Citations
All
Search in:AllTitleAbstractAuthor name
Publications
(923)
Patents
Grants
Pathways
Clinical trials
Publication
Journal: Investigative Ophthalmology and Visual Science
April/9/2003
Abstract
OBJECTIVE
To assess the efficacy of AAV-mediated gene therapy to restore vision in a large number of RPE65(-/-) dogs and to determine whether systemic and local side effects are caused by the treatment.
METHODS
Normal RPE65 dog cDNA was subcloned into an rAAV vector under control of a cytomegalovirus promoter, and an AAV.GFP control vector was also produced with the titers 2 x 10(12) particles/mL and 2 x 10(10) transducing U/mL, respectively. RPE65(-/-) dogs, aged 4 to 30 months were treated with subretinal injections of the AAV.RPE65 and control vectors, respectively, in each eye, and three 24- to 30-month-old normal control dogs with the latter. Baseline and postoperative systemic and ophthalmic examinations, blood screenings, vision testing, and electroretinography (ERG) were performed. Two RPE65(-/-) dogs were killed at 3 and 6 months after treatment for morphologic examination of the retinas.
RESULTS
RPE65(-/-) dogs were practically blind from birth with nonrecordable or low-amplitude ERGs. Construct injections or sham surgeries were performed in 28 eyes; 11 were injected subretinally with the AAV.RPE65 construct. ERGs at 3 months after surgery showed that in the latter eyes, dark-adapted b-wave amplitudes recovered to an average of 28% of normal, and light adapted b-wave amplitudes to 32% of normal. ERG amplitudes were not reduced during a 6- to 9-month follow-up. No systemic side effects were observed, but uveitis developed in nine AAV.RPE65-treated eyes. No uveitis was observed in the eyes treated with the control vector. Immunocytochemistry showed expression of RPE65 in the retinal pigment epithelium (RPE) of AAV.RPE65-treated eyes. Fluorescence microscopy showed expression of green fluorescent protein (GFP) in the RPE and, to a lesser extent, in the neural retinas of AAV.GFP-treated eyes. Ultrastructurally, a reversal of RPE lipid droplet accumulation was observed at the AAV.RPE65 transgene injection site, but not at the site of injection of the control vector.
CONCLUSIONS
In 10 of 11 treated RPE65(-/-) eyes, gene transfer resulted in development of vision, both subjectively apparent by loss of nystagmus, and objectively recorded by ERG. Structurally, there was reversal of lipid droplet accumulation in the RPE. Uveitis developed in 75% of the transgene-treated eyes, a complication possibly due to an immunopathogenic response to the RPE65 molecule.
Publication
Journal: Survey of Ophthalmology
August/9/2004
Abstract
Leber congenital amaurosis is a congenital retinal dystrophy described almost 150 years ago. Today, Leber congenital amaurosis is proving instrumental in our understanding of the molecular events that determine normal and aberrant retinal development. Six genes have been shown to be mutated in Leber congenital amaurosis, and they participate in a wide variety of retinal pathways: retinoid metabolism (RPE65), phototransduction (GUCY2D), photoreceptor outer segment development (CRX), disk morphogenesis (RPGRIP1), zonula adherens formation (CRB1), and cell-cycle progression (AIPL1). Longitudinal studies of visual performance show that most Leber congenital amaurosis patients remain stable, some deteriorate, and rare cases exhibit improvements. Histopathological analyses reveal that most cases have extensive degenerative retinal changes, some have an entirely normal retinal architecture, whereas others have primitive, poorly developed retinas. Animal models of Leber congenital amaurosis have greatly added to understanding the impact of the genetic defects on retinal cell death, and response to rescue. Gene therapy for RPE65 deficient dogs partially restored sight, and provides the first real hope of treatment for this devastating blinding condition.
Publication
Journal: Journal of Biological Chemistry
June/23/2002
Abstract
The visual process is initiated by the photoisomerization of 11-cis-retinal to all-trans-retinal. For sustained vision the 11-cis-chromophore must be regenerated from all-trans-retinal. This requires RPE65, a dominant retinal pigment epithelium protein. Disruption of the RPE65 gene results in massive accumulation of all-trans-retinyl esters in the retinal pigment epithelium, lack of 11-cis-retinal and therefore rhodopsin, and ultimately blindness. We reported previously (Van Hooser, J. P., Aleman, T. S., He, Y. G., Cideciyan, A. V., Kuksa, V., Pittler, S. J., Stone, E. M., Jacobson, S. G., and Palczewski, K. (2000) Proc. Natl. Acad. Sci. U. S. A. 97, 8623-8628) that in Rpe65-/- mice, oral administration of 9-cis-retinal generated isorhodopsin, a rod photopigment, and restored light sensitivity to the electroretinogram. Here, we provide evidence that early intervention by 9-cis-retinal administration significantly attenuated retinal ester accumulation and supported rod retinal function for more than 6 months post-treatment. In single cell recordings rod light sensitivity was shown to be a function of the amount of regenerated isorhodopsin; high doses restored rod responses with normal sensitivity and kinetics. Highly attenuated residual rod function was observed in untreated Rpe65-/- mice. This rod function is likely a consequence of low efficiency production of 11-cis-retinal by photo-conversion of all-trans-retinal in the retina as demonstrated by retinoid analysis. These studies show that pharmacological intervention produces long lasting preservation of visual function in dark-reared Rpe65-/- mice and may be a useful therapeutic strategy in recovering vision in humans diagnosed with Leber congenital amaurosis caused by mutations in the RPE65 gene, an inherited group of early onset blinding and retinal degenerations.
