Citations
All
Search in:AllTitleAbstractAuthor name
Publications
(950)
Patents
Grants
Pathways
Clinical trials
Publication
Journal: Journal of Biological Chemistry
September/8/2011
Abstract
The regulation of gene expression in response to environmental signals and metabolic imbalances is a key step in maintaining cellular homeostasis. BTB and CNC homology 1 (BACH1) is a heme-binding transcription factor repressing the transcription from a subset of MAF recognition elements at low intracellular heme levels. Upon heme binding, BACH1 is released from the MAF recognition elements, resulting in increased expression of antioxidant response genes. To systematically address the gene regulatory networks involving BACH1, we combined chromatin immunoprecipitation sequencing analysis of BACH1 target genes in HEK 293 cells with knockdown of BACH1 using three independent types of small interfering RNAs followed by transcriptome profiling using microarrays. The 59 BACH1 target genes identified by chromatin immunoprecipitation sequencing were found highly enriched in genes showing expression changes after BACH1 knockdown, demonstrating the impact of BACH1 repression on transcription. In addition to known and new BACH1 targets involved in heme degradation (HMOX1, FTL, FTH1, ME1, and SLC48A1) and redox regulation (GCLC, GCLM, and SLC7A11), we also discovered BACH1 target genes affecting cell cycle and apoptosis pathways (ITPR2, CALM1, SQSTM1, TFE3, EWSR1, CDK6, BCL2L11, and MAFG) as well as subcellular transport processes (CLSTN1, PSAP, MAPT, and vault RNA). The newly identified impact of BACH1 on genes involved in neurodegenerative processes and proliferation provides an interesting basis for future dissection of BACH1-mediated gene repression in neurodegeneration and virus-induced cancerogenesis.
Publication
Journal: EMBO Journal
July/18/2002
Abstract
Wnt signals regulate differentiation of neural crest cells through the beta-catenin associated with a nuclear mediator of the lymphoid-enhancing factor 1 (LEF-1)/T-cell factors (TCFs) family. Here we show the interaction between the basic helix-loop-helix and leucine-zipper region of microphthalmia-associated transcription factor (MITF) and LEF-1. MITF is essential for melanocyte differentiation and its heterozygous mutations cause auditory-pigmentary syndromes. Functional cooperation of MITF with LEF-1 results in synergistic transactivation of the dopachrome tautomerase (DCT) gene promoter, an early melanoblast marker. This activation depends on the separate cis-acting elements, which are also responsible for the induction of the DCT promoter by lithium chloride that mimics Wnt signaling. beta-catenin is required for efficient transactivation, but dispensable for the interaction between MITF and LEF-1. The interaction with MITF is unique to LEF-1 and not detectable with TCF-1. LEF-1 also cooperates with the MITF-related proteins, such as TFE3, to transactivate the DCT promoter. This study therefore suggests that the MITF/TFE3 family is a new class of nuclear modulators for LEF-1, which may ensure efficient propagation of Wnt signals in many types of cells.
Publication
Journal: Clinics in Laboratory Medicine
June/29/2005
Abstract
A significant proportion of RCCs of children and young adults bear specific chromosome translocations that result in gene fusions that involve members of the MiTF/TFE transcription factor family. These include the Xp11-translocation carcinomas, which bear TFE3 gene fusions, and the renal carcinomas with the t(6;11)(p21;q12), which bear an Alpha-TFEB gene fusion. Both types of translocation result in overexpression of the fusion gene products, such that nuclear labeling for TFE3 or TFEB by immunohistochemistry is a sensitive and specific marker of these respective tumor types. The clinical behavior of these neoplasms relative to conventional, adult-type renal carcinomas remains to be determined, and will be an important area of future investigation.
Publication
Journal: Annals of Oncology
December/6/2010
Abstract
BACKGROUND
Xp11 translocation renal cell carcinoma (RCC) is an RCC subtype affecting 15% of RCC patients <45 years. We analyzed the benefit of targeted therapy [vascular endothelial growth factor receptor (VEGFR)-targeted agents and/or mammalian target of rapamycin (mTOR) inhibitors] in these patients.
