liver and intestine, but not in the kidney, Abcb1a mRNA expression showed clear 24 h rhythmicity. On the other hand, Abcb1b and Abcb4, the other P-glycoprotein genes, did not exhibit significant rhythmic expression in the studied tissues. In the intestine, levels of whole P-glycoprotein also exhibited a daily rhythm, with a peak occurring in the latter half of the light phase and a trough at the onset of the light phase. Consistent with the day-night change of P-glycoprotein level, the ex vivo accumulation of digoxin, an Abcb1a P-glycoprotein substrate, into the intestinal segments at the onset of dark phase was significantly lower than it was at the onset of the light phase. Thus, Abcb1a P-glycoprotein expression, and apparently its function, are 24 h rhythmic at least in mouse intestine tissue. This circadian variation might be involved in various chronopharmacological phenomena.
Publication
Journal: American Journal of Gastroenterology
March/16/2014
Abstract
OBJECTIVE
Intrahepatic cholestasis of pregnancy (ICP) has a complex etiology with a significant genetic component. Heterozygous mutations of canalicular transporters occur in a subset of ICP cases and a population susceptibility allele (p.444A) has been identified in ABCB11. We sought to expand our knowledge of the detailed genetic contribution to ICP by investigation of common variation around candidate loci with biological plausibility for a role in ICP (ABCB4, ABCB11, ABCC2, ATP8B1, NR1H4, and FGF19).
METHODS
ICP patients (n=563) of white western European origin and controls (n=642) were analyzed in a case-control design. Single-nucleotide polymorphism (SNP) markers (n=83) were selected from the HapMap data set (Tagger, Haploview 4.1 (build 22)). Genotyping was performed by allelic discrimination assay on a robotic platform. Following quality control, SNP data were analyzed by Armitage's trend test.
RESULTS
Cochran-Armitage trend testing identified six SNPs in ABCB11 together with six SNPs in ABCB4 that showed significant evidence of association. The minimum Bonferroni corrected P value for trend testing ABCB11 was 5.81×10(-4) (rs3815676) and for ABCB4 it was 4.6×10(-7)(rs2109505). Conditional analysis of the two clusters of association signals suggested a single signal in ABCB4 but evidence for two independent signals in ABCB11. To confirm these findings, a second study was performed in a further 227 cases, which confirmed and strengthened the original findings.
CONCLUSIONS
Our analysis of a large cohort of ICP cases has identified a key role for common variation around the ABCB4 and ABCB11 loci, identified the core associations, and expanded our knowledge of ICP susceptibility.
Pulse
Views:
1
Posts:
No posts
Rating:
Not rated
Publication
Journal: Biochimica et Biophysica Acta - General Subjects
September/25/2013
Abstract
The success of pharmacological treatments in primary liver cancers is limited by the marked efficacy of mechanisms of chemoresistance already present in hepatocytes. The role of the nuclear receptor FXR is unclear. Although, in non-treated liver tumors, its expression is reduced, the refractoriness to anticancer drugs is high. Moreover, the treatment with cisplatin up-regulates FXR. The aim of this study was to investigate whether FXR is involved in stimulating chemoprotection/chemoresistance in healthy and tumor liver cells. In human hepatocytes, the activation of FXR with the agonist GW4064 resulted in a significant protection against cisplatin-induced toxicity. In human hepatoma Alexander cells, with negligible endogenous expression of FXR, GW4064 also protected against cisplatin-induced toxicity, but only if they were previously transfected with FXR/RXR. Investigation of 109 genes potentially involved in chemoresistance revealed that only ABCB4, TCEA2, CCL14, CCL15 and KRT13 were up-regulated by FXR activation both in human hepatocytes and FXR/RXR-expressing hepatoma cells. In both models, cisplatin, even in the absence of FXR agonists, such as bile acids and GW4064, was able to up-regulate FXR targets genes, which was due to FXR-mediated trans-activation of response elements in the promoter region. FXR-dependent chemoprotection was also efficient against other DNA-damaging compounds, such as doxorubicin, mitomycin C and potassium dichromate, but not against non-genotoxic drugs, such as colchicine, paclitaxel, acetaminophen, artesunate and sorafenib. In conclusion, ligand-dependent and independent activation of FXR stimulates mechanisms able to enhance the chemoprotection of hepatocytes against genotoxic compounds and to reduce the response of liver tumor cells to certain pharmacological treatments.
Publication
Journal: Hepatology
April/27/2014
Abstract
Multidrug resistance transporter 3/ATP-binding cassette protein subfamily B4 (MDR3/ABCB4) is a critical determinant of biliary phosphatidylcholine (PC) secretion. Clinically, mutations and partial deficiencies in MDR3 result in cholestatic liver injury. Thus, MDR3 is a potential therapeutic target for cholestatic liver disease. Fenofibrate is a peroxisome proliferator-activated receptor (PPAR) α ligand that has antiinflammatory actions and regulates bile acid detoxification. Here we examined the mechanism by which fenofibrate regulates MDR3 gene expression. Fenofibrate significantly up-regulated MDR3 messenger RNA (mRNA) and protein expression in primary cultured human hepatocytes, and stimulated MDR3 promoter activity in HepG2 cells. In silico analysis of 5'-upstream region of human MDR3 gene revealed a number of PPARα response elements (PPRE). Electrophoretic mobility shift (EMSA) and chromatin immunoprecipitation (ChIP) assays demonstrated specific binding of PPARα to the human MDR3 promoter. Targeted mutagenesis of three novel PPREs reduced inducibility of the MDR3 promoter by fenofibrate. In collagen sandwich cultured rat hepatocytes, treatment with fenofibrate increased secretion of fluorescent PC into bile canaliculi.
CONCLUSIONS
Fenofibrate transactivates MDR3 gene transcription by way of the binding of PPARα to three novel and functionally critical PPREs in the MDR3 promoter. Fenofibrate treatment further stimulates biliary phosphatidylcholine secretion in rat hepatocytes, thereby providing a functional correlate. We have established a molecular mechanism that may contribute to the beneficial use of fenofibrate therapy in human cholestatic liver disease.
load more...