Publication
Journal: Investigative Ophthalmology and Visual Science
November/20/2005
Abstract
OBJECTIVE
In retinal degenerative diseases, rod photoreceptors typically deteriorate more rapidly than cone photoreceptors. In the Rpe65(-/-) mouse, a model for Leber's congenital amaurosis, cones degenerate much more rapidly than rods. In this model, the retinoid processing pathway in the retinal pigment epithelium is disrupted, and 11-cis retinal is not generated. This study was designed to investigate the feasibility of restoring functional cones with exogenous 11-cis retinal.
METHODS
Rpe65(-/-)::Rho(-/-) mice were used to remove any interference of rods and compared with wild-type (wt) mice. Pups were injected intraperitoneally with 11-cis retinal, starting at postnatal day (P)10, and were maintained in complete darkness. At P25, cone function was assessed with photopic single-flash and flicker ERGs. Cone survival was determined immunohistochemically with cone-specific antibodies, and cone opsin levels were obtained by quantitative RT-PCR.
RESULTS
At P25, cone density and transcript levels of cone opsins were drastically reduced, but a minute cone electroretinogram was detected, indicating that the cones were functional. Confocal microscopy revealed that the cone opsins were mislocalized, suggesting that their transport to the outer segments was impaired. Intraperitoneal administrations of 11-cis retinal before P25 led to increased transport of cone opsins to the outer segments and preserved cones anatomically and functionally.
CONCLUSIONS
The results suggest that the ligand is required during cone opsin synthesis for successful opsin trafficking and that without 11-cis retinal, cones may degenerate because of opsin mislocalization. These results may have important consequences for the treatment of cone dystrophies.
Publication
Journal: Molecular Vision
November/24/1998
Abstract
OBJECTIVE
To clone and characterize the canine RPE65 cDNA from normal dog, examine for mutations, and establish if the mutation identified in Swedish briard dogs with retinal dystrophy is present in dogs of the same breed that originated from the United States and other countries, and are affected with congenital stationary night blindness.
METHODS
Fifteen briard dogs were studied, of which 10 were affected with csnb, and five were clinically normal. In addition, we tested samples from four Swedish dogs, and samples from a briard affected with progressive retinal atrophy. RPE65 cDNA was cloned a from retinal cDNA library by PCR, and from canine retina by RT-PCR. ERG and morphology were used to characterize csnb.
RESULTS
The normal RPE65 cDNA spans 1724 nucleotides (GenBank accession number AF084537), and includes 1602 nucleotides of coding sequence; the deduced amino acid sequence shares 98%, 97%, and 93% identity with homologous human, bovine, and rat sequences, respectively. A homozygous four nucleotide (AAGA) deletion, representing nucleotides 487-490 of wildtype RPE65 sequence, was found only in csnb and retinal dystrophy affected dogs; heterozygous animals had normal and mutant alleles. The mutation produces a frameshift, causing a deduced mistranslation with a premature stop codon. The mutation causes retinal dysfunction and RPE accumulation of lipid vacuoles.
CONCLUSIONS
Identification of the same mutation in csnb and retinal dystrophy confirms the molecular identity of the two disorders. A common mutation in dogs derived from different countries suggests a founder effect causing the propagation of a common mutant allele in the population at risk.
Publication
Journal: FASEB Journal
April/27/2011
Abstract
Carotenoids are the precursors for vitamin A and are proposed to prevent oxidative damage to cells. Mammalian genomes encode a family of structurally related nonheme iron oxygenases that modify double bonds of these compounds by oxidative cleavage and cis-to-trans isomerization. The roles of the family members BCMO1 and RPE65 for vitamin A production and vision have been well established. Surprisingly, we found that the third family member, β,β-carotene-9',10'-oxygenase (BCDO2), is a mitochondrial carotenoid-oxygenase with broad substrate specificity. In BCDO2-deficient mice, carotenoid homeostasis was abrogated, and carotenoids accumulated in several tissues. In hepatic mitochondria, accumulated carotenoids induced key markers of mitochondrial dysfunction, such as manganese superoxide dismutase (9-fold), and reduced rates of ADP-dependent respiration by 30%. This impairment was associated with an 8- to 9-fold induction of phosphor-MAP kinase and phosphor-AKT, markers of cell signaling pathways related to oxidative stress and disease. Administration of carotenoids to human HepG2 cells depolarized mitochondrial membranes and resulted in the production of reactive oxygen species. Thus, our studies in BCDO2-deficient mice and human cell cultures indicate that carotenoids can impair respiration and induce oxidative stress. Mammalian cells thus express a mitochondrial carotenoid-oxygenase that degrades carotenoids to protect these vital organelles.