METHODS
Patients with Xp11 translocation/TFE3 fusion gene metastatic RCC who had received targeted therapy were identified. Nuclear TFE3 positivity was confirmed by reviewing pathology slides. Responses according to RECIST criteria, progression-free survival (PFS), and overall survival (OS) were analyzed.
RESULTS
Overall, 53 patients were identified; 23 had metastatic disease, and of these 21 had received targeted therapy (median age 34 years). Seven patients achieved an objective response. In first line, median PFS was 8.2 months [95% confidence interval (CI) 2.6-14.7 months] for sunitinib (n = 11) versus 2 months (95% CI 0.8-3.3 months) for cytokines (n = 9) (log-rank P = 0.003). Results for further treatment (second, third, or fourth line) were as follows: all three patients receiving sunitinib had a partial response (median PFS 11 months). Seven of eight patients receiving sorafenib had stable disease (median PFS 6 months). One patient receiving mTOR inhibitors had a partial response and six patients had stable disease. Median OS was 27 months with a 19 months median follow-up.
CONCLUSIONS
In Xp11 translocation RCC, targeted therapy achieved objective responses and prolonged PFS similar to those reported for clear-cell RCC.
Publication
Journal: Journal of Clinical Oncology
October/23/2011
Abstract
Members of the micropthalmia (MiT) family of transcription factors (MITF, TFE3, TFEB, and TFEC) are physiologic regulators of cell growth, differentiation, and survival in several tissue types. Because their dysregulation can lead to melanoma, renal cell carcinoma, and some sarcomas, understanding why these genes are co-opted in carcinogenesis may be of general utility. Here we describe the structure of the MiT family of proteins, the ways in which they are aberrantly activated, and the molecular mechanisms by which they promote oncogenesis. We discuss how meaningful understanding of these mechanisms can be used to elucidate the oncogenic process. Because the expression of these proteins is essential for initiating and maintaining the oncogenic state in some cancer types, we propose ways that they can be exploited to prevent, diagnose, and rationally treat these malignancies.
Publication
Journal: Annual Review of Cell and Developmental Biology
October/6/2016
Abstract
In recent years, our vision of lysosomes has drastically changed. Formerly considered to be mere degradative compartments, they are now recognized as key players in many cellular processes. The ability of lysosomes to respond to different stimuli revealed a complex and coordinated regulation of lysosomal gene expression. This review discusses the participation of the transcription factors TFEB and TFE3 in the regulation of lysosomal function and biogenesis, as well as the role of the lysosomal pathway in cellular adaptation to a variety of stress conditions, including nutrient deprivation, mitochondrial dysfunction, protein misfolding, and pathogen infection. We also describe how cancer cells make use of TFEB and TFE3 to promote their own survival and highlight the potential of these transcription factors as therapeutic targets for the treatment of neurological and lysosomal diseases.
