Citations
All
Search in:AllTitleAbstractAuthor name
Publications
(115)
Patents
Grants
Pathways
Clinical trials
Publication
Journal: Molecular Pharmaceutics
January/14/2014
Abstract
Chronic hypoxia, a key stimulus for neovascularization, has been implicated in the pathology of proliferative diabetic retinopathy, retinopathy of prematurity, and wet age related macular degeneration. The aim of the present study was to determine the effect of chronic hypoxia on drug transporter mRNA expression and activity in ocular barriers. Sprague-Dawley rats were exposed to hypobaric hypoxia (PB = 380 mmHg) for 6 weeks, and neonatal calves were maintained under hypobaric hypoxia (PB = 445 mmHg) for 2 weeks. Age matched controls for rats, and calves were maintained at ambient altitude and normoxia. The effect of hypoxia on transporter expression was analyzed by qRT-PCR analysis of transporter mRNA expression in hypoxic and control rat choroid-retina. The effect of hypoxia on the activity of PEPT, OCT, ATB(0+), and MCT transporters was evaluated using in vitro transport studies of model transporter substrates across calf cornea and sclera-choroid-RPE (SCRPE). Quantitative gene expression analysis of 84 transporters in rat choroid-retina showed that 29 transporter genes were up regulated or down regulated by ≥1.5-fold in hypoxia. Nine ATP binding cassette (ABC) families of efflux transporters including MRP3, MRP4, MRP5, MRP6, MRP7, Abca17, Abc2, Abc3, and RGD1562128 were up-regulated. For solute carrier family transporters, 11 transporters including SLC10a1, SLC16a3, SLC22a7, SLC22a8, SLC29a1, SLC29a2, SLC2a1, SLC3a2, SLC5a4, SLC7a11, and SLC7a4 were up regulated, while 4 transporters including SLC22a2, SLC22a9, SLC28a1, and SLC7a9 were down-regulated in hypoxia. Of the three aquaporin (Aqp) water channels, Aqp-9 was down-regulated, and Aqp-1 was up-regulated during hypoxia. Gene expression analysis showed down regulation of OCT-1, OCT-2, and ATB(0+) and up regulation of MCT-3 in hypoxic rat choroid-retina, without any effect on the expression of PEPT-1 and PEPT-2. Functional activity assays of PEPT, OCT, ATB(0+), and MCT transporters in calf ocular tissues showed that PEPT, OCT, and ATB(0+) functional activity was down-regulated, whereas MCT functional activity was up-regulated in hypoxic cornea and SCRPE. Gene expression analysis of these transporters in rat tissues was consistent with the functional transport assays except for PEPT transporters. Chronic hypoxia results in significant alterations in the mRNA expression and functional activity of solute transporters in ocular tissues.
Publication
Journal: Biological Psychiatry
June/22/2020
Abstract
Background: Habitual reward-seeking behavior is a hallmark of addictive behavior. The role of the dorsomedial striatum (DMS) in regulating goal-directed reward-seeking behavior has been long appreciated. However, it remains unclear how the astrocytic activities in the DMS differentially affect the behavioral shift.
Methods: To investigate the astrocytic activity-driven neuronal synaptic events and behavioral consequences, we chemogenetically activated astrocytes in the DMS using GFAP promoter-driven expression of hM3Dq, the excitatory DREADDs (designer receptors exclusively activated by designer drugs). First, we confirmed the chemogenetically induced cellular activity in the DMS astrocytes using calcium imaging. Then, we recorded electrophysiological changes in the synaptic activity of the two types of medium spiny neurons (MSNs): direct and indirect pathway MSNs. To evaluate the behavioral consequences, we trained mice in nose-poking operant chambers that developed either habitual or goal-directed reward-seeking behaviors.
Results: The activation of DMS astrocytes reduced the frequency of spontaneous excitatory postsynaptic currents in the direct pathway MSNs, whereas it increased the amplitude of the spontaneous excitatory postsynaptic currents and decreased the frequency of spontaneous inhibitory postsynaptic currents in the indirect pathway MSNs. Interestingly, astrocyte-induced DMS neuronal activities are regulated by adenosine metabolism, receptor signaling, and transport. Importantly, mice lacking an astrocytic adenosine transporter, ENT1 (equilibrative nucleoside transporter 1; Slc29a1), show no transition from habitual to goal-directed reward-seeking behaviors upon astrocyte activation, while restoring ENT1 expression in the DMS facilitated this transition.
Conclusions: Our findings reveal that DMS astrocyte activation differentially regulates MSNs' activity and facilitates shifting from habitual to goal-directed reward-seeking behavior.
Keywords: Adenosine; Astrocyte; Dorsomedial striatum; Goal directed; Habitual; Reward seeking.
