Citations
All
Search in:AllTitleAbstractAuthor name
Publications
(1K+)
Patents
Grants
Pathways
Clinical trials
Publication
Journal: Proceedings of the National Academy of Sciences of the United States of America
January/9/2008
Abstract
Recent studies have highlighted the importance of peripheral induction of Foxp3-expressing regulatory T cells (Tregs) in the dominant control of immunological tolerance. However, Foxp3(+) Treg differentiation from naïve CD4(+) T cells occurs only under selective conditions, whereas the classical T helper (Th) 1 and 2 effector development often dominate T cell immune responses to antigen stimulation in the periphery. The reason for such disparity remains poorly understood. Here we report that Th1/Th2-polarizing cytokines can potently inhibit Foxp3(+) Treg differentiation from naïve CD4(+) precursors induced by TGF-beta. Furthermore, antigen receptor-primed CD4(+) T cells are resistant to Treg induction because of autocrine production of IFNgamma and/or IL-4, whereas neutralizing IFNgamma and IL-4 not only can potentiate TGF-beta-mediated Foxp3 induction in vitro but can also enhance antigen-specific Foxp3(+) Treg differentiation in vivo. Mechanistically, inhibition of Foxp3(+) Treg development by Th1/Th2-polarizing cytokines involves the activation of Th1/Th2 lineage transcription factors T-bet and GATA-3 through the canonical Stat1-, Stat4-, and Stat6-dependent pathways. Using IFNgamma and IL-4 knockouts and retrovirus-mediated transduction of T-bet and GATA-3, we further demonstrate that enforced expression of the Th1/Th2 lineage-specific transcription factors is sufficient to block Foxp3 induction and Treg differentiation independent of the polarizing/effector cytokines. Thus, our study has unraveled a previously unrecognized mechanism of negative cross-regulation of Foxp3(+) Treg fate choice by Th1/Th2 lineage activities. In addition, these findings also provide an attainable explanation for the general paucity of antigen-triggered de novo generation of Foxp3(+) Tregs in the periphery.
Publication
Journal: Nature Genetics
January/7/2014
Abstract
Sjögren's syndrome is a common autoimmune disease (affecting ∼0.7% of European Americans) that typically presents as keratoconjunctivitis sicca and xerostomia. Here we report results of a large-scale association study of Sjögren's syndrome. In addition to strong association within the human leukocyte antigen (HLA) region at 6p21 (Pmeta = 7.65 × 10(-114)), we establish associations with IRF5-TNPO3 (Pmeta = 2.73 × 10(-19)), STAT4 (Pmeta = 6.80 × 10(-15)), IL12A (Pmeta = 1.17 × 10(-10)), FAM167A-BLK (Pmeta = 4.97 × 10(-10)), DDX6-CXCR5 (Pmeta = 1.10 × 10(-8)) and TNIP1 (Pmeta = 3.30 × 10(-8)). We also observed suggestive associations (Pmeta < 5 × 10(-5)) with variants in 29 other regions, including TNFAIP3, PTTG1, PRDM1, DGKQ, FCGR2A, IRAK1BP1, ITSN2 and PHIP, among others. These results highlight the importance of genes that are involved in both innate and adaptive immunity in Sjögren's syndrome.
Publication
Journal: Journal of Clinical Immunology
January/21/2004
Abstract
The differentiation of naive CD4+ T cells into subsets of T helper cells is a pivotal process with major implications for host defense and the pathogenesis of immune-mediated diseases. Though the basic paradigm was discovered more than 15 years ago, new discoveries continue to be made that offer fresh insights into the regulation of this process. T helper (TH)1 cells produce interferon (IFN)-gamma, promoting cell-mediated immunity and control of intracellular pathogens. We now know that TH1 differentiation is regulated by transcription factors such as T-bet, Stat1, and Stat4, as well as cytokines such as IL-12, IL-23, IL-27, type I IFNs, and IFN-gamma. In contrast, TH2 cells produce IL-4, which promotes allergic responses and is important in host defense against helminths. The transcription factors Stat6, GATA-3, c-Maf, NFATs, and the cytokine IL-4 promote TH2 differentiation. These key regulators of TH differentiation are the subject of this review.
