Citations
All
Search in:AllTitleAbstractAuthor name
Publications
(410)
Patents
Grants
Pathways
Clinical trials
Publication
Journal: BMC Genomics
June/10/2015
Abstract
BACKGROUND
The Tibetan pig is one of domestic animals indigenous to the Qinghai-Tibet Plateau. Several geographically isolated pig populations are distributed throughout the Plateau. It remained an open question if these populations have experienced different demographic histories and have evolved independent adaptive loci for the harsh environment of the Plateau. To address these questions, we herein investigated ~ 40,000 genetic variants across the pig genome in a broad panel of 678 individuals from 5 Tibetan geographic populations and 34 lowland breeds.
RESULTS
Using a series of population genetic analyses, we show that Tibetan pig populations have marked genetic differentiations. Tibetan pigs appear to be 3 independent populations corresponding to the Tibetan, Gansu and Sichuan & Yunnan locations. Each population is more genetically similar to its geographic neighbors than to any of the other Tibetan populations. By applying a locus-specific branch length test, we identified both population-specific and -shared candidate genes under selection in Tibetan pigs. These genes, such as PLA2G12A, RGCC, C9ORF3, GRIN2B, GRID1 and EPAS1, are involved in high-altitude physiology including angiogenesis, pulmonary hypertension, oxygen intake, defense response and erythropoiesis. A majority of these genes have not been implicated in previous studies of highlanders and high-altitude animals.
CONCLUSIONS
Tibetan pig populations have experienced substantial genetic differentiation. Historically, Tibetan pigs likely had admixture with neighboring lowland breeds. During the long history of colonization in the Plateau, Tibetan pigs have developed a complex biological adaptation mechanism that could be different from that of Tibetans and other animals. Different Tibetan pig populations appear to have both distinct and convergent adaptive loci for the harsh environment of the Plateau.
Publication
Journal: NeuroImage
April/17/2013
Abstract
Imaging traits are thought to have more direct links to genetic variation than diagnostic measures based on cognitive or clinical assessments and provide a powerful substrate to examine the influence of genetics on human brains. Although imaging genetics has attracted growing attention and interest, most brain-wide genome-wide association studies focus on voxel-wise single-locus approaches, without taking advantage of the spatial information in images or combining the effect of multiple genetic variants. In this paper we present a fast implementation of voxel- and cluster-wise inferences based on the random field theory to fully use the spatial information in images. The approach is combined with a multi-locus model based on least square kernel machines to associate the joint effect of several single nucleotide polymorphisms (SNP) with imaging traits. A fast permutation procedure is also proposed which significantly reduces the number of permutations needed relative to the standard empirical method and provides accurate small p-value estimates based on parametric tail approximation. We explored the relation between 448,294 single nucleotide polymorphisms and 18,043 genes in 31,662 voxels of the entire brain across 740 elderly subjects from the Alzheimer's disease neuroimaging initiative (ADNI). Structural MRI scans were analyzed using tensor-based morphometry (TBM) to compute 3D maps of regional brain volume differences compared to an average template image based on healthy elderly subjects. We find method to be more sensitive compared with voxel-wise single-locus approaches. A number of genes were identified as having significant associations with volumetric changes. The most associated gene was GRIN2B, which encodes the N-methyl-d-aspartate (NMDA) glutamate receptor NR2B subunit and affects both the parietal and temporal lobes in human brains. Its role in Alzheimer's disease has been widely acknowledged and studied, suggesting the validity of the approach. The various advantages over existing approaches indicate a great potential offered by this novel framework to detect genetic influences on human brains.