Publication
Journal: Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie
October/18/2015
Abstract
Ribavirin is phosphorylated by adenosine kinase 1 (AK1) and cytosolic 5'-nucleotidase 2 and it is transported into cells by concentrative nucleoside transporters (CNT) 2/3, coded by SLC28A2/3 genes, and equilibrative nucleoside transporters (ENT) 1/2, coded by SLC29A1/2 genes. We evaluated the association of some polymorphisms of IL28B, SLC28A2/3, SLC29A1, ABCB1, NT5C2, AK1, HNF4α genes and ribavirin treatment outcome and pharmacokinetics after 4weeks of therapy, in a cohort of HCV-1/4 Italian patients. Allelic discrimination was performed by real-time PCR; plasma concentrations were determined at the end of dosing interval (Ctrough) using an HPLC-UV method. Non response was negatively predicted by cryoglobulinemia and IL28B_rs12980275 AA genotype and positively by Metavir score; Metavir score, insulin resistance and SLC28A2_rs1060896 CA/AA and HNF4α_rs1884613 CC genotypes were negative predictive factors of SVR, whereas HCV viral load at baseline and IL28B_rs12980275 AA and rs8099917 TT genotypes positively predicted this outcome; RVR was negatively predicted by insulin resistance and positively by cryoglobulinemia and IL28B_rs12980275 AA genotype; Metavir score and insulin resistance were able to negatively predict EVR, whereas cryoglobulinemia and IL28B_rs12980275 AA genotype positively predicted it; at last, virological relapse was negatively predicted by IL28B_rs8099917 TT and AK1_rs1109374 TT genotypes, insulin resistance was a positive predictor factor. Concerning ribavirin pharmacokinetics, SLC28A2_rs11854488 TT was related to lower Ctrough levels; conversely patients with TC profile of SLC28A3_rs10868138 and SLC29A1_rs760370 GG genotype had higher ribavirin levels. These results might contribute to the clarification of mechanisms causing the individuality in the response to ribavirin containing therapy.
Publication
Journal: Molecular Pharmacology
February/11/2013
Abstract
Inhibitor and substrate interactions with equilibrative nucleoside transporter 1 (ENT1; SLC29A1) are known to be affected by cysteine-modifying reagents. A previous study from our laboratory established Cys222 in transmembrane (TM) 6 as the residue responsible for methyl methanethiosulfonate (a membrane-permeable sulfhydryl modifier)-mediated enhancement of the binding of the ENT1 inhibitor nitrobenzylmercaptopurine riboside (NBMPR) in intact cells. However, the capacity of charged sulfhydryl reagents to inhibit the binding of NBMPR in broken cell preparations (allowing cytoplasmic access) was not affected by mutation of any of the cysteines (Cys87, 193, 213, or 222) in the N-terminal half of the protein. We thus hypothesized that the inhibitory effects of the modifiers were due to the one or more of the six cysteine residues in the C-terminal half of ENT1, particularly one or both of those in the fifth intracellular loop (Cys414 and Cys416). Each of the cysteines were mutated to serine or alanine and expressed in nucleoside transport-deficient PK15 cells and probed with a series of methanethiosulfonate sulfhydryl-modifying reagents. Transporter function was assessed by the site-specific binding of [(3)H]NBMPR and the cellular uptake of [(3)H]2-chloroadenosine. These studies established that Cys378 is an extracellular-located residue modified by [2-(trimethylammonium)ethyl] methane-thiosulfonate (MTSET) to inhibit the binding of NBMPR to intact cells. Mutation of Cys414 led to an enhancement of the ability of MTSET to inhibit NBMPR binding, and this enhancement was eliminated by the comutation of Cys378, indicating that disruption of the fifth intracellular loop modifies the conformation of TM10 and its extracellular extension. Mutation of Cys416 led to the loss of the ability of the charged sulfhydryl reagents to inhibit NBMPR binding in isolated membranes and also led to the loss of transport function. This finding further supports an allosteric interaction between the fifth intracellular loop and the extracellular NBMPR binding domain and implicates this region in the translocation function of human ENT1.
Publication
Journal: Cardiovascular Research
August/16/2009
Abstract
OBJECTIVE
We studied whether transforming growth factor beta1 (TGF-beta1) modulates human equilibrative nucleoside transporters 1 (hENT1) expression and activity in human umbilical vein endothelial cells (HUVECs). hENT1-mediated adenosine transport and expression are reduced in gestational diabetes and hyperglycaemia, conditions associated with increased synthesis and release of nitric oxide (NO) and TGF-beta1 in this cell type. TGF-beta1 increases NO synthesis via activation of TGF-beta receptor type II (TbetaRII), and NO inhibits hENT1 expression and activity in HUVECs.
RESULTS
HUVECs (passage 2) were used for experiments. Total and hENT1-mediated adenosine transport was measured in the absence or presence of TGF-beta1, NG-nitro-L-arginine methyl ester (L-NAME, NO synthase inhibitor), S-nitroso-N-acetyl-L,D-penicillamine (SNAP, NO donor), and/or KT-5823 (protein kinase G inhibitor) in control cells and cells expressing a truncated form of TGF-beta1 receptor type II (TTbetaRII). Western blot and real-time PCR were used to determine hENT1 protein abundance and mRNA expression. SLC29A1 gene promoter and specific protein 1 (Sp1) transcription factor activity was assayed. Vascular reactivity was assayed in endothelium-intact or -denuded umbilical vein rings. TGF-beta1 reduced hENT1-mediated adenosine transport, hENT1 protein abundance, hENT1 mRNA expression, and SLC29A1 gene promoter activity, but increased Sp1 binding to DNA. TGF-beta1 effect was blocked by L-NAME and KT-5823 and mimicked by SNAP in control cells. However, TGF-beta1 was ineffective in cells expressing TTbetaRII or a mutated Sp1 consensus sequence. Vasodilatation in response to TGF-beta1 and S-(4-nitrobenzyl)-6-thio-inosine (an ENT inhibitor) was endothelium-dependent and blocked by KT-5823 and ZM-241385.
CONCLUSIONS
hENT1 is down-regulated by activation of TbetaRII by TGF-beta1 in HUVECs, a phenomenon where NO and Sp1 play key roles. These findings comprise physiological mechanisms that could be important in diseases where TGF-beta1 plasma level is increased as in gestational diabetic mothers or patients with diabetes mellitus.