Publication
Journal: American Journal of Surgical Pathology
September/13/2010
Abstract
Xp11 translocation renal cell carcinoma (RCC) harbor various TFE3 gene fusions, and are known to underexpress epithelial immunohistochemical (IHC) markers such as cytokeratin and EMA relative to usual adult type RCC; however, their profile in reference to other IHC markers that are differentially expressed in other subtypes of RCC has not been systematically assessed. Few therapeutic targets have been identified in these aggressive cancers. We created 2 tissue microarrays (TMA) containing five 1.4-mm cores from each of 21 Xp11 translocation RCC (all confirmed by TFE3 IHC, 6 further confirmed by genetics), 7 clear cell RCC (CCRCC), and 6 papillary RCC (PRCC). These TMA were labeled for a panel of IHC markers. In contrast to earlier published data, Xp11 translocation RCC frequently expressed renal transcription factors PAX8 (16/21 cases) and PAX2 (14/21 cases), whereas only 1 of 21 cases focally expressed MiTF and only 5 of 21 overexpressed p21. Although experimental data suggest otherwise, Xp11 translocation RCC did not express WT-1 (0/21 cases). Although 24% of Xp11 translocation RCC expressed HIF-1alpha (like CCRCC), unlike CCRCC CA IX expression was characteristically only focal (mean 6% cell labeling) in Xp11 translocation RCC. Other markers preferentially expressed in CCRCC or PRCC, such as HIG-2, claudin 7, and EpCAM, yielded inconsistent results in Xp11 translocation RCC. Xp11 translocation RCC infrequently expressed Ksp-cadherin (3/21 cases) and c-kit (0/21 cases), markers frequently expressed in chromophobe RCC. Using an H-score that is the product of intensity and percentage labeling, Xp11 translocation RCC expressed higher levels of phosphorylated S6, a measure of mTOR pathway activation (mean H score=88), than did CCRCC (mean H score=54) or PRCC (mean H score=44). In conclusion, in contrast to prior reports, Xp11 translocation RCC usually express PAX2 and PAX8 but do not usually express MiTF. Although they may express HIF-1alpha, they only focally express the downstream target CA IX. They inconsistently express markers associated with other RCC subtypes, further highlighting the lack of specificity of the latter markers. TFE3 and Cathepsin K remain the most sensitive and specific markers of these neoplasms. Elevated expression of phosphorylated S6 in Xp11 translocation RCC suggests the mTOR pathway as an attractive potential therapeutic target for these neoplasms.
Publication
Journal: Molecular Cell
December/6/2001
Abstract
Osteoclasts are multinucleated hematopoietic cells essential for bone resorption. Macrophage colony-stimulating factor (M-CSF) is critical for osteoclast development and function, although its nuclear targets in osteoclasts are largely unknown. Mitf and TFE3 are two closely related helix-loop-helix (HLH) transcription factors previously implicated in osteoclast development and function. We demonstrate that cultured Mitf(mi/mi) osteoclasts are immature, mononuclear, express low levels of TRAP, and fail to mature upon M-CSF stimulation. In addition, M-CSF induces phosphorylation of Mitf and TFE3 via a conserved MAPK consensus site, thereby triggering their recruitment of the coactivator p300. Furthermore, an unphosphorylatable mutant at the MAPK consensus serine is specifically deficient in formation of multinucleated osteoclasts, mimicking the defect in Mitf(mi/mi) mice. These results identify a signaling pathway that appears to coordinate cytokine signaling with the expression of genes vital to osteoclast development.
Publication
Journal: PLoS ONE
July/4/2011
Abstract
BACKGROUND
Germline mutations in a tumor suppressor gene FLCN lead to development of fibrofolliculomas, lung cysts and renal cell carcinoma (RCC) in Birt-Hogg-Dubé syndrome. TFE3 is a member of the MiTF/TFE transcription factor family and Xp11.2 translocations found in sporadic RCC involving TFE3 result in gene fusions and overexpression of chimeric fusion proteins that retain the C-terminal DNA binding domain of TFE3. We found that GPNMB expression, which is regulated by MiTF, was greatly elevated in renal cancer cells harboring either TFE3 translocations or FLCN inactivation. Since TFE3 is implicated in RCC, we hypothesized that elevated GPNMB expression was due to increased TFE3 activity resulting from the inactivation of FLCN.
RESULTS
TFE3 knockdown reduced GPNMB expression in renal cancer cells harboring either TFE3 translocations or FLCN inactivation. Moreover, FLCN knockdown induced GPNMB expression in FLCN-restored renal cancer cells. Conversely, wildtype FLCN suppressed GPNMB expression in FLCN-null cells. FLCN inactivation was correlated with increased TFE3 transcriptional activity accompanied by its nuclear localization as revealed by elevated GPNMB mRNA and protein expression, and predominantly nuclear immunostaining of TFE3 in renal cancer cells, mouse embryo fibroblast cells, mouse kidneys and mouse and human renal tumors. Nuclear localization of TFE3 was associated with TFE3 post-translational modifications including decreased phosphorylation.