Publication
Journal: Clinical Genetics
February/28/2001
Abstract
In a previous study (Comings DE et al. Comparison of the role of dopamine, serotonin, and noradrenergic genes in ADHD, ODD and conduct disorder. Multivariate regression analysis of 20 genes. Clin Genet 2000: 57: 178-196) we examined the role of 20 dopamine, serotonin and norepinephrine genes in attention deficit hyperactivity disorder (ADHD), oppositional defiant disorder (ODD), and conduct disorder (CD), using a multivariate analysis of associations (MAA) technique. We have now brought the total number of genes examined to 42 by adding an additional 22 candidate genes. These results indicate that even with the inclusion of these additional genes the noradrenergic genes still played a greater role in ADHD than any other group. Six other neurotransmitter genes were included in the regression equation - cholinergic, nicotinic, alpha 4 receptor (CHNRA4), adenosine A2A receptor (ADOA2A), nitric oxide synthase (NOS3), NMDAR1, GRIN2B, and GABRB3. In contrast to ADHD and ODD, CD preferentially utilized hormone and neuropeptide genes These included CCK, CYP19 (aromatase cytochrome P-450), ESR1, and INS (p = 0.005). This is consistent with our prior studies indicating a role of the androgen receptor (AR) gene in a range of externalizing behavors. We propose that the MAA technique, by focusing on the additive effect of multiple genes and on the cummulative effect of functionally related groups of genes, provides a powerful approach to the dissection of the genetic basis of polygenic disorders.
Publication
Journal: Neuron
February/5/2015
Abstract
Three-dimensional chromosomal conformations regulate transcription by moving enhancers and regulatory elements into spatial proximity with target genes. Here we describe activity-regulated long-range loopings bypassing up to 0.5 Mb of linear genome to modulate NMDA glutamate receptor GRIN2B expression in human and mouse prefrontal cortex. Distal intronic and 3' intergenic loop formations competed with repressor elements to access promoter-proximal sequences, and facilitated expression via a "cargo" of AP-1 and NRF-1 transcription factors and TALE-based transcriptional activators. Neuronal deletion or overexpression of Kmt2a/Mll1 H3K4- and Kmt1e/Setdb1 H3K9-methyltransferase was associated with higher-order chromatin changes at distal regulatory Grin2b sequences and impairments in working memory. Genetic polymorphisms and isogenic deletions of loop-bound sequences conferred liability for cognitive performance and decreased GRIN2B expression. Dynamic regulation of chromosomal conformations emerges as a novel layer for transcriptional mechanisms impacting neuronal signaling and cognition.
Publication
Journal: Genetics in Medicine
February/28/2007
Abstract
Schizophrenia is a severe mental illness to which hypofunction of the N-methyl-D-aspartate receptors has been linked. Association studies have implicated the N-methyl-D-aspartate receptor 2B subunit gene (GRIN2B) as a candidate for schizophrenia. Subsequent studies have attempted to replicate the association, but the results have been mixed and thus inconclusive. It is necessary to explain the inconsistency of these results and to clarify the contribution of the GRIN2B gene to schizophrenia. The current meta-analysis covers all published association studies up to January 2006 using systematic allelic and genotypic analyses involving five polymorphisms. The results show evidence of a statistically significant association for GRIN2B. The association seems weaker, but nonetheless interesting. The meta-analysis supports the involvement of the glutamate system of the brain in the pathogenesis of schizophrenia. This may be the first systematic meta-analysis study focusing on GRIN2B.
Publication
Journal: Molecular Psychiatry
June/27/2001
Abstract
NMDA receptor dysfunction may be involved in the pathophysiology of schizophrenia. Based on this hypothesis, we screened 48 Japanese patients with schizophrenia for mutations in the coding region of the NMDAR2B subunit gene (GRIN2B). An association study between the identified DNA sequence variants and schizophrenia was performed in 268 Japanese patients with schizophrenia and 337 Japanese control subjects. Eight single nucleotide polymorphisms were detected, all of which were synonymous. The association sample showed statistically significant excesses of homozygosity for the polymorphisms in the 3' region of the last exon in the patients with schizophrenia (P = 0.004) and higher frequency of the G allele of the 366C/G polymorphism (corrected P = 0.04) in the patients than in the controls. Although we did not detect NMDAR2B protein variants, our findings support the possibility that the GRIN2B gene or a locus in linkage disequilibrium with it may confer susceptibility to schizophrenia. Replication studies in independent samples are warranted.