Publication
Journal: Current Pharmacogenomics and Personalized Medicine
February/19/2017
Abstract
Diabetic retinopathy is a leading cause of blindness in the Western world. However, treatment options for diabetic retinopathy are limited and display poor efficacy with marked patient-to-patient variation in therapeutic outcomes. Discovery of new molecular entities acting on mechanistically novel biological pathways remains as one of the key research priorities in diabetic retinopathy. Moreover, given the variable success of the existing treatment modalities, a targeted and personalized drug development strategy could be more fruitful for rational and successful transition of preclinical discoveries to the clinical realm. This review is focused on cannabidiol, a non-psychoactive native cannabinoid, as an emerging and novel therapeutic modality based on systematic studies in animal models of inflammatory retinal diseases including diabetic retinopathy - one of the retinal diseases associated with vascular neuroinflammation. We present the postulated and preclinically documented novel mechanisms that may underlie cannabidiol mode of action in diabetic retinopathy. We discuss the interindividual variation in pharmacokinetic pathways as well as in the SLC29A1 gene, a molecular target for cannabidiol. We emphasize that the novel mode of action of cannabidiol and the previous failures with nontargeted interventions in diabetic retinopathy collectively demand a more rational and personalized clinical development strategy for compounds that have shown promise at the preclinical stage. Moreover, it is noteworthy that ophthalmology, as a medical specialty, has fewer examples (e.g., compared to oncology) of personalized medicine and biomarker applications thus far. Understanding the biological action of cannabidiol in preclinical studies is therefore a rational first step to proactively map the pertinent biomarker strategies in clinical proof of concept studies in diabetic retinopathy, and to allow advances at the hitherto neglected intersection of personalized medicine and ophthalmology.
Publication
Journal: Inflammatory Bowel Diseases
September/5/2016
Abstract
BACKGROUND
Thiopurine-related toxicity results in discontinuation of therapy in up to 30% of patients with inflammatory bowel disease. Although thiopurine S-methyltransferase (TPMT) is implicated in toxicity, not all toxicity can be attributed to TPMT polymorphisms. We investigated the effects of polymorphisms of genes involved in thiopurine and folate metabolism pathways on 6-thioguanine nucleotide levels and toxicity.
METHODS
Retrospective clinical data and blood samples were collected from 132 pediatric patients with inflammatory bowel disease treated with azathioprine. Eighty-seven genetic polymorphisms of 30 genes were screened using the MassARRAY system, and 70 polymorphisms of 28 genes were selected for further analysis.
RESULTS
TPMT genotype (P < 0.001), concurrent use of mesalazine (P = 0.006), ABCC5 (rs2293001) (P < 0.001), ITPA (rs2236206 and rs8362) (P = 0.010 and P = 0.003), and ABCB1 (rs2032582) (P = 0.028) were all associated with the ratio of 6-thioguanine nucleotides to azathioprine dose. ADK (rs10824095) (P = 0.004, odds ratio [OR] = 6.220), SLC29A1 (rs747199) (P = 0.016, OR = 5.681), and TYMS (rs34743033) (P = 0.045, OR = 3.846) were associated with neutropenia. ABCC1 (rs2074087) (P = 0.022, OR = 3.406), IMPDH1 (rs2278294) (P = 0.027, OR = 0.276), and IMPDH2 (rs11706052) (P = 0.034, OR = 3.639) had a significant impact on lymphopenia.
CONCLUSIONS
This study describes genetic polymorphisms in genes whose products may affect pharmacokinetics and which may predict the relative likelihood of benefit or risk from thiopurine treatment. These findings may serve as a basis for personalized thiopurine therapy in pediatric patients with inflammatory bowel disease, although our data need to be validated in further studies.
Publication
Journal: Journal of Dairy Science
April/22/2016
Abstract
An effective immune response relies on efficient activation of polymorphonuclear neutrophilic leukocytes (PMNL). The PMNL release cellular ATP in response to inflammatory mediators. Although extracellular ATP is rapidly degraded to adenosine, both compounds can readily bind to either the purinergic receptor P1 (adenosine) or P2 (ATP). The P1 and P2 receptors are members of the G-protein-coupled receptor family. The peripartal period is characterized by marked changes in metabolic and inflammatory status that are functionally related with immune responses in the cow. We evaluated the mRNA expression of genes associated with purinergic signaling in PMNL during the peripartal period. Seven multiparous Holstein cows were dried off at d -50 relative to expected parturition and fed a controlled-energy diet (net energy for lactation=1.24 Mcal/kg of dry matter) for ad libitum intake during the entire dry period. After calving, all cows were fed a common lactation diet (net energy for lactation=1.65 Mcal/kg of dry matter) until 30 d in milk. Blood PMNL collected at -10, 3, and 21 d in milk were used to study the expression of 22 genes associated with adhesion to endothelium, chemoattractant binding at the plasma membrane, and purinergic signaling. Other blood samples around calving were used to analyze concentrations of insulin, metabolites, and whole-blood phagocytosis. The expression of purinergic receptor P2Y, G-protein coupled, 2 (P2RY2) increased on d 3 and then decreased on d 21. This response suggested that ATP could play a role in the amplification of chemotactic signals. In contrast, the expression of genes encoding cell adhesion [selectin L (SELL) and selectin P ligand (SELPLG)], chemoattractant receptors [complement component 5a receptor 1 (C5AR1), IL-8 receptor α (CXCR1), IL-8 receptor β (CXCR2), and platelet-activating factor receptor (PTAFR)], and adenosine receptors [adenosine A1 receptor (ADORA1) and adenosine A3 receptor (ADORA3)] decreased between -10 and 3 d. The decrease coincided with a marked increase in blood nonesterified fatty acids and hydroxybutyrate concentrations, and a decrease in glucose and insulin concentrations. The increase in metabolites also was associated with greater expression of leukotriene B4 receptor (LTB4R) on d 3 and 21 compared with d -10, which is involved in inflammatory prostaglandin synthesis. Most chemoattractant receptors increased by 21 d, but cell adhesion genes and blood leukocyte phagocytosis was lower. The expression of adenosine A2a receptor (ADORA2A), which is associated with immunosuppression of PMNL and that of adenosine uptake channels [solute carrier family 29 (nucleoside transporters), member 1 (SLC29A1) and member 2 (SLC29A2)] and the nucleotidase adenosine deaminase (ADA) was greater at 3 and 21 d compared with -10d. The reduction in key immune responses, such as cell adhesion and chemotaxis, by bovine PMNL could partly be a function of changes in mRNA expression of genes associated with purinergic signaling.