Publication
Journal: PLoS Genetics
December/8/2011
Abstract
The genetic basis of autoantibody production is largely unknown outside of associations located in the major histocompatibility complex (MHC) human leukocyte antigen (HLA) region. The aim of this study is the discovery of new genetic associations with autoantibody positivity using genome-wide association scan single nucleotide polymorphism (SNP) data in type 1 diabetes (T1D) patients with autoantibody measurements. We measured two anti-islet autoantibodies, glutamate decarboxylase (GADA, n = 2,506), insulinoma-associated antigen 2 (IA-2A, n = 2,498), antibodies to the autoimmune thyroid (Graves') disease (AITD) autoantigen thyroid peroxidase (TPOA, n = 8,300), and antibodies against gastric parietal cells (PCA, n = 4,328) that are associated with autoimmune gastritis. Two loci passed a stringent genome-wide significance level (p<10(-10)): 1q23/FCRL3 with IA-2A and 9q34/ABO with PCA. Eleven of 52 non-MHC T1D loci showed evidence of association with at least one autoantibody at a false discovery rate of 16%: 16p11/IL27-IA-2A, 2q24/IFIH1-IA-2A and PCA, 2q32/STAT4-TPOA, 10p15/IL2RA-GADA, 6q15/BACH2-TPOA, 21q22/UBASH3A-TPOA, 1p13/PTPN22-TPOA, 2q33/CTLA4-TPOA, 4q27/IL2/TPOA, 15q14/RASGRP1/TPOA, and 12q24/SH2B3-GADA and TPOA. Analysis of the TPOA-associated loci in 2,477 cases with Graves' disease identified two new AITD loci (BACH2 and UBASH3A).
Publication
Journal: Nature
April/9/2002
Abstract
Host defences to microorganisms rely on a coordinated interplay between the innate and adaptive responses of immunity. Infection with intracellular bacteria triggers an immediate innate response requiring macrophages, neutrophils and natural killer cells, whereas subsequent activation of an adaptive response through development of T-helper subtype 1 cells (TH1) proceeds during persistent infection. To understand the physiological role of receptor-interacting protein 2 (Rip2), also known as RICK and CARDIAK, we generated mice with a targeted disruption of the gene coding for Rip2. Here we show that Rip2-deficient mice exhibit a profoundly decreased ability to defend against infection by the intracellular pathogen Listeria monocytogenes. Rip2-deficient macrophages infected with L. monocytogenes or treated with lipopolysaccharide (LPS) have decreased activation of NF-kappaB, whereas dominant negative Rip2 inhibited NF-kappaB activation mediated by Toll-like receptor 4 and Nod1. In vivo, Rip2-deficient mice were resistant to the lethal effects of LPS-induced endotoxic shock. Furthermore, Rip2 deficiency results in impaired interferon-gamma production in both TH1 and natural killer cells, attributed in part to defective interleukin-12-induced Stat4 activation. Our data reflect requirements for Rip2 in multiple pathways regulating immune and inflammatory responses.
Publication
Journal: Journal of Immunology
February/12/2009
Abstract
Increased IFN-alpha signaling is a primary pathogenic factor in systemic lupus erythematosus (SLE). STAT4 is a transcription factor that is activated by IFN-alpha signaling, and genetic variation of STAT4 has been associated with risk of SLE and rheumatoid arthritis. We measured serum IFN-alpha activity and simultaneous IFN-alpha-induced gene expression in PBMC in a large SLE cohort. The risk variant of STAT4 (T allele; rs7574865) was simultaneously associated with both lower serum IFN-alpha activity and greater IFN-alpha-induced gene expression in PBMC in SLE patients in vivo. Regression analyses confirmed that the risk allele of STAT4 was associated with increased sensitivity to IFN-alpha signaling. The IFN regulatory factor 5 SLE risk genotype was associated with higher serum IFN-alpha activity; however, STAT4 showed dominant influence on the sensitivity of PBMC to serum IFN-alpha. These data provide biologic relevance for the risk variant of STAT4 in the IFN-alpha pathway in vivo.