Publication
Journal: Proceedings of the National Academy of Sciences of the United States of America
January/17/2008
Abstract
The bis-retinoid pigments that accumulate in retinal pigment epithelial cells as lipofuscin are associated with inherited and age-related retinal disease. In addition to A2E and related cis isomers, we previously showed that condensation of two molecules of all-trans-retinal leads to the formation of a protonated Schiff base conjugate, all-trans-retinal dimer-phosphatidylethanolamine. Here we report the characterization of the related pigments, all-trans-retinal dimer-ethanolamine and unconjugated all-trans-retinal dimer, in human and mouse retinal pigment epithelium. In eyecups of Abcr(-/-) mice, a model of recessive Stargardt macular degeneration, all-trans-retinal dimer-phosphatidylethanolamine was increased relative to wild type and was more abundant than A2E. Total pigment of the all-trans-retinal dimer series (sum of all-trans-retinal dimer-phosphatidylethanolamine, all-trans-retinal dimer-ethanolamine, and all-trans-retinal dimer) increased with age in Abcr(-/-) mice and was modulated by amino acid variants in Rpe65. In in vitro assays, enzyme-mediated hydrolysis of all-trans-retinal dimer-phosphatidylethanolamine generated all-trans-retinal dimer-ethanolamine, and protonation/deprotonation of the Schiff base nitrogen of all-trans-retinal dimer-ethanolamine was pH-dependent. Unconjugated all-trans-retinal dimer was a more efficient generator of singlet oxygen than A2E, and the all-trans-retinal dimer series was more reactive with singlet oxygen than was A2E. By analyzing chromatographic properties and UV-visible spectra together with mass spectrometry, mono- and bis-oxygenated all-trans-retinal dimer photoproducts were detected in Abcr(-/-) mice. The latter findings are significant to an understanding of the adverse effects of retinal pigment epithelial cell lipofuscin.
Publication
Journal: Investigative Ophthalmology and Visual Science
December/21/2000
Abstract
OBJECTIVE
To characterize the spectrum of RPE65 mutations present in 453 patients with retinal dystrophy with an interest in understanding the range of functional deficits attributable to sequence variants in this gene.
METHODS
The 14 exons of RPE65 were amplified by polymerase chain reaction (PCR) from patients' DNA and analyzed for sequence changes by single-strand conformation polymorphism (SSCP) and direct sequencing. Haplotype analysis was performed using RPE65 intragenic polymorphisms. Patients were examined clinically and with visual function tests.
RESULTS
Twenty-one different disease-associated DNA sequence changes predicting missense or nonsense point mutations, insertions, deletions, and splice site defects in RPE65 were identified in 20 patients in homozygous or compound heterozygous form. In one patient, paternal uniparental isodisomy (UPD) of chromosome 1 resulted in homozygosity for a probable functional null allele. Eight of the disease-associated mutations (Y79H, E95Q, E102X, D167Y, 669delCA, IVS7+4a->>g, G436V, and G528V) and one mutation likely to be associated with disease (IVS6+5g->>a) have not been reported previously. The most commonly occurring sequence variant identified in the patients studied was the IVS1+5g->>a mutation, accounting for 9 of 40 (22.5%) total disease alleles. This splice site mutation, as well as R91W, the most common missense mutation, exists on at least two different genetic backgrounds. The phenotype resulting from RPE65 mutations appears to be relatively uniform and independent of mutation class, suggesting that most missense mutations (15 of 40 disease alleles [37.5%]) result in loss of function. At young ages, this group of patients has somewhat better subjective visual capacity than is typically associated with Leber congenital amaurosis (LCA) type I, with a number of patients retaining some useful visual function beyond the second decade of life.
CONCLUSIONS
RPE65 mutations account for a significant percentage (11.4%) of disease alleles in patients with early-onset retinal degeneration. The identification and characterization of patients with RPE65 mutations is likely to represent an important resource for future trials of rational therapies for retinal degeneration.