Publication
Journal: Journal of the Science of Food and Agriculture
June/9/2019
Abstract
Nucleotides are key constituents of milk, where they are utilized in cell replication, although there are limited studies for weaned piglets. This study evaluated the effects of uridine monophosphate (UMP) with uridine (UR) feed supplementation on the intestinal development and nucleotide transport in weaned piglets.Supplementation with UMP significantly increased (P < 0.05) plasma glucose, and UR supplementation significantly reduced (0.05 < P < 0.10) the plasma total cholesterol (TC) of piglets when compared with that of the control group, although non-significant difference (P > 0.05) in growth performance was observed among three groups. Piglets fed supplementary UR exhibited greater (P < 0.05) crypt depth in the duodenum and ileum when compared with those in the supplementary UMP and control groups. Real-time quantitative polymerase chain reaction (RT-qPCR) results revealed that UR supplementation increased (P < 0.05) the relative mRNA levels of genes encoding the transmembrane proteins ZO-1 and occludin in the duodenum mucosa, and ZO-1 in the jejunum mucosa (P < 0.05). Similarly, UR supplementation increased (P < 0.05) expression of solute carriers SLC28A1 and SLC29A1 in the duodenum mucosa. Conversely, claudin-1 expression in the duodenum mucosa was inhibited (P < 0.05) by dietary supplementation with UMP or UR.Collectively, our data indicated that dietary supplementation with UMP or UR was conducive to stimulating intestinal development and promoting nucleotide transport in weaned piglets. © 2019 Society of Chemical Industry.
Publication
Journal: Therapeutic Drug Monitoring
January/11/2017
Abstract
Azathioprine is a first-line drug in treating neuromyelitis optica spectrum disorders (NMOSD). To exhibit its bioactivity, azathioprine needs to be converted to thiopurine nucleotides (TPNs) including 6-thioguanine nucleotides (6-TGNs) and 6-methylmercaptopurine nucleotides (6-MMPNs) that are affected by genetic polymorphisms. This study aims to develop an LC-MS/MS method for the analysis of erythrocyte concentrations of TPNs and to evaluate their associations with variants of various genes (MTHFR, TPMT, HLA, SLC29A1, SLC28A2, SLC28A3, ABCB1, and ABCC4) in patients with NMOSD.
Erythrocyte 6-TGNs and 6-MMPNs were converted to their free bases 6-thioguanine and 6-methylmercaptopurine derivative by 1-hour acid hydrolysis at 95°C. An LC-MS/MS method was developed, validated, and used to study 32 patients with NMOSD to determine these free bases. Genetic variants were identified by MassARRAY (Sequenom) and multiple SNaPshot techniques. The associations between genetic variants and the concentrations of TPNs or the 6-MMPNs:6-TGNs ratio were evaluated by PLINK software using linear regression.
Methanol and water were used for separation with a total run time of 6.5 minutes. The lowest limit of quantification was 0.1 μmol/L with an injection volume of 10 μL. rs10868138 (SLC28A3) was associated with a higher erythrocyte concentration of 6-TGNs (P = 0.031), whereas rs12378361 (SLC28A3) was associated with a lower erythrocyte concentration of 6-TGNs (P = 0.0067). rs507964 (SLC29A1) was significantly associated with a lower erythrocyte concentration of 6-MMPNs (P = 0.024) and a lower 6-MMPNs:6-TGNs ratio (P = 0.029).
An LC-MS/MS method for the analysis of erythrocyte TPNs was developed, validated, and used to study 32 patients with NMOSD. SLC29A1 and SLC28A3 were associated with the erythrocyte concentrations of TPNs and 6-MMPNs:6-TGNs ratio. Further studies are needed to confirm these results.
Publication
Journal: Microvascular Research
June/10/2015
Abstract
Purine nucleosides and nucleobases play key roles in the physiological response to vascular ischemia/reperfusion events. The intra- and extracellular concentrations of these compounds are controlled, in part, by equilibrative nucleoside transporter subtype 1 (ENT1; SLC29A1) and by equilibrative nucleobase transporter subtype 1 (ENBT1). These transporters are expressed at the membranes of numerous cell types including microvascular endothelial cells. We studied the impact of reactive oxygen species on the function of ENT1 and ENBT1 in primary (CMVEC) and immortalized (HMEC-1) human microvascular endothelial cells. Both cell types displayed similar transporter expression profiles, with the majority (>90%) of 2-chloro[(3)H]adenosine (nucleoside) uptake mediated by ENT1 and [(3)H]hypoxanthine (nucleobase) uptake mediated by ENBT1. An in vitro mineral oil-overlay model of ischemia/reperfusion had no effect on ENT1 function, but significantly reduced ENBT1 Vmax in both cell types. This decrease in transport function was mimicked by the intracellular superoxide generator menadione and could be reversed by the superoxide dismutase mimetic MnTMPyP. In contrast, neither the extracellular peroxide donor TBHP nor the extracellular peroxynitrite donor 3-morpholinosydnonimine (SIN-1) affected ENBT1-mediated [(3)H]hypoxanthine uptake. SIN-1 did, however, enhance ENT1-mediated 2-chloro[(3)H]adenosine uptake. Our data establish HMEC-1 as an appropriate model for study of purine transport in CMVEC. Additionally, these data suggest that the generation of intracellular superoxide in ischemia/reperfusion leads to the down-regulation of ENBT1 function. Modification of purine transport by oxidant stress may contribute to ischemia/reperfusion induced vascular damage and should be considered in the development of therapeutic strategies.