Publication
Journal: Nature Immunology
April/3/2012
Abstract
Interleukin 35 (IL-35) belongs to the IL-12 family of heterodimeric cytokines but has a distinct functional profile. IL-35 suppresses T cell proliferation and converts naive T cells into IL-35-producing induced regulatory T cells (iTr35 cells). Here we found that IL-35 signaled through a unique heterodimer of receptor chains IL-12Rβ2 and gp130 or homodimers of each chain. Conventional T cells were sensitive to IL-35-mediated suppression in the absence of one receptor chain but not both receptor chains, whereas signaling through both chains was required for IL-35 expression and conversion into iTr35 cells. Signaling through the IL-35 receptor required the transcription factors STAT1 and STAT4, which formed a unique heterodimer that bound to distinct sites in the promoters of the genes encoding the IL-12 subunits p35 and Ebi3. This unconventional mode of signaling, distinct from that of other members of the IL-12 family, may broaden the spectrum and specificity of IL-35-mediated suppression.
Publication
Journal: Proceedings of the National Academy of Sciences of the United States of America
September/10/1995
Abstract
Interleukin 12 (IL-12) is an important immunoregulatory cytokine whose receptor is a member of the hematopoietin receptor superfamily. We have recently demonstrated that stimulation of human T and natural killer cells with IL-12 induces tyrosine phosphorylation of the Janus family tyrosine kinase JAK2 and Tyk2, implicating these kinases in the immediate biochemical response to IL-12. Recently, transcription factors known as STATs (signal transducers and activators of transcription) have been shown to be tyrosine phosphorylated and activated in response to a number of cytokines that bind hematopoietin receptors and activate JAK kinases. In this report we demonstrate that IL-12 induces tyrosine phosphorylation of a recently identified STAT family member, STAT4, and show that STAT4 expression is regulated by T-cell activation. Furthermore, we show that IL-12 stimulates formation of a DNA-binding complex that recognizes a DNA sequence previously shown to bind STAT proteins and that this complex contains STAT4. These data, and the recent demonstration of JAK phosphorylation by IL-12, identify a rapid signal-transduction pathway likely to mediate IL-12-induced gene expression.
Publication
Journal: Trends in Immunology
December/20/2001
Abstract
The suggestion that antigen-presenting cells (APCs) produce interferon gamma (IFN-gamma) is controversial because it conflicts with the initial paradigm in which the production of IFN-gamma was restricted to lymphoid cells. However, some answers to this skepticism have been provided by recent findings of high-level production and intracellular expression of IFN-gamma by interleukin-12 (IL-12)-stimulated macrophages and dendritic cells. New data are now emerging to explain the mechanism of production of IFN-gamma vby APCs. As in lymphoid cells, IL-12-induced IFN-gamma production in APCs requires signal transducer and activator of transcription 4 (STAT4), although the precise molecular events that govern the transcription of the gene encoding IFN-gamma are enigmatic still. Understanding these processes in lymphoid, and now nonlymphoid, cells remains an important challenge.
Publication
Journal: Journal of Biological Chemistry
September/9/2004
Abstract
Interferon (IFN)-lambda 1, -lambda 2, and -lambda 3 are the latest members of the class II cytokine family and were shown to have antiviral activity. Their receptor is composed of two chains, interleukin-28R/likely interleukin or cytokine or receptor 2 (IL-28R/LICR2) and IL-10R beta, and mediates the tyrosine phosphorylation of STAT1, STAT2, STAT3, and STAT5. Here, we show that activation of this receptor by IFN-lambda 1 can also inhibit cell proliferation and induce STAT4 phosphorylation, further extending functional similarities with type I IFNs. We used IL-28R/LICR2-mutated receptors to identify the tyrosines required for STAT activation, as well as antiproliferative and antiviral activities. We found that IFN-lambda 1-induced STAT2 tyrosine phosphorylation is mediated through tyrosines 343 and 517 of the receptor, which showed some similarities with tyrosines from type I IFN receptors involved in STAT2 activation. These two tyrosines were also responsible for antiviral and antiproliferative activities of IFN-lambda 1. By contrast, STAT4 phosphorylation (and to some extent STAT3 activation) was independent from IL-28R/LICR2 tyrosine residues. Taken together, these observations extend the functional similarities between IFN-lambdas and type I IFNs and shed some new light on the mechanisms of activation of STAT2 and STAT4 by these cytokines.