Publication
Journal: Proceedings of the National Academy of Sciences of the United States of America
July/26/2005
Abstract
In vertebrate retinal photoreceptors, photoisomerization of opsin-bound visual chromophore 11-cis-retinal to all-trans-retinal triggers phototransduction events. Regeneration of the chromophore is a critical step in restoring photoreceptors to their dark-adapted state. This regeneration process, called the retinoid cycle, takes place in the photoreceptor outer segments and in the retinal pigmented epithelium (RPE). We have suggested that the regeneration of the chromophore might occur through a retinyl carbocation intermediate. Here, we provide evidence that isomerization is inhibited by positively charged retinoids, which could act as transition state analogs of the isomerization process. We demonstrate that retinylamine (Ret-NH2) potently and selectively inhibits the isomerization step of the retinoid cycle in vitro and in vivo. Ret-NH2 binds a protein(s) in the RPE microsomes, but it does not bind RPE65, a protein implicated in the isomerization reaction. Although Ret-NH2 inhibits the regeneration of visual chromophore in rods and, in turn, severely attenuates rod responses, it has a much smaller effect on cone function in mice. Ret-NH2 interacts only at micromolar concentrations with retinoic acid receptor, does not activate retinoid-X receptor, and is not a substrate for CYP26s, the retinoic acid-metabolizing cytochrome P450 enzymes. Ret-NH2 can be a significant investigational tool to study the mechanism of regeneration of visual chromophore.
Publication
Journal: Proceedings of the National Academy of Sciences of the United States of America
November/2/2009
Abstract
Vertebrate vision is maintained by the retinoid (visual) cycle, a complex enzymatic pathway that operates in the retina to regenerate the visual chromophore, 11-cis-retinal. A key enzyme in this pathway is the microsomal membrane protein RPE65. This enzyme catalyzes the conversion of all-trans-retinyl esters to 11-cis-retinol in the retinal pigment epithelium (RPE). Mutations in RPE65 are known to be responsible for a subset of cases of the most common form of childhood blindness, Leber congenital amaurosis (LCA). Although retinoid isomerase activity has been attributed to RPE65, its catalytic mechanism remains a matter of debate. Also, the manner in which RPE65 binds to membranes and extracts retinoid substrates is unclear. To gain insight into these questions, we determined the crystal structure of native bovine RPE65 at 2.14-A resolution. The structural, biophysical, and biochemical data presented here provide the framework needed for an in-depth understanding of the mechanism of catalytic isomerization and membrane association, in addition to the role mutations that cause LCA have in disrupting protein function.
Publication
Journal: Proceedings of the National Academy of Sciences of the United States of America
November/26/2007
Abstract
The visual (retinoid) cycle, the enzymatic pathway that regenerates chromophore after light absorption, is located primarily in the retinal pigment epithelium (RPE) and is essential for rod photoreceptor survival. Whether this pathway also is essential for cone photoreceptor survival is unknown, and there are no data from man or monkey to address this question. The visual cycle is naturally disrupted in humans with Leber congenital amaurosis (LCA), which is caused by mutations in RPE65, the gene that encodes the retinoid isomerase. We investigated such patients over a wide age range (3-52 years) for effects on the cone-rich human fovea. In vivo microscopy of the fovea showed that, even at the youngest ages, patients with RPE65-LCA exhibited cone photoreceptor loss. This loss was incomplete, however, and residual cone photoreceptor structure and function persisted for decades. Basic questions about localization of RPE65 and isomerase activity in the primate eye were addressed by examining normal macaque. RPE65 was definitively localized by immunocytochemistry to the central RPE and, by immunoblotting, appeared to concentrate in the central retina. The central retinal RPE layer also showed a 4-fold higher retinoid isomerase activity than more peripheral RPE. Early cone photoreceptor losses in RPE65-LCA suggest that robust RPE65-based visual chromophore production is important for cones; the residual retained cone structure and function support the speculation that alternative pathways are critical for cone photoreceptor survival.
Publication
Journal: Gene Therapy
June/28/2007
Abstract
Previous studies have tested gene replacement therapy in RPE65-deficient dogs using recombinant adeno-associated virus 2/2 (rAAV2/2), -2/1 or -2/5 mediated delivery of the RPE65 gene. They all documented restoration of dark- and light-adapted electroretinography responses and improved psychophysical outcomes. Use of a specific RPE65 promoter and a rAAV vector that targets transgene expression specifically to the RPE may, however, provide a safer setting for the long-term therapeutic expression of RPE65. Subretinal injection of rAAV2 pseudotyped with serotype 4 (rAAV2/4) specifically targets the RPE. The purpose of our study was to evaluate a rAAV2/4 vector carrying a human RPE65cDNA driven by a human RPE65 promoter, for the ability to restore vision in RPE65-/- purebred Briard dogs and to assess the safety of gene transfer with respect to retinal morphology and function. rAAV2/4 and rAAV2/2 vectors containing similar human RPE65 promoter and cDNA cassettes were generated and administered subretinally in eight affected dogs, ages 8-30 months (n = 6 with rAAV2/4, n = 2 with rAAV2/2). Although fluorescein angiography and optical coherence tomography examinations displayed retinal abnormalities in treated retinas, electrophysiological analysis demonstrated that restoration of rod and cone photoreceptor function started as soon as 15 days post-injection, reaching maximal function at 3 months post-injection, and remaining stable thereafter in all animals treated at 8-11 months of age. As assessed by the ability of these animals to avoid obstacles in both dim and normal light, functional vision was restored in the treated eye, whereas the untreated contralateral eye served as an internal control. The dog treated at a later age (30 months) did not recover retinal function or vision, suggesting that there might be a therapeutic window for the successful treatment of RPE65-/- dogs by gene replacement therapy.