Publication
Journal: Clinical Cancer Research
November/13/2018
Abstract
Purpose: Bevacizumab is a VEGF-specific angiogenesis inhibitor indicated as an adjunct to chemotherapy for the treatment of multiple cancers. Hypertension is commonly observed during bevacizumab treatment, and high-grade toxicity can limit therapy or lead to cardiovascular complications. The factors that contribute to interindividual variability in blood pressure rise during bevacizumab treatment are not well understood.Experimental Design: To identify genomic regions associated with bevacizumab-induced hypertension risk, sequencing of candidate genes and flanking regulatory regions was performed on 61 patients treated with bevacizumab (19 cases developed early-onset grade 3 hypertension and 42 controls had no reported hypertension in the first six cycles of treatment). SNP-based tests for common variant associations and gene-based tests for rare variant associations were performed in 174 candidate genes.Results: Four common variants in independent linkage disequilibrium blocks between SLC29A1 and HSP90AB1 were among the top associations. Validation in larger bevacizumab-treated cohorts supported association between rs9381299 with early grade 3+ hypertension (P = 0.01; OR, 2.4) and systolic blood pressure >180 mm Hg (P = 0.02; OR, 2.1). rs834576 was associated with early grade 3+ hypertension in CALGB 40502 (P = 0.03; OR, 2.9). These SNP regions are enriched for regulatory elements that may potentially increase gene expression. In vitro overexpression of SLC29A1 in human endothelial cells disrupted adenosine signaling and reduced nitric oxide levels that were further lowered upon bevacizumab exposure.Conclusions: The genomic region between SLC29A1 and HSP90AB1 and its role in regulating adenosine signaling are key targets for further investigation into the pathogenesis of bevacizumab-induced hypertension. Clin Cancer Res; 24(19); 4734-44. ©2018 AACR.
Publication
Journal: Journal of Experimental and Clinical Cancer Research
December/2/2015
Abstract
BACKGROUND
The mechanism behind poor survival of acute myeloid leukemia (AML) patients with 1-barabinofuranosylcytosine (Ara-C) based treatment remains unclear. This study aimed to assess the pharmacogenomic effects of Ara-C metabolic pathway in patients with AML.
METHODS
The genotypes of 19 single nucleotide polymorphisms (SNPs) of DCK, CDA and SLC29A1from 100 AML patients treated with Ara-C were examined. All the SNPs were screened with ligase detection reaction assay. The transcription analysis of genes was examined by quantitative real time polymerase chain reaction. The association between clinical outcome and gene variants was evaluated by Kaplan-Meier method.
RESULTS
Genotypes of rs9394992 and rs324148 for SLC29A1 in remission patients were significantly different from those in relapsed ones. Post-induction overall survival (OS) significantly decreased in patients with the CC genotype of rs324148 compared with CT and TT genotypes (hazard ratio [HR] = 2.997 [95% confidence interval (CI): 1.71-5.27]). As compared with CT and TT genotype, patients with the CC genotype of rs9394992 had longer survival time (HR = 0.25 [95% CI: 0.075-0.81]; HR = 0.43 [95% CI: 0.24-0.78]) and longer disease-free survival (DFS) (HR = 0.52 [95% CI: 0.29-0.93]; HR = 0.15 [95% CI: 0.05-0.47]) as well As compared with CT and TT genotype, patients with the CC genotype of rs324148 had shorter DFS (HR = 3.18 [95% CI: 1.76-5.76]). Additionally, patients with adverse karyotypes had shorter DFS (HR = 0.17 [95% CI: 0.05-0.54]) and OS (HR = 0.18 [95% CI: 0.05-0.68]).
CONCLUSIONS
AML patients with low activity of SLC29A1 genotype have shorter DFS and OS in Ara-C based therapy. Genotypes of rs9394992 and rs324148 may be independent prognostic predictors for the survival of AML patients.
Publication
Journal: Oncotarget
February/23/2017
Abstract
FLT3 abnormalities are negative prognostic markers in acute leukemia. Infant leukemias are a subgroup with frequent MLL (KMT2A) rearrangements, FLT3 overexpression and high sensitivity to cytarabine, but dismal prognosis. Cytarabine is transported into cells by Human Equilibrative Nucleoside Transporter-1 (hENT1, SLC29A1), but the mechanisms that regulate hENT1 in acute leukemia have been scarcely studied.We explored the expression and functional link between FLT3 and main cytarabine transporters in 50 pediatric patients diagnosed with acute lymphoblastic leukemia and MLL rearrangement (ALL-MLL+) and other subtypes of leukemia, and in leukemia cell lines.A significant positive correlation was found between FLT3 and hENT1 expression in patients. Cytarabine uptake into cells was mediated mainly by hENT1, hENT2 and hCNT1. hENT1-mediated uptake of cytarabine was transiently abolished by the FLT3 inhibitor PKC412, and this effect was associated with decreased hENT1 mRNA and protein levels. Noticeably, the cytotoxicity of cytarabine was lower when cells were first exposed to FLT3 inhibitors (PKC412 or AC220), probably due to decreased hENT1 activity, but we observed a higher cytotoxic effect if FLT3 inhibitors were administered after cytarabine.FLT3 regulates hENT1 activity and thereby affects cytarabine cytotoxicity. The sequence of administration of cytarabine and FLT3 inhibitors is important to maintain their efficacy.