Publication
Journal: Genes and Immunity
June/21/2009
Abstract
As a result of genome-wide association studies in larger sample sets, there has been an increase in identifying genes that influence susceptibility to individual immune-mediated diseases, as well as evidence that some genes are associated with more than one disease. In this study, we tested 17 single nucleotide polymorphisms (SNP) from 16 gene regions that have been reported in several autoimmune diseases including rheumatoid arthritis (RA), systemic lupus erythematosus (SLE), multiple sclerosis (MS), ankylosing spondylitis (AS) and Crohn's disease (CD) to determine whether the variants are also associated with type 1 diabetes (T1D). In up to 8010 cases and 9733 controls we found some evidence for an association with T1D in the regions containing genes: 2q32/STAT4, 17q21/STAT3, 5p15/ERAP1 (ARTS1), 6q23/TNFAIP3 and 12q13/KIF5A/PIP4K2C with allelic P-values ranging from 3.70 x 10(-3) to 3.20 x 10(-5). These findings extend our knowledge of susceptibility locus sharing across different autoimmune diseases, and provide convincing evidence that the RA/SLE locus 6q23/TNFAIP3 is a newly identified T1D locus.
Publication
Journal: PLoS Genetics
August/23/2011
Abstract
Systemic lupus erythematosus (SLE) is a clinically heterogeneous, systemic autoimmune disease characterized by autoantibody formation. Previously published genome-wide association studies (GWAS) have investigated SLE as a single phenotype. Therefore, we conducted a GWAS to identify genetic factors associated with anti-dsDNA autoantibody production, a SLE-related autoantibody with diagnostic and clinical importance. Using two independent datasets, over 400,000 single nucleotide polymorphisms (SNPs) were studied in a total of 1,717 SLE cases and 4,813 healthy controls. Anti-dsDNA autoantibody positive (anti-dsDNA +, n = 811) and anti-dsDNA autoantibody negative (anti-dsDNA -, n = 906) SLE cases were compared to healthy controls and to each other to identify SNPs associated specifically with these SLE subtypes. SNPs in the previously identified SLE susceptibility loci STAT4, IRF5, ITGAM, and the major histocompatibility complex were strongly associated with anti-dsDNA + SLE. Far fewer and weaker associations were observed for anti-dsDNA - SLE. For example, rs7574865 in STAT4 had an OR for anti-dsDNA + SLE of 1.77 (95% CI 1.57-1.99, p = 2.0E-20) compared to an OR for anti-dsDNA - SLE of 1.26 (95% CI 1.12-1.41, p = 2.4E-04), with p(heterogeneity)<0.0005. SNPs in the SLE susceptibility loci BANK1, KIAA1542, and UBE2L3 showed evidence of association with anti-dsDNA + SLE and were not associated with anti-dsDNA - SLE. In conclusion, we identified differential genetic associations with SLE based on anti-dsDNA autoantibody production. Many previously identified SLE susceptibility loci may confer disease risk through their role in autoantibody production and be more accurately described as autoantibody propensity loci. Lack of strong SNP associations may suggest that other types of genetic variation or non-genetic factors such as environmental exposures have a greater impact on susceptibility to anti-dsDNA - SLE.
Publication
Journal: Proceedings of the National Academy of Sciences of the United States of America
June/26/1994
Abstract
The deduced amino acid sequence of two members of the signal transducers and activators of transcription (STAT) family from the mouse are described. Comparison with the deduced protein sequence of the two previously described genes (Stat91 and Stat113), discovered because of their activation as transcription factors after interferon-induced tyrosine phosphorylation, shows several highly conserved regions, including the putative SH3 and SH2 domains. The conserved amino acid stretches likely point to conserved domains that enable these proteins to carry out the several required functions they are known and proposed to carry out. While Stat1 and Stat3 are widely expressed, Stat4 expression is restricted to testis, thymus, and spleen. Antiserum to Stat3 detects a major approximately 92-kDa protein and a minor approximately 89-kDa protein, while antiserum to Stat4 precipitates one major protein of approximately 89 kDa.