Publication
Journal: Investigative Ophthalmology and Visual Science
November/1/2005
Abstract
OBJECTIVE
Leber congenital amaurosis (LCA) is an early-onset inherited disorder of childhood blindness characterized by visual impairment noted soon after birth. Variants in at least six genes (AIPL1, CRB1, CRX, GUCY2D, RPE65, and RPGRIP1) have been associated with a diagnosis consistent with LCA or early-onset retinitis pigmentosa (RP). Genetically heterogeneous inheritance complicates the analyses of LCA cases, especially in patients without a family history of the disorder, and conventional methods are of limited value.
METHODS
To overcome these limitations, arrayed primer extension (APEX) technology was used to design a genotyping microarray for early-onset, severe retinal degenerations that includes all of the >300 disease-associated variants currently described in eight genes (in addition to the six just listed, the early-onset RP genes LRAT and MERTK were added). The resultant LCA array allows simultaneous detection of all known disease-associated alleles in any patient with early-onset RP. The array was validated by screening 93 confirmed patients with LCA who had known mutations. Subsequently, 205 novel LCA cases were screened on the array, followed by segregation analyses in families, if applicable.
RESULTS
The microarray was >99% effective in determining the existing genetic variation and yielded at least one disease-associated allele in approximately one third of the novel patients. More than two (expected) variants were discovered in a substantial fraction (22/300) of the patients, suggesting a modifier effect from more than one gene. In support of the latter hypothesis, the third allele segregated with a more severe disease phenotype in at least five families.
CONCLUSIONS
The LCA genotyping microarray is a robust and cost-effective screening tool, representing the prototype of a disease chip for genotyping patients with a genetically heterogeneous condition. Simultaneous screening for all known LCA-associated variants in large LCA cohorts allows systematic detection and analysis of genetic variation, facilitating prospective diagnosis and ultimately predicting disease progression.
Publication
Journal: Molecular Therapy
September/16/2004
Abstract
The congenital retinal blindness known as Leber congenital amaurosis (LCA) can be caused by mutations in the RPE65 gene. RPE65 plays a critical role in the visual cycle that produces the photosensitive pigment rhodopsin. Recent evidence from human studies of LCA indicates that earlier rather than later intervention may be more likely to restore vision. We determined the impact of in utero delivery of the human RPE65 cDNA to retinal pigment epithelium cells in a murine model of LCA, the Rpe65(-/-) mouse, using a serotype 2 adeno-associated virus packaged within an AAV1 capsid (AAV2/1). Delivery of AAV2/1-CMV-hRPE65 to fetuses (embryonic day 14) resulted in efficient transduction of retinal pigment epithelium, restoration of visual function, and measurable rhodopsin. The results demonstrate AAV-mediated correction of the deficit and suggest that in utero retinal gene delivery may be a useful approach for treating a variety of blinding congenital retinal diseases.
Publication
Journal: Journal of Neuroscience
May/7/2008
Abstract
Lecithin retinol acyl transferase (LRAT) and retinal pigment epithelium protein 65 (RPE65) are key enzymes of the retinoid cycle. In Lrat(-/-) and Rpe65(-/-) mice, models of human Leber congenital amaurosis, the retinoid cycle is disrupted and 11-cis-retinal, the chromophore of visual pigments, is not produced. The Lrat(-/-) and Rpe65(-/-) retina phenotype presents with rapid sectorial cone degeneration, and the visual pigments, S-opsin and M/L-opsin, fail to traffic to cone outer segments appropriately. In contrast, rod opsin traffics normally in mutant rods. Concomitantly, guanylate cyclase 1, cone T alpha-subunit, cone phosphodiesterase 6alpha' (PDE6alpha'), and GRK1 (G-protein-coupled receptor kinase 1; opsin kinase) are not transported to Lrat(-/-) and Rpe65(-/-) cone outer segments. Aberrant localization of these membrane-associated proteins was evident at postnatal day 15, before the onset of ventral and central cone degeneration. Protein levels of cone T alpha and cone PDE6alpha' were reduced, whereas their transcript levels were unchanged, suggesting posttranslational degradation. In an Rpe65(-/-)Rho(-/-) double knock-out model, trafficking of cone pigments and membrane-associated cone phototransduction polypeptides to the outer segments proceeded normally after 11-cis-retinal administration. These results suggest that ventral and central cone opsins must be regenerated with 11-cis-retinal to permit transport to the outer segments. Furthermore, the presence of 11-cis-retinal is essential for proper transport of several membrane-associated cone phototransduction polypeptides in these cones.