CONCLUSIONS
Increased TFE3 activity is a downstream event induced by FLCN inactivation and is likely to be important for renal tumor development. This study provides an important novel mechanism for induction of TFE3 activity in addition to TFE3 overexpression resulting from Xp11.2 translocations, suggesting that TFE3 may be more broadly involved in tumorigenesis.
Publication
Journal: Nature Medicine
February/26/2006
Abstract
Using an expression cloning strategy, we have identified TFE3, a basic helix-loop-helix protein, as a transactivator of metabolic genes that are regulated through an E-box in their promoters. Adenovirus-mediated expression of TFE3 in hepatocytes in culture and in vivo strongly activated expression of IRS-2 and Akt and enhanced phosphorylation of insulin-signaling kinases such as Akt, glycogen synthase kinase 3beta and p70S6 kinase. TFE3 also induced hexokinase II (HK2) and insulin-induced gene 1 (INSIG1). These changes led to metabolic consequences, such as activation of glycogen and protein synthesis, but not lipogenesis, in liver. Collectively, plasma glucose levels were markedly reduced both in normal mice and in different mouse models of diabetes, including streptozotocin-treated, db/db and KK mice. Promoter analyses showed that IRS2, HK2 and INSIG1 are direct targets of TFE3. Activation of insulin signals in both insulin depletion and resistance suggests that TFE3 could be a therapeutic target for diabetes.
Publication
Journal: Genes and Development
March/3/1991
Abstract
Using defined regions of the immunoglobulin heavy-chain enhancer linked to minimal promoters and cDNAs that encode the two helix-loop-helix transcription factors ITF-1 and TFE3, we demonstrate that activity of an otherwise repressed enhancer can be stimulated in nonlymphoid cells. Repression in non-B cells is mediated by the microE5 motif. Derepression occurs at two levels. First, overexpression of ITF-1, and E12/E47-related protein that binds the microE5 motif, leads to transcriptional activation itself. Second, binding of ITF-1 physically displaces a repressor that normally blocks the stimulatory activity of TFE3, which binds the neighboring microE3 motif. TFE3 can only stimulate enhancer activity in the presence of ITF-1 or in the absence of a microE5 motif. Hence, one component of the enhancer's cell type specificity can be artificially modulated through a "genetic switch" in which activity is dictated by the relative levels of ITF-1 and a competing repressor.
Publication
Journal: EMBO Journal
November/13/2018
Abstract
The MiT-TFE family of basic helix-loop-helix leucine-zipper transcription factors includes four members: TFEB, TFE3, TFEC, and MITF Originally described as oncogenes, these factors play a major role as regulators of lysosome biogenesis, cellular energy homeostasis, and autophagy. An important mechanism by which these transcription factors are regulated involves their shuttling between the surface of lysosomes, the cytoplasm, and the nucleus. Such dynamic changes in subcellular localization occur in response to nutrient fluctuations and various forms of cell stress and are mediated by changes in the phosphorylation of multiple conserved amino acids. Major kinases responsible for MiT-TFE protein phosphorylation include mTOR, ERK, GSK3, and AKT In addition, calcineurin de-phosphorylates MiT-TFE proteins in response to lysosomal calcium release. Thus, through changes in the phosphorylation state of MiT-TFE proteins, lysosome function is coordinated with the cellular metabolic state and cellular demands. This review summarizes the evidence supporting MiT-TFE regulation by phosphorylation at multiple key sites. Elucidation of such regulatory mechanisms is of fundamental importance to understand how these transcription factors contribute to both health and disease.
Publication
Journal: Journal of Biological Chemistry
July/20/2005
Abstract
MITF and its related family members TFE3 and TFEB heterodimerize with each other, recognize the same DNA sequences, and are subject to many of the same post-translational modifications. We show that lysine residues within conserved small ubiquitin-like modifier (SUMO) consensus sites in these family members are subject to SUMO modification. Mutation of these sites significantly affects the transcriptional activity of MITF but does not alter dimerization, DNA binding, stability, or nuclear localization. Mutagenesis reducing the number of MITF binding sites in the promoter of TRPM1 from three to one eliminated the difference in transcriptional activity between the MITF mutants. Among other MITF target gene promoter constructs, differences in transcriptional activity between wild type and non-sumoylatable MITF were only seen in promoters with multiple MITF binding sites. These data support a synergy control model in which the functional consequences of MITF sumoylation depend on promoter context. Sumoylation, thus, provides a possible mechanism for altering the effects of MITF by affecting the target genes that it activates.