Publication
Journal: Gastroenterology
April/5/2005
Abstract
OBJECTIVE
T-helper (Th)1 cells play a central role in the pathogenesis of tissue damage in Crohn's disease (CD). Interleukin (IL)-12/STAT4 signaling promotes Th1 cell commitment in CD, but other cytokines are needed to maintain activated Th1 cells in the mucosa. In this study, we examined the expression and role of IL-21, a T-cell-derived cytokine of the IL-2 family; in tissues and cells isolated from patients with inflammatory bowel disease.
METHODS
IL-21 was examined by Western blotting in whole mucosa and lamina propria mononuclear cells (LPMCs) from patients with CD, ulcerative colitis (UC), and controls. We also examined the effects of exogenous IL-12 on IL-21 production, as well as the effects of blocking IL-21 with an IL-21-receptor Ig fusion protein. Interferon (IFN)-gamma was measured in the culture supernatants by enzyme-linked immunosorbent assay, and phosphorylated STAT4 and T-bet were examined by Western blotting.
RESULTS
IL-21 was detected in all samples, but its expression was higher at the site of disease in CD in comparison with UC and controls. Enhanced IL-21 was seen in both ileal and colonic CD and in fibrostenosing and nonfibrostenosing disease. IL-12 enhanced IL-21 in normal lamina propria lymphocytes through an IFN-gamma-independent mechanism, and blocking IL-12 in CD LPMCs decreased anti-CD3-stimulated IL-21 expression. Neutralization of IL-21 in CD LPMC cultures decreased phosphorylated STAT4 and T-bet expression, thereby inhibiting IFN-gamma production.
CONCLUSIONS
Our data suggest that IL-21 contributes to the ongoing Th1 mucosal response in CD.
Publication
Journal: Immunity
December/26/2012
Abstract
T-bet is a critical transcription factor for T helper 1 (Th1) cell differentiation. To study the regulation and functions of T-bet, we developed a T-bet-ZsGreen reporter mouse strain. We determined that interleukin-12 (IL-12) and interferon-γ (IFN-γ) were redundant in inducing T-bet in mice infected with Toxoplasma gondii and that T-bet did not contribute to its own expression when induced by IL-12 and IFN-γ. By contrast, T-bet and the transcription factor Stat4 were critical for IFN-γ production whereas IFN-γ signaling was dispensable for inducing IFN-γ. Loss of T-bet resulted in activation of an endogenous program driving Th2 cell differentiation in cells expressing T-bet-ZsGreen. Genome-wide analyses indicated that T-bet directly induced many Th1 cell-related genes but indirectly suppressed Th2 cell-related genes. Our study revealed redundancy and synergy among several Th1 cell-inducing pathways in regulating the expression of T-bet and IFN-γ, and a critical role of T-bet in suppressing an endogenous Th2 cell-associated program.
Publication
Journal: Journal of Immunology
April/24/2003
Abstract
Abscess formation associated with intra-abdominal sepsis causes severe morbidity and can be fatal. Previous studies have implicated T cells in the pathogenesis of abscess formation, and we have recently shown that CD4(+) T cells activated in vitro by zwitterionic capsular polysaccharides from abscess-inducing bacteria such as Staphylococcus aureus and Bacteroides fragilis initiate this host response when transferred to naive rats. In this study, we show that mice deficient in alphabetaTCR-bearing T cells or CD4(+) T cells fail to develop abscesses following challenge with B. fragilis or abscess-inducing zwitterionic polysaccharides, compared with CD8(-/-) or wild-type animals. Transfer of CD4(+) T cells from wild-type mice to alphabetaTCR(-/-) animals reconstituted this ability. The induction of abscesses required T cell costimulation via the CD28-B7 pathway, and T cell transfer experiments with STAT4(-/-) and STAT6(-/-) mice demonstrated that this host response is dependent on STAT4 signaling. Significantly higher levels of IL-17, a proinflammatory cytokine produced almost exclusively by activated CD4(+) T cells, were associated with abscess formation in Th2-impaired (STAT6(-/-)) mice, while STAT4(-/-) mice had significantly lower levels of this cytokine than control animals. The formation of abscesses was preceded by an increase in the number of activated CD4(+) T cells in the peritoneal cavity 24 h following bacterial challenge. Confocal laser-scanning microscopy analysis revealed that CD4(+) T cells comprise the abscess wall in these animals and produce IL-17 at this site. Administration of a neutralizing Ab specific for IL-17 prevented abscess formation following bacterial challenge in mice. These data delineate the specific T cell response necessary for the development of intra-abdominal abscesses and underscore the role of IL-17 in this disease process.