Publication
Journal: Human Genetics
May/12/2008
Abstract
In addition to the pathogenetic CAG repeat expansion other genetic factors play a significant role in determining age at onset (AO) in Huntington disease (HD), e.g. variations in the NR2A and NR2B glutamate receptor subunit genes (GRIN2A, GRIN2B). In order to expand these findings we fine-mapped a larger HD patient panel (n = 250) using densely spaced markers flanking the originally associated SNPs in GRIN2A and GRIN2B. In GRIN2A association fine-mapping based on eight additional SNPs confirmed intron 2 as the region of strongest association. In GRIN2B fine-mapping with seven additional SNPs consolidated C2664T as causal genetic variation. Gender stratification of patients revealed differences in the variability in AO attributable to the CAG repeat number and highly significant differences in the AO association with the C2664T and rs8057394/ rs2650427 variations. Addition of the corresponding genotype variations to the effect of CAG repeat lengths resulted in a significant increase of the R2 values only in females. The sex-specific effect for C2664T is underscored by differences in the genotype and allele frequencies observed for female versus male HD patients (P = 0.01) caused by decreased CC frequency in females. Overall, female HD patients homozygous for the CC genotype tended to have later AO compared to the other two genotypes. Stratification of the results by presumed menopausal status demonstrated that the significant findings were predominantly observed in pre-menopausal patients. We speculate that altered hormone levels herald protective effects of this genotype. Together, GRIN2A and GRIN2B genotype variations explain 7.2% additional variance in AO for HD.
Publication
Journal: European Journal of Human Genetics
December/25/2016
Abstract
Cerebral visual impairment (CVI) is a major cause of low vision in children due to impairment in projection and/or interpretation of the visual input in the brain. Although acquired causes for CVI are well known, genetic causes underlying CVI are largely unidentified. DNAs of 25 patients with CVI and intellectual disability, but without acquired (eg, perinatal) damage, were investigated by whole-exome sequencing. The data were analyzed for de novo, autosomal-recessive, and X-linked variants, and subsequently classified into known, candidate, or unlikely to be associated with CVI. This classification was based on the Online Mendelian Inheritance in Man database, literature reports, variant characteristics, and functional relevance of the gene. After classification, variants in four genes known to be associated with CVI (AHDC1, NGLY1, NR2F1, PGAP1) in 5 patients (20%) were identified, establishing a conclusive genetic diagnosis for CVI. In addition, in 11 patients (44%) with CVI, variants in one or more candidate genes were identified (ACP6, AMOT, ARHGEF10L, ATP6V1A, DCAF6, DLG4, GABRB2, GRIN1, GRIN2B, KCNQ3, KCTD19, RERE, SLC1A1, SLC25A16, SLC35A2, SOX5, UFSP2, UHMK1, ZFP30). Our findings show that diverse genetic causes underlie CVI, some of which will provide insight into the biology underlying this disease process.
Publication
Journal: Addiction Biology
November/1/2010
Abstract
Nicotine dependence is moderately heritable, but identified genetic associations explain only modest portions of this heritability. We analyzed 3369 SNPs from 349 candidate genes and investigated whether incorporation of SNP-by-environment interaction into association analyses might bolster gene discovery efforts and prediction of nicotine dependence. Specifically, we incorporated the interaction between allele count and age at onset of regular smoking (AOS) into association analyses of nicotine dependence. Subjects were from the Collaborative Genetic Study of Nicotine Dependence and included 797 cases ascertained for Fagerström nicotine dependence and 811 non-nicotine-dependent smokers as controls, all of European descent. Compared with main effect models, SNP x AOS interaction models resulted in higher numbers of nominally significant tests, increased predictive utility at individual SNPs and higher predictive utility in a multi-locus model. Some SNPs previously documented in main effect analyses exhibited improved fits in the joint analysis, including rs16969968 from CHRNA5 and rs2314379 from MAP3K4. CHRNA5 exhibited larger effects in later-onset smokers, in contrast with a previous report that suggested the opposite interaction (Weiss et al. 2008). However, a number of SNPs that did not emerge in main effect analyses were among the strongest findings in the interaction analyses. These include SNPs located in GRIN2B (P = 1.5 x 10(-5)), which encodes a subunit of the N-methyl-D-aspartate receptor channel, a key molecule in mediating age-dependent synaptic plasticity. Incorporation of logically chosen interaction parameters, such as AOS, into genetic models of substance use disorders may increase the degree of explained phenotypic variation and constitutes a promising avenue for gene discovery.
Publication
Journal: Modern Pathology
May/17/2012
Abstract
Although DNA methylation profiles in breast cancer have been connected to breast cancer molecular subtype, there have