Publication
Journal: Blood
June/27/2011
Abstract
The molecular target(s) cooperating with proteasome inhibition in multiple myeloma (MM) remain unknown. We therefore measured proliferation in MM cells transfected with 13 984 small interfering RNAs in the absence or presence of increasing concentrations of bortezomib. We identified 37 genes, which when silenced, are not directly cytotoxic but do synergistically potentiate the growth inhibitory effects of bortezomib. To focus on bortezomib sensitizers, genes that also sensitized MM to melphalan were excluded. When suppressed, the strongest bortezomib sensitizers were the proteasome subunits PSMA5, PSMB2, PSMB3, and PSMB7 providing internal validation, but others included BAZ1B, CDK5, CDC42SE2, MDM4, NME7, RAB8B, TFE3, TNFAIP3, TNK1, TOP1, VAMP2, and YY1. The strongest hit CDK5 also featured prominently in pathway analysis of primary screen data. Cyclin-dependent kinase 5 (CDK5) is expressed at high levels in MM and neural tissues with relatively low expression in other organs. Viral shRNA knockdown of CDK5 consistently sensitized 5 genetically variable MM cell lines to proteasome inhibitors (bortezomib and carfilzomib). Small-molecule CDK5 inhibitors were demonstrated to synergize with bortezomib to induce cytotoxicity of primary myeloma cells and myeloma cell lines. CDK5 regulation of proteasome subunit PSMB5 was identified as a probable route to sensitization.
Publication
Journal: Cellular and Molecular Life Sciences
August/17/2014
Abstract
The MiTF/TFE family of basic helix-loop-helix leucine zipper transcription factors includes MITF, TFEB, TFE3, and TFEC. The involvement of some family members in the development and proliferation of specific cell types, such as mast cells, osteoclasts, and melanocytes, is well established. Notably, recent evidence suggests that the MiTF/TFE family plays a critical role in organelle biogenesis, nutrient sensing, and energy metabolism. The MiTF/TFE family is also implicated in human disease. Mutations or aberrant expression of most MiTF/TFE family members has been linked to different types of cancer. At the same time, they have recently emerged as novel and very promising targets for the treatment of neurological and lysosomal diseases. The characterization of this fascinating family of transcription factors is greatly expanding our understanding of how cells synchronize environmental signals, such as nutrient availability, with gene expression, energy production, and cellular homeostasis.
Publication
Journal: Cancer Research
November/25/2007
Abstract
Ovarian cancer is resistant to the antiproliferative effects of transforming growth factor-beta (TGF-beta); however, the mechanism of this resistance remains unclear. We used oligonucleotide arrays to profile 37 undissected, 68 microdissected advanced-stage, and 14 microdissected early-stage papillary serous cancers to identify signaling pathways involved in ovarian cancer. A total of seven genes involved in TGF-beta signaling were identified that had altered expression >1.5-fold (P < 0.001) in the ovarian cancer specimens compared with normal ovarian surface epithelium. The expression of these genes was coordinately altered: genes that inhibit TGF-beta signaling (DACH1, BMP7, and EVI1) were up-regulated in advanced-stage ovarian cancers and, conversely, genes that enhance TGF-beta signaling (PCAF, TFE3, TGFBRII, and SMAD4) were down-regulated compared with the normal samples. The microarray data for DACH1 and EVI1 were validated using quantitative real-time PCR on 22 microdissected ovarian cancer specimens. The EVI1 gene locus was amplified in 43% of the tumors, and there was a significant correlation (P = 0.029) between gene copy number and EVI1 gene expression. No amplification at the DACH1 locus was found in any of the samples. DACH1 and EVI1 inhibited TGF-beta signaling in immortalized normal ovarian epithelial cells, and a dominant-negative DACH1, DACH1-Delta DS, partially restored signaling in an ovarian cancer cell line resistant to TGF-beta. These results suggest that altered expression of these genes is responsible for disrupted TGF-beta signaling in ovarian cancer and they may be useful as new and novel therapeutic targets for ovarian cancer.