Publication
Journal: Investigative Ophthalmology and Visual Science
March/17/2004
Abstract
OBJECTIVE
To determine whether primate embryonic stem (ES) cell-derived pigment epithelial cells (ESPEs) have the properties and functions of retinal pigment epithelial (RPE) cells in vitro and in vivo.
METHODS
Cynomolgus monkey ES cells were induced to differentiate into pigment epithelial cells by coculturing them with PA6 stromal cells in a differentiating medium. The expanded, single-layer ESPEs were examined by light and electron microscopy. The expression of standard RPE markers by the ESPEs was determined by RT-PCR, Western blot, and immunocytochemical analyses. The ESPEs were transplanted into the subretinal space of 4-week-old Royal College of Surgeons (RCS) rats, and the eyes were analyzed immunohistochemically at 8 weeks after grafting. The effect of the ESPE graft on the visual function of RCS rats was estimated by optokinetic reflex.
RESULTS
The expanded ESPEs were hexagonal and contained significant amounts of pigment. The ESPEs expressed typical RPE markers: ZO-1, RPE65, CRALBP, and Mertk. They had extensive microvilli and were able to phagocytose latex beads. When transplanted into the subretinal space of RCS rats, the grafted ESPEs enhanced the survival of the host photoreceptors. The effects of the transplanted ESPEs were confirmed by histologic analyses and behavioral tests.
CONCLUSIONS
The ESPEs had morphologic and physiological properties of normal RPE cells, and these findings suggest that these cells may provide an unlimited source of primate cells to be used for the study of pathogenesis, drug development, and cell-replacement therapy in eyes with retinal degenerative diseases due to primary RPE dysfunction.
Publication
Journal: Human Molecular Genetics
November/12/2002
Abstract
Leber congenital amaurosis (LCA) is the most common inherited cause of blindness in childhood and is characterised by a severe retinal dystrophy before the age of one year. Six genes have been identified that together account for approximately half of all LCA patients. These genes are expressed preferentially in the retina or the retinal pigment epithelium. Their putative functions are quite diverse and include retinal embryonic development (CRX), photoreceptor cell structure (CRB1), phototransduction (GUCY2D), protein trafficking (AIPL1, RPGRIP1), and vitamin A metabolism (RPE65). The molecular data for CRB1 and RPE65 support previous hypotheses that LCA can represent the severe end of a spectrum of retinal dystrophies. Given the diverse mechanisms underlying the disease, future therapies of LCA may need to be tailored to certain genetically defined subgroups. Based on experimental evidence in mice and dogs, patients with disturbed retinal metabolism of vitamin A through a mutation in the RPE65 gene will likely be the first candidates for future therapeutic trials.
Publication
Journal: Molecular Therapy
January/29/2004
Abstract
We previously described chimeric recombinant adeno-associated virus (rAAV) vectors 2/4 and 2/5 as the most efficient vectors in rat retina. We now characterize these two vectors carrying the CMV.gfp genome following subretinal injection in the Wistar rat, beagle dog, and cynomolgus macaque. Both serotypes displayed stable GFP expression for the duration of the experiment (6 months) in all three animal models. Similar to the AAV-2 serotype, AAV-2/5 transduced both RPE and photoreceptor cells, with higher level of transduction in photoreceptors, whereas rAAV-2/4 transduction was unambiguously restricted to RPE cells. This unique specificity found conserved among all three species makes AAV-2/4-derived vectors attractive for retinal diseases originating in RPE such as Leber congenital amaurosis (RPE65) or retinitis pigmentosa due to a mutated mertk gene. To provide further important preclinical data, vector shedding was monitored by PCR in various biological fluids for 2 months post-rAAV administration. Following rAAV-2/4 and -5 subretinal delivery in dogs (n = 6) and in nonhuman primates (n = 2), vector genome was found in lacrymal and nasal fluids for up to 3-4 days and in the serum for up to 15-20 days. Overall, these findings will have a practical impact on the development of future gene therapy trials of retinal diseases.
Publication
Journal: Proceedings of the National Academy of Sciences of the United States of America
September/28/2004
Abstract
There is a growing body of evidence that the nondegradable fluorophores that accumulate as the lipofuscin of retinal pigment epithelium (RPE) are involved in mechanisms leading to the degeneration of RPE in macular degeneration. Most of the constituents of RPE lipofuscin are inadvertent products of the retinoid visual cycle, the enzymatic pathway by which the 11-cis-retinal chromophore of rhodopsin is generated. Indeed, a major constituent of RPE lipofuscin, the pyridinium bisretinoid A2E, is a diretinal conjugate that forms in photoreceptor cells and is deposited in RPE cells as a consequence of the phagocytosis of the outer segment membrane by RPE cells. Given the adverse effects of A2E, there is considerable interest in combating its deposition so as to protect against vision loss. These efforts, however, necessitate an understanding of factors that modulate its formation. Here we show that an amino acid variant in murine Rpe65, a visual-cycle protein required for the regeneration of 11-cis-retinal, is associated with reduced A2E accumulation.