Pulse
Views:
1
Posts:
No posts
Rating:
Not rated
Publication
Journal: Bioorganic and Medicinal Chemistry
August/13/2017
Abstract
Positron emission tomography (PET) using fluorine-18 (18F)-labeled 2-nitroimidazole radiotracers has proven useful for assessment of tumor oxygenation. However, the passive diffusion-driven cellular uptake of currently available radiotracers results in slow kinetics and low tumor-to-background ratios. With the aim to develop a compound that is actively transported into cells, 1-(6'-deoxy-6'-[18F]fluoro-β-d-allofuranosyl)-2-nitroimidazole (β-[18F]1), a putative nucleoside transporter substrate, was synthetized by nucleophilic [18F]fluoride substitution of an acetyl protected labeling precursor with a tosylate leaving group (β-6) in a final radiochemical yield of 12±8% (n=10, based on [18F]fluoride starting activity) in a total synthesis time of 60min with a specific activity at end of synthesis of 218±58GBq/μmol (n=10). Both radiolabeling precursor β-6 and unlabeled reference compound β-1 were prepared in multistep syntheses starting from 1,2:5,6-di-O-isopropylidene-α-d-allofuranose. In vitro experiments demonstrated an interaction of β-1 with SLC29A1 and SLC28A1/2/3 nucleoside transporter as well as hypoxia specific retention of β-[18F]1 in tumor cell lines. In biodistribution studies in healthy mice β-[18F]1 showed homogenous tissue distribution and excellent metabolic stability, which was unaffected by tissue oxygenation. PET studies in tumor bearing mice showed tumor-to-muscle ratios of 2.13±0.22 (n=4) at 2h after administration of β-[18F]1. In ex vivo autoradiography experiments β-[18F]1 distribution closely matched staining with the hypoxia marker pimonidazole. In conclusion, β-[18F]1 shows potential as PET hypoxia radiotracer which merits further investigation.
Publication
Journal: International Journal of Hematology
February/11/2016
Abstract
Cytarabine arabinoside (Ara-C) is the most important agent for treating acute myeloid leukemia (AML). Here, we genotyped 11 single nucleotide polymorphisms (SNPs) of seven Ara-C metabolism-related genes in 39 AML patients who had received high-dose Ara-C as a single-agent treatment. Univariate analysis identified three SNPs that were significantly associated with shorter time-to-relapse (TTR): CTPS rs12144160 GG compared to AA/AG, DCTD rs9990999 AG/GG compared to AA, and SLC29A1 rs693955 CC compared to AA/AC. Multivariate analysis of TTR revealed the SLC29A1 rs693955 CC genotype and first induction failure to be significantly associated with a shorter TTR. The DCTD rs9990999 AG/GG and SLC29A1 rs693955 CC genotypes were also significantly associated with shorter duration of neutropenia. The results of our study suggest that SNP analysis can be an important tool in improving drug responsiveness and enabling a better understanding of this condition and the development of tailor-made treatments for AML patients who benefit from consolidated high-dose Ara-C therapy.
Publication
Journal: Journal of Nuclear Medicine
June/9/2020
Abstract
Accurate disease monitoring is essential following transarterial chemoembolization (TACE) in hepatocellular carcinoma (HCC) due to potential for profound adverse event and large variation in survival outcome. Post-treatment changes on conventional imaging can confound determination of residual/recurrent disease, magnifying the clinical challenge. Based on increased expression of thymidylate synthase (TYMS), thymidine kinase-1 (TK-1) and SLC29A1 (Equilibrative nucleoside transporter 1, ENT1) in HCC compared with liver tissue, we conducted a proof of concept study evaluating the efficacy of 18F-fluorothymidine (18F-FLT)-PET to assess response to TACE. As previous PET studies in HCC have been hampered by high background liver signal, we investigated if a temporal-intensity voxel-clustering ("Kinetic Spatial Filtering") (KSF) improved lesion detection. Methods: A tissue microarray (TMA) was built from 36 HCC samples and matched surrounding cirrhotic tissue and was stained for thymidine kinase-1 (TK-1). A prospective study was conducted; eighteen patients with a diagnosis of HCC by American Association for the Study of Liver Diseases criteria (AALSD) who were eligible to treatment with TACE were enrolled. Patients underwent baseline conventional imaging and dynamic 18F-FLT-PET/KSF followed by TACE. Repeat imaging was performed 6-8 weeks post TACE. PET parameters were compared with modified-Response Evaluation in Solid Tumours (mRECIST) enhancement-based criteria. Results: Cancer Genome Atlas analysis revealed increased RNA expression of TYMS, TK-1 and SLC29A1 in HCC. TK-1 protein expression was significantly higher in HCC (p<0.05). The sensitivity of 18F-FLT-PET for baseline HCC detection was 73% (SUVmax of 9.7 ± 3.0; tumour to liver ratio of 1.2 ± 0.3). Application of KSF did not improve lesion detection. Lesion response following TACE by mRECIST criteria was 58% (14 patients with 24 lesions). A 30% reduction in mean 18F-FLT-PET uptake was observed following TACE correlating to an observed PET response of 60% (n = 15/25). A significant and profound reduction in radiotracer delivery parameter, K1, following TACE was observed. Conclusion: 18F-FLT-PET can differentiate HCC from surrounding cirrhotic tissue, with PET parameters correlating with TACE response. KSF did not improve visualization of tumour lesions. These findings warrant further investigation.
Keywords: Oncology: Liver; PET; [18F]FLT PET imaging; hepatocellular cancer; proliferation; response; transarterial chemoembolisation.