Publication
Journal: Nature Reviews Urology
September/29/2015
Abstract
Despite nearly two decades passing since the discovery of gene fusions involving TFE3 or TFEB in sporadic renal cell carcinoma (RCC), the molecular mechanisms underlying the renal-specific tumorigenesis of these genes remain largely unclear. The recently published findings of The Cancer Genome Atlas Network reported that five of the 416 surveyed clear cell RCC tumours (1.2%) harboured SFPQ-TFE3 fusions, providing further evidence for the importance of gene fusions. A total of five TFE3 gene fusions (PRCC-TFE3, ASPSCR1-TFE3, SFPQ-TFE3, NONO-TFE3, and CLTC-TFE3) and one TFEB gene fusion (MALAT1-TFEB) have been identified in RCC tumours and characterized at the mRNA transcript level. A multitude of molecular pathways well-described in carcinogenesis are regulated in part by TFE3 or TFEB proteins, including activation of TGFβ and ETS transcription factors, E-cadherin expression, CD40L-dependent lymphocyte activation, mTORC1 signalling, insulin-dependent metabolism regulation, folliculin signalling, and retinoblastoma-dependent cell cycle arrest. Determining which pathways are most important to RCC oncogenesis will be critical in discovering the most promising therapeutic targets for this disease.
Publication
Journal: American Journal of Surgical Pathology
July/17/2013
Abstract
Renal cell carcinoma (RCC) associated with Xp11.2 translocation is uncommon, characterized by several different translocations involving the TFE3 gene. We assessed the utility of break-apart fluorescence in situ hybridization (FISH) in establishing the diagnosis for suspected or unclassified cases with negative or equivocal TFE3 immunostaining by analyzing 24 renal cancers with break-apart TFE3 FISH and comparing the molecular findings with the results of TFE3 and cathepsin K immunostaining in the same tumors. Ten tumors were originally diagnosed as Xp11.2 RCC on the basis of positive TFE3 immunostaining, and 14 were originally considered unclassified RCCs with negative or equivocal TFE3 staining, but with a range of features suspicious for Xp11.2 RCC. Seventeen cases showed TFE3 rearrangement associated with Xp11.2 translocation by FISH, including all 13 tumors with moderate or strong TFE3 (n=10) or cathepsin K (n=7) immunoreactivity. FISH-positive cases showed negative or equivocal immunoreactivity for TFE3 or cathepsin K in 7 and 10 tumors, respectively (both=3). None had positive immunohistochemistry but negative FISH. Morphologic features were typical for Xp11.2 RCC in 10/17 tumors. Unusual features included 1 melanotic Xp11.2 renal cancer, 1 tumor with mixed features of Xp11.2 RCC and clear cell RCC, and other tumors mimicking clear cell RCC, multilocular cystic RCC, or high-grade urothelial carcinoma. Morphology mimicking high-grade urothelial carcinoma has not been previously reported in these tumors. Psammoma bodies, hyalinized stroma, and intracellular pigment were preferentially identified in FISH-positive cases compared with FISH-negative cases. Our results support the clinical application of a TFE3 break-apart FISH assay for diagnosis and confirmation of Xp11.2 RCC and further expand the histopathologic spectrum of these neoplasms to include tumors with unusual features. A renal tumor with pathologic or clinical features highly suggestive of translocation-associated RCC but exhibiting negative or equivocal TFE3 immunostaining should be evaluated by TFE3 FISH assay to fully assess this possibility.