Publication
Journal: The Lancet
October/4/2016
Abstract
BACKGROUND
Safety and efficacy have been shown in a phase 1 dose-escalation study involving a unilateral subretinal injection of a recombinant adeno-associated virus (AAV) vector containing the RPE65 gene (AAV2-hRPE65v2) in individuals with inherited retinal dystrophy caused by RPE65 mutations. This finding, along with the bilateral nature of the disease and intended use in treatment, prompted us to determine the safety of administration of AAV2-hRPE65v2 to the contralateral eye in patients enrolled in the phase 1 study.
METHODS
In this follow-on phase 1 trial, one dose of AAV2-hRPE65v2 (1.5 × 10(11) vector genomes) in a total volume of 300 μL was subretinally injected into the contralateral, previously uninjected, eyes of 11 children and adults (aged 11-46 years at second administration) with inherited retinal dystrophy caused by RPE65 mutations, 1.71-4.58 years after the initial subretinal injection. We assessed safety, immune response, retinal and visual function, functional vision, and activation of the visual cortex from baseline until 3 year follow-up, with observations ongoing. This study is registered with ClinicalTrials.gov, number NCT01208389.
RESULTS
No adverse events related to the AAV were reported, and those related to the procedure were mostly mild (dellen formation in three patients and cataracts in two). One patient developed bacterial endophthalmitis and was excluded from analyses. We noted improvements in efficacy outcomes in most patients without significant immunogenicity. Compared with baseline, pooled analysis of ten participants showed improvements in mean mobility and full-field light sensitivity in the injected eye by day 30 that persisted to year 3 (mobility p=0.0003, white light full-field sensitivity p<0.0001), but no significant change was seen in the previously injected eyes over the same time period (mobility p=0.7398, white light full-field sensitivity p=0.6709). Changes in visual acuity from baseline to year 3 were not significant in pooled analysis in the second eyes or the previously injected eyes (p>0.49 for all time-points compared with baseline).
CONCLUSIONS
To our knowledge, AAV2-hRPE65v2 is the first successful gene therapy administered to the contralateral eye. The results highlight the use of several outcome measures and help to delineate the variables that contribute to maximal benefit from gene augmentation therapy in this disease.
BACKGROUND
Center for Cellular and Molecular Therapeutics at The Children's Hospital of Philadelphia, Spark Therapeutics, US National Institutes of Health, Foundation Fighting Blindness, Institute for Translational Medicine and Therapeutics, Research to Prevent Blindness, Center for Advanced Retinal and Ocular Therapeutics, Mackall Foundation Trust, F M Kirby Foundation, and The Research Foundation-Flanders.
Publication
Journal: Investigative Ophthalmology and Visual Science
October/10/2007
Abstract
OBJECTIVE
To identify the molecular basis of Leber's congenital amaurosis (LCA) in a cohort of Italian patients and to perform genotype-phenotype analysis.
METHODS
DNA samples from 95 patients with LCA were analyzed by using a microarray chip containing disease-associated sequence variants in eight LCA genes. In addition, all patients in whom no mutations were identified by microarray were subjected to sequence analysis of the CEP290 gene. Patients with mutations identified underwent a detailed ophthalmic evaluation.
RESULTS
Disease-causing mutations were identified in 28% of patients, and twelve novel variants were identified. Mutations occurred more frequently in the RPE65 (8.4%), CRB1 (7.4%), and GUCY2D (5.2%) genes. Mutations in CEP290 were found in only 4.2% of the patients analyzed. Clinical assessment of patients carrying RPE65 or CRB1 mutations revealed the presence of retained visual capabilities in the first decade of life. RPE65 mutations were almost always associated with normal macular thickness, as assessed by optical coherence tomography (OCT), whereas CRB1 mutations were associated with reduced retinal thickness and a coarsely laminated retina. Fundus autofluorescence was mostly observed in patients with RPE65 and GUCY2D mutations and was not elicitable in patients carrying CRB1.
CONCLUSIONS
RPE65 gene mutations represented a significant cause of LCA in the Italian population, whereas GUCY2D and CEP290 mutations had a lower frequency than that found in other reports. This finding suggests that the genetic epidemiology of LCA in Italy is different from that reported in the United States and in northern European countries. Autofluorescence in patients with RPE65 mutations was more frequently associated with preserved retinal thickness, which suggests that these mutations are not associated with progression of retinal degeneration. Therefore, normal retinal thickness (identified with OCT) and fundus autofluorescence may be the means with which to identify patients with LCA who carry RPE65 mutations, which are expected to be a potential gene therapy target in the near future.