Publication
Journal: Oncogene
June/27/2000
Abstract
IL-4 and IL-12 are cytokines that are important regulators of the proliferation, differentiation and functional capacity of lymphocytes. STATs (signal transducers and activators of transcription) are transcription factors that provide a direct link between the cytokine receptors and cytokine induced gene transcription. Stat6 and Stat4 are two STAT family members that specifically mediate signals that emanate from the IL-4 and IL-12 receptors, respectively. Recently a great deal of progress has been made in understanding the specific roles that Stat6 and Stat4 play in lymphocyte function through in vitro as well as in vivo studies using Stat6 and Stat4-deficient mice. This report will summarize and describe the recent advances made in understanding the activation and regulation of Stat6 and Stat4 as well as their roles in the development of an immune response. Oncogene (2000).
Publication
Journal: Journal of Experimental Medicine
July/15/2012
Abstract
Although natural killer (NK) cells are classified as innate immune cells, recent studies demonstrate that NK cells can become long-lived memory cells and contribute to secondary immune responses. The precise signals that promote generation of long-lived memory NK cells are unknown. Using cytokine receptor-deficient mice, we show that interleukin-12 (IL-12) is indispensible for mouse cytomegalovirus (MCMV)-specific NK cell expansion and generation of memory NK cells. In contrast to wild-type NK cells that proliferated robustly and resided in lymphoid and nonlymphoid tissues for months after MCMV infection, IL-12 receptor-deficient NK cells failed to expand and were unable to mediate protection after MCMV challenge. We further demonstrate that a STAT4-dependent IFN-γ-independent mechanism contributes toward the generation of memory NK cells during MCMV infection. Understanding the full contribution of inflammatory cytokine signaling to the NK cell response against viral infection will be of interest for the development of vaccines and therapeutics.
Publication
Journal: Immunity
August/1/1995
Abstract
Developmental-commitment to Th1 or Th2 responses critically influences host susceptibility to particular pathogens. We describe a novel mechanism governing stable commitment to Th2 differentiation. Naive T cells develop strongly polarized Th1 and Th2 profiles by 7 days after activation. However, commitment of these developing cells differs substantially. Although IL-4 reverses early Th1 differentiation, IL-12 cannot reverse early Th2 differentiation. Th1 reversibility results from maintenance of IL-4 signal transduction, whereas Th2 commitment results from rapid loss of IL-12 signaling. The IL-12 signaling defect in Th2 cells results in failure to phosphorylate Jak2, Stat3, and Stat4. Since Th2 cells express the mRNA for the cloned murine IL-12 receptor beta subunit, the signaling defect may involve expression or function of unidentified receptor components. The rapid extinction of IL-12 signaling in Th2 cells provides a demonstration of a mechanism for the stable commitment to a T helper phenotype.
Publication
Journal: Blood
January/27/2010
Abstract
Human CD56(bright) natural killer (NK) cells possess little or no killer immunoglobulin-like receptors (KIRs), high interferon-gamma (IFN-gamma) production, but little cytotoxicity. CD56(dim) NK cells have high KIR expression, produce little IFN-gamma, yet display high cytotoxicity. We hypothesized that, if human NK maturation progresses from a CD56(bright) to a CD56(dim) phenotype, an intermediary NK cell must exist, which demonstrates more functional overlap than these 2 subsets, and we used CD94 expression to test our hypothesis. CD94(high)CD56(dim) NK cells express CD62L, CD2, and KIR at levels between CD56(bright) and CD94(low)CD56(dim) NK cells. CD94(high)CD56(dim) NK cells produce less monokine-induced IFN-gamma than CD56(bright) NK cells but much more than CD94(low)CD56(dim) NK cells because of differential interleukin-12-mediated STAT4 phosphorylation. CD94(high)CD56(dim) NK cells possess a higher level of granzyme B and perforin expression and CD94-mediated redirected killing than CD56(bright) NK cells but lower than CD94(low)CD56(dim) NK cells. Collectively, our data suggest that the density of CD94 surface expression on CD56(dim) NK cells identifies a functional and likely developmental intermediary between CD56(bright) and CD94(low)CD56(dim) NK cells. This supports the notion that, in vivo, human CD56(bright) NK cells progress through a continuum of differentiation that ends with a CD94(low)CD56(dim) phenotype.