Publication
Journal: Genes and Development
July/11/1991
Abstract
TFE3 is a DNA-binding protein that activates transcription through the muE3 site of the immunoglobulin heavy-chain enhancer. Its amino acid sequence reveals two putative protein dimerization motifs: a helix-loop-helix (HLH) and an adjacent leucine zipper. We show here that both of these motifs are necessary for TFE3 to homodimerize and to bind DNA in vitro. Using a dominant negative TFE3 mutant, we also demonstrate that both the HLH and the leucine zipper motifs are necessary and sufficient for protein-protein interactions in vivo. TFE3 is unable to form stable heterodimers with a variety of other HLH proteins, including USF, a protein that is structurally similar to TFE3 and binds a common DNA sequence. The analysis of "zipper swap" proteins in which the TFE3 HLH was fused to the leucine zipper region of USF indicates that dimerization specificity is mediated entirely by the identity of the leucine zipper and its position relative to the HLH. Hence, in this "b-HLH-zip" class of proteins, the leucine zipper functions in concert with the HLH both to stabilize protein-protein interactions and to establish dimerization specificity.
Publication
Journal: American Journal of Surgical Pathology
November/3/2013
Abstract
The International Society of Urological Pathology convened a consensus conference on renal cancer, preceded by an online survey, to address issues relating to the diagnosis and reporting of renal neoplasia. In this report, the role of biomarkers in the diagnosis and assessment of prognosis of renal tumors is addressed. In particular we focused upon the use of immunohistochemical markers and the approach to specific differential diagnostic scenarios. We enquired whether cytogenetic and molecular tools were applied in practice and asked for views on the perceived prognostic role of biomarkers. Both the survey and conference voting results demonstrated a high degree of consensus in participants' responses regarding prognostic/predictive markers and molecular techniques, whereas it was apparent that biomarkers for these purposes remained outside the diagnostic realm pending clinical validation. Although no individual antibody or panel of antibodies reached consensus for classifying renal tumors, or for confirming renal metastatic disease, it was noted from the online survey that 87% of respondents used immunohistochemistry to subtype renal tumors sometimes or occasionally, and a majority (87%) used immunohistochemical markers (Pax 2 or Pax 8, renal cell carcinoma [RCC] marker, panel of pan-CK, CK7, vimentin, and CD10) in confirming the diagnosis of metastatic RCC. There was consensus that immunohistochemistry should be used for histologic subtyping and applied before reaching a diagnosis of unclassified RCC. At the conference, there was consensus that TFE3 and TFEB analysis ought to be requested when RCC was diagnosed in a young patient or when histologic appearances were suggestive of the translocation subtype; whereas Pax 2 and/or Pax 8 were considered to be the most useful markers in the diagnosis of a renal primary.
Publication
Journal: Journal of Clinical Oncology
April/12/2006
Abstract
OBJECTIVE
Children who survive cancer are at more than 19-fold increased risk of developing another malignancy. Renal cell carcinoma (RCC) occurring as a secondary malignancy is uncommon. Translocation RCC, bearing TFE3 or TFEB gene fusions, are recently recognized entities for which risk factors have not been identified.
METHODS
We describe the clinical, pathologic, cytogenetic, and molecular data on six translocation RCCs that arose in five young patients who had received chemotherapy.
RESULTS
The ages at time of diagnosis of the RCC ranged from 6 to 22 years. Histologically, these tumors showed typical features previously described for translocation RCCs. At the molecular level, three tumors contained the ASPL-TFE3 fusion, two contained Alpha-TFEB, and one contained PRCC-TFE3. The intervals between chemotherapy and the diagnosis of RCC ranged from 4 to 13 years. The indications for the antecedent chemotherapy were varied and included acute promyelocytic leukemia, acute myeloid leukemia with t(9;11), bilateral Wilms' tumor, systemic lupus erythematosus, and conditioning regimen of bone marrow transplant for Hurler's syndrome. Only the latter patient had also received radiation. Hence, among 39 genetically confirmed translocation RCCs in our personal experience, six (15%) have arisen in patients who had received cytotoxic chemotherapy.