Publication
Journal: Journal of Clinical Investigation
August/16/2011
Abstract
Leber congenital amaurosis (LCA) is a rare degenerative eye disease, linked to mutations in at least 14 genes. A recent gene therapy trial in patients with LCA2, who have mutations in RPE65, demonstrated that subretinal injection of an adeno-associated virus (AAV) carrying the normal cDNA of that gene (AAV2-hRPE65v2) could markedly improve vision. However, it remains unclear how the visual cortex responds to recovery of retinal function after prolonged sensory deprivation. Here, 3 of the gene therapy trial subjects, treated at ages 8, 9, and 35 years, underwent functional MRI within 2 years of unilateral injection of AAV2-hRPE65v2. All subjects showed increased cortical activation in response to high- and medium-contrast stimuli after exposure to the treated compared with the untreated eye. Furthermore, we observed a correlation between the visual field maps and the distribution of cortical activations for the treated eyes. These data suggest that despite severe and long-term visual impairment, treated LCA2 patients have intact and responsive visual pathways. In addition, these data suggest that gene therapy resulted in not only sustained and improved visual ability, but also enhanced contrast sensitivity.
Publication
Journal: Proceedings of the National Academy of Sciences of the United States of America
January/4/2004
Abstract
The chromophore of visual pigments is 11-cis-retinal and, thus, in its absence, opsin is not photosensitive and no visual function exists. However, in the RPE65 knockout (Rpe65-/-) mouse, where synthesis of 11-cis-retinal does not occur, a minimal visual response from rod photoreceptors is obtained. We have examined if an alternative pathway exists for cis-retinoid generation in the absence of RPE65. Cyclic-light-reared, 2-month-old Rpe65-/- mice were placed in complete darkness. No exogenous retinoids were administered. After 4 weeks, enhanced a- and b-wave amplitudes were obtained, increasing >10-fold for the a-wave and >3-fold for the b-wave as compared with cyclic-light-reared Rpe65-/- mice. Visual-pigment levels increased to approximately 10 pmol per retina, compared with no measurable pigment for cyclic-light-reared Rpe65-/- mice. The lambdamax of the isolated pigment was 487 nm, characteristic for isorhodopsin. Retinoid extractions confirmed the presence of 9-cis-retinal and the absence of 11-cis-retinal. Once the Rpe65-/- mice were returned to cyclic light, within 48 h the electroretinogram function returned to levels found in Rpe65-/- mice maintained in cyclic light. This dark-mediated pathway is also operational in older animals, because 13-month-old Rpe65-/- mice kept in prolonged darkness (12 weeks) had increased isorhodopsin levels and electroretinogram a- and b-wave amplitudes. These studies demonstrate that a pathway exists in the eye for the generation of 9-cis-retinal that is independent of RPE65 and light.
Publication
Journal: Investigative Ophthalmology and Visual Science
December/3/2001
Abstract
OBJECTIVE
In all mammalian species examined to date the retinal pigment epithelium (RPE) has been found to accumulate autofluorescent lysosomal storage bodies (lipofuscin) during senescence. Substantial evidence indicates that retinoids in the RPE-retina complex play a major role in RPE lipofuscin formation. Indeed, at least one RPE lipofuscin fluorophore is derived in part from vitamin A aldehyde. However, the precise mechanisms by which retinoids modulate RPE lipofuscin accumulation have not been elucidated. In mice without a functional Rpe65 gene, isomerization of all-trans- to 11-cis-retinol is blocked. Experiments were performed to determine whether this impairment of retinoid metabolism alters RPE lipofuscin accumulation.
METHODS
RPE lipofuscin fluorophore content was compared in 12- to 13-month-old Rpe65(+/+), Rpe65(+/-), and Rpe65(-/-) mice. Lipofuscin fluorophore content was determined using quantitative fluorometric measurements. RPE lipofuscin content was also estimated with quantitative ultrastructural techniques.
RESULTS
In the Rpe65(-/-) mice, RPE lipofuscin fluorophore accumulation was almost abolished. In addition, a significantly reduced accumulation of lipofuscin fluorophores was also observed in the Rpe65(+/-) animals. The inability of the RPE of)Rpe65(-/-) mice to supply 11-cis-retinal from the RPE to the retinal photoreceptors was accompanied by a massive accumulation of lipid droplets in the RPE that appeared to contain substantial amounts of retinoids.
CONCLUSIONS
These findings indicate that formation of RPE lipofuscin fluorophores is almost completely dependent on a normal visual cycle. The absence of retinal (both all-trans and 11-cis) in Rpe65 knockout mice drastically reduced formation of lipofuscin fluorophores in these animals. Even an excessive accumulation of retinyl fatty acid esters in the RPE of Rpe65 knockout mice did not contribute to lipofuscin accumulation.
load more...