Publication
Journal: Therapeutic Drug Monitoring
April/28/2013
Abstract
OBJECTIVE
The response rate to treatment of chronic hepatitis C virus-genotype 1 and 4 infections was recently found to be strongly influenced by many polymorphisms. The aim of our study was to carry out an integrated analysis of the effects of polymorphisms and ribavirin (RBV) plasma exposure on outcome.
METHODS
The retrospective analysis included 174 patients. IL28B, CYP27B1, SLC29A1, SLC28A3, and SLC28A2 polymorphisms were genotyped and tested for association with sustained virological response. The impact of RBV plasma exposure during the first 3 months of therapy on outcome was also investigated.
RESULTS
Considering patients infected by hepatitis C virus-1/4, 3 polymorphisms (IL28B rs8099917TT, CYP27B1 rs4646536TT, and CNT2 rs11854484TT) were associated with sustained virological response. The number of negative variant allele and low RBV exposure were correlated to percentage increasing to therapy failure, suggesting some degree of cumulative effect of the 4 factors. A cutoff of 2.5 μg/mL of RBV was found to be associated with outcome (area under ROC [AUROC] curve = 0.64, sensitivity = 55.0%, and specificity = 71.2%, P = 0.020). In multivariate logistic regression analyses, each variant allele and RBV plasma exposure cutoff were independently associated with outcome.
CONCLUSIONS
In this study, we found that additional polymorphisms and RBV plasma exposure are also able to influence the achievement of response. Regardless of the magnitude of RBV pharmacokinetic exposure, the negative predictive value of the polymorphisms here investigated is much stronger than the positive one.
Publication
Journal: Biochemical Pharmacology
March/13/2016
Abstract
Many nucleoside transport inhibitors are in clinical use as anti-cancer, vasodilator and cardioprotective drugs. However, little is known about the binding energetics of these inhibitors to nucleoside transporters (NTs) due to their low endogenous expression levels and difficulties in the biophysical characterization of purified protein with ligands. Here, we present kinetics and thermodynamic analyses of inhibitor binding to the human equilibrative nucleoside transporter-1 (hENT1), also known as SLC29A1. Using a radioligand binding assay, we obtained equilibrium binding and kinetic rate constants of well-known NT inhibitors--[(3)H]nitrobenzylmercaptopurine ribonucleoside ([(3)H]NBMPR), dilazep, and dipyridamole--and the native permeant, adenosine, to hENT1. We observed that the equilibrium binding affinities for all inhibitors decreased whereas, the kinetic rate constants increased with increasing temperature. Furthermore, we found that binding is enthalpy driven and thus, an exothermic reaction, implying that the transporter does not discriminate between its inhibitors and substrates thermodynamically. This predominantly enthalpy-driven binding by four chemically distinct ligands suggests that the transporter may not tolerate diversity in the type of interactions that lead to high affinity binding. Consistent with this, the measured activation energy of [(3)H]NBMPR association was relatively large (20 kcal mol(-1)) suggesting a conformational change upon inhibitor binding. For all three inhibitors the enthalpy (ΔH°) and entropy (ΔS°) contributions to the reaction energetics were determined by van't Hoff analysis to be roughly similar (25-75% ΔG°). Gains in enthalpy with increasing polar surface area of inhibitors suggest that the binding is favored by electrostatic or polar interactions between the ligands and the transporter.
Publication
Journal: BMC Cancer
September/25/2017
Abstract
This study addresses involvement of major 5-fluorouracil (5-FU) pathway genes in the prognosis of colorectal carcinoma patients.
Testing set and two validation sets comprising paired tumor and adjacent mucosa tissue samples from 151 patients were used for transcript profiling of 15 5-FU pathway genes by quantitative real-time PCR and DNA methylation profiling by high resolution melting analysis. Intratumoral molecular profiles were correlated with clinical data of patients. Protein levels of two most relevant candidate markers were assessed by immunoblotting.
Downregulation of DPYD and upregulation of PPAT, UMPS, RRM2, and SLC29A1 transcripts were found in tumors compared to adjacent mucosa in testing and validation sets of patients. Low RRM2 transcript level significantly associated with poor response to the first-line palliative 5-FU-based chemotherapy in the testing set and with poor disease-free interval of patients in the validation set irrespective of 5-FU treatment. UPP2 was strongly methylated while its transcript absent in both tumors and adjacent mucosa. DPYS methylation level was significantly higher in tumor tissues compared to adjacent mucosa samples. Low intratumoral level of UPB1 methylation was prognostic for poor disease-free interval of the patients (P = 0.0002). The rest of the studied 5-FU genes were not methylated in tumors or adjacent mucosa.
The observed overexpression of several 5-FU activating genes and DPYD downregulation deduce that chemotherapy naïve colorectal tumors share favorable gene expression profile for 5-FU therapy. Low RRM2 transcript and UPB1 methylation levels present separate poor prognosis factors for colorectal carcinoma patients and should be further investigated.