CONCLUSIONS
Cytotoxic chemotherapy may predispose to the development of renal translocation carcinomas.
Publication
Journal: American Journal of Surgical Pathology
September/18/2013
Abstract
Xp11 translocation renal cell carcinomas (RCCs) are characterized by chromosome translocations involving the Xp11.2 breakpoint, resulting in gene fusions involving the TFE3 transcription factor. In archival material, the diagnosis can often be confirmed by TFE3 immunohistochemistry (IHC), but variable fixation (especially prevalent in consultation material) can lead to equivocal results. A TFE3 break-apart fluorescence in situ hybridization (FISH) assay has been developed to detect TFE3 gene rearrangements; however, the utility of this assay in a renal tumor consultation practice has not been examined. We reviewed 95 consecutive renal tumor consultation cases submitted to rule in or rule out Xp11 translocation RCC. Thirty-one cases were positive for TFE3 rearrangements by FISH. Patients ranged from 6 to 67 years of age (mean=30 y; median=28 y). Novel or distinctive morphologic features of these cases included extensive cystic change simulating multilocular cystic RCC (3 cases), sarcomatoid transformation (3 cases), oncocytic areas mimicking oncocytoma (1 case), trabecular architecture mimicking a carcinoid tumor (1 case), colonization of renal pelvic urothelium mimicking urothelial carcinoma in situ (1), and focal desmin and diffuse racemase immunoreactivity (1 case each). Twenty-six of the 31 TFE3 FISH-positive RCCs were unequivocally positive for TFE3 by IHC, but 4 were equivocal, and 1 was negative. Of the 64 cases that were negative by TFE3 FISH, 50 were negative by TFE3 IHC, and 14 were equivocal. Thirty-two of the 64 TFE3 FISH-negative cases could be classified into other accepted RCC subtypes: 23 as clear cell RCC, 5 as papillary RCC, 3 as clear cell papillary RCC, and 1 as chromophobe RCC. The other 32 cases remained unclassified, including 3 cathepsin K-positive RCC that closely resembled Xp11 translocation RCC. In conclusion, TFE3 FISH is highly useful in renal tumor consultation material, often resolving cases with equivocal TFE3 IHC results. Given the difficulty of optimizing TFE3 IHC, TFE3 FISH is for most laboratories the optimal test for establishing the diagnosis of Xp11 translocation RCC.
Publication
Journal: Autophagy
May/11/2017
Abstract
The activation of transcription factors is critical to ensure an effective defense against pathogens. In this study we identify a critical and complementary role of the transcription factors TFEB and TFE3 in innate immune response. By using a combination of chromatin immunoprecipitation, CRISPR-Cas9-mediated genome-editing technology, and in vivo models, we determined that TFEB and TFE3 collaborate with each other in activated macrophages and microglia to promote efficient autophagy induction, increased lysosomal biogenesis, and transcriptional upregulation of numerous proinflammatory cytokines. Furthermore, secretion of key mediators of the inflammatory response (CSF2, IL1B, IL2, and IL27), macrophage differentiation (CSF1), and macrophage infiltration and migration to sites of inflammation (CCL2) was significantly reduced in TFEB and TFE3 deficient cells. These new insights provide us with a deeper understanding of the transcriptional regulation of the innate immune response.
Publication
Journal: Proceedings of the National Academy of Sciences of the United States of America
January/27/1997
Abstract
The (X;1)(p11;q21) translocation is a recurrent chromosomal abnormality in a subset of human papillary renal cell carcinomas, and is sometimes the sole cytogenetic abnormality present. Via positional cloning, we were able to identify the genes involved. The translocation results in a fusion of the transcription factor TFE3 gene on the X chromosome to a novel gene, designated PRCC, on chromosome 1. Through this fusion, reciprocal translocation products are formed, which are both expressed in papillary renal cell carcinomas. PRCC is ubiquitously expressed in normal adult and fetal tissues and encodes a putative protein of 491 aa with a relatively high content of prolines. No relevant homologies with known sequences at either the DNA or the protein level were found.
load more...