Publication
Journal: Immunity
December/20/2012
Abstract
Foxp3(+) regulatory T (Treg) cells limit inflammatory responses and maintain immune homeostasis. Although comprised of several phenotypically and functionally distinct subsets, the differentiation of specialized Treg cell populations within the periphery is poorly characterized. We demonstrate that the development of T-bet(+) Treg cells that potently inhibit T helper 1 (Th1) cell responses was dependent on the transcription factor STAT1 and occurred directly in response to interferon-γ produced by effector T cells. Additionally, delayed induction of the IL-12Rβ2 receptor component after STAT1 activation helped ensure that Treg cells do not readily complete STAT4-dependent Th1 cell development and lose their ability to suppress effector T cell proliferation. Thus, we define a pathway of abortive Th1 cell development that results in the specialization of peripheral Treg cells and demonstrate that impaired expression of a single cytokine receptor helps maintain Treg cell-suppressive function in the context of inflammatory Th1 cell responses.
Publication
Journal: Nature Genetics
February/21/2013
Abstract
To identify genetic susceptibility loci for hepatitis B virus (HBV)-related hepatocellular carcinoma (HCC) in the Chinese population, we carried out a genome-wide association study (GWAS) in 2,514 chronic HBV carriers (1,161 HCC cases and 1,353 controls) followed by a 2-stage validation among 6 independent populations of chronic HBV carriers (4,319 cases and 4,966 controls). The joint analyses showed that HCC risk was significantly associated with two independent loci: rs7574865 at STAT4, P(meta) = 2.48 × 10(-10), odds ratio (OR) = 1.21; and rs9275319 at HLA-DQ, P(meta) = 2.72 × 10(-17), OR = 1.49. The risk allele G at rs7574865 was significantly associated with lower mRNA levels of STAT4 in both the HCC tissues and nontumor tissues of 155 individuals with HBV-related HCC (P(trend) = 0.0008 and 0.0002, respectively). We also found significantly lower mRNA expression of STAT4 in HCC tumor tissues compared with paired adjacent nontumor tissues (P = 2.33 × 10(-14)).
Publication
Journal: Cytokine and Growth Factor Reviews
July/26/2000
Abstract
STAT (signal transducers and activators of transcription) family, consisting of seven members, is involved in cytokine signal transduction. Biological roles of each STAT family protein have now been elucidated through studies of gene targeted mice. Stat1 knockout mice are defective in interferon-mediated functions. Stat4 and Stat6 knockout mice show defective responses to IL-12 and IL-4, respectively. Analyses of Stat5a and Stat5b knockout mice reveal important roles in prolactin-mediated mammary gland development and growth hormone-mediated induction of sexual dimorphism, respectively. Conditional knockout study of Stat3 demonstrates its critical roles in cytokine-mediated functions in several tissues, including T cells, macrophages, skin, and mammary gland.
Publication
Journal: Immunity
April/22/2003
Abstract
To further understand the interaction among GATA-3, Stat4, and T-bet in helper T cell development, we first showed that retroviral expression of GATA-3 in developing Th1 cells suppresses Th1 development through downregulation of Stat4 rather through downregulation of the IL-12Rbeta2 chain. Correspondingly, Stat4 levels are greatly suppressed during physiological Th2 development. Then, using cells doubly infected with GFP- and YFP-expressing retroviruses, we showed that retroviral GATA-3 expression in developing Th1 cells does not block Th1 development in cells coexpressing Stat4 but does so in cells coexpressing T-bet. Finally, we showed that retroviral Stat4 expression could facilitate Th2->>Th1 conversion in cells bearing an IL-12Rbeta2 transgene, even in cells lacking T-bet. These findings reassert that Stat4 signaling is a central element of Th1/Th2 development.
load more...