Publication
Journal: Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie
October/18/2015
Abstract
In 2011 direct-acting antivirals, including telaprevir, have been developed to achieve a better antiviral effect. It was reported that telaprevir is a substrate of P-glycoprotein (ABCB1) and cytochrome P450 3A4. The aim of this retrospective study was the evaluation of the influence of some single nucleotide polymorphisms (SNPs) of genes (ABCB1, SLC28A2/3, SLC29A1) involved in TLV and RBV transport and their correlation with plasma TLV drug exposure at 1 month of therapy. We also investigated the association of a SNP in ABCB11 gene, whose role in TLV transport was not yet shown. Twenty-nine HCV-1 patients treated with telaprevir, ribavirin and pegylated-interferon-α were retrospectively analyzed; allelic discrimination was performed by real-time PCR. Telaprevir Ctrough levels were influenced by Metavir score (P=0.023), ABCB1 2677 G>T (P=0.006), ABCB1 1236 C>T (P=0.015) and ABCB11 1131 T>C (P=0.033) SNPs. Regarding ABCB1 3435 C>T, a not statistically significant trend in telaprevir plasma concentration was observed. Metavir score (P=0.002, OR -336; 95% CI -535;-138), ABCB1 2677 (P=0.020, OR 497; 95% CI 86; 910), ABCB11 1131 (P=0.002, OR 641; 95% CI 259;1023) and CNT2 -146 (P=0.006, OR -426; 95% CI -721;-132) were able to predict telaprevir plasma levels in the regression analysis. Other SNPs showed no association. This study reveals BSEP implication in telaprevir transport and confirms the involvement and influence of P-glycoprotein on telaprevir plasma levels. To date, no similar data concerning pharmacogenetics and pharmacokinetics were published, but further studies in different and bigger cohorts are needed.
Publication
Journal: Reproductive Toxicology
May/21/2020
Abstract
The use of valproic acid (VPA), an antiepileptic drug, during pregnancy, is known to increase various fetal risks. Since VPA has been known to inhibit histone deacetylases (HDACs); its administration could alter gene transcription levels. However, in vivo effects of VPA administration on placental transporters have not been fully elucidated. The purpose of the present study was to comprehensively evaluate the effects of single and repetitive VPA administration on the expression of placental transporters and analyze them by gestational day. We investigated 18 transporters (8 ATP-binding cassette (ABC) and 10 solute carrier (SLC) transporters) in the placentas of pregnant rats that were orally administered 400 mg/kg/day VPA for one or four days, during mid- or late gestation. In the control rats, 4 ABC transporter genes (Abcb1a, 1b, Abcc2, Abcc4) were upregulated, 3 (Abcc3, Abcc5, Abcg2) downregulated through gestation, whereas 1 (Abcc1) was not changed. Regarding SLC transporters, 6 genes (Slc7a5, Slc16a3, Slc22a3, Slc22a4, Slco2b1, Slco4a1) were increased, 1 (Slc29a1) decreased through gestation, whereas 3 (Slc7a8, Slc22a5, Slco2a1) showed no significant change. Single VPA administration altered the expression of 9 transporters and repetitive administration, 13 transporters. In particular, VPA remarkably decreased Abcc4 and Slc22a4 in late gestation and increased Abcc5 during mid-gestation. Our findings indicated that VPA administration changed transporter expression levels in rat placenta, and suggested that sensitivity to VPA differs across gestational stages.
Keywords: ABC transporter; Antiepileptic drug; Gestational period; Placenta; Rat; SLC transporter; Valproic acid.
Publication
Journal: Addiction Biology
July/3/2019
Abstract
Disruptions in circadian rhythms are risk factors for excessive alcohol drinking. The ethanol-sensitive adenosine equilibrative nucleoside transporter type 1 (ENT1, slc29a1) regulates ethanol-related behaviors, sleep, and entrainment of circadian rhythms. However, the mechanism underlying the increased ethanol consumption in ENT1 knockout (KO) mice in constant light (LL) and whether there are sex differences in ethanol consumption in ENT1 mice are less studied. Here, we investigated the effects of loss of ENT1, LL, and sex on ethanol drinking using two-bottle choice. In addition, we monitored the locomotor activity rhythms. We found that LL increased ethanol drinking and reduced accumbal ENT1 expression and adenosine levels in male but not female mice, compared with control mice. Interestingly, only LL-exposed male, not female, ENT1 KO mice exhibited higher ethanol drinking and a longer circadian period with a higher amplitude compared with wild-type (WT) mice. Furthermore, viral-mediated rescue of ENT1 expression in the NAc of ENT1 KO mice reduced ethanol drinking, demonstrating a possible causal link between ENT1 expression and ethanol drinking in males. Together, our findings indicate that deficiency of ENT1 expression contributes to excessive ethanol drinking in a sex-dependent manner.
Publication
Journal: American Journal of Respiratory and Critical Care Medicine
August/3/2017
Abstract
Pulmonary nontuberculous mycobacterial disease (PNTM) often affects white postmenopausal women, with a tall and lean body habitus and higher rates of scoliosis, pectus excavatum, mitral valve prolapse, and mutations in the CFTR gene. These clinical features and the familial clustering of the disease suggest an underlying genetic mechanism.
To map the genes associated with PNTM, whole-exome sequencing was conducted in 12 PNTM families and 57 sporadic cases recruited at the National Institutes of Health Clinical Center during 2001-2013.
We performed a variant-level and a gene-level parametric linkage analysis on nine PNTM families (16 affected and 20 unaffected) as well as a gene-level association analysis on nine PNTM families and 55 sporadic cases.
The genome-wide variant-level linkage analysis using 4,328 independent common variants identified a 20-cM region on chromosome 6q12-6q16 (heterogeneity logarithm of odds score = 3.9), under a recessive disease model with 100% penetrance and a risk allele frequency of 5%. All genes on chromosome 6 were then tested in the gene-level linkage analysis, using the collapsed haplotype pattern method. The TTK protein kinase gene (TTK) on chromosome 6q14.1 was the most significant (heterogeneity logarithm of odds score = 3.38). In addition, the genes MAP2K4, RCOR3, KRT83, IFNLR1, and SLC29A1 were associated with PNTM in our gene-level association analysis.
The TTK gene encodes a protein kinase that is essential for mitotic checkpoints and the DNA damage response. TTK and other genetic loci identified in our study may contribute to the increased susceptibility to NTM infection and its progression to pulmonary disease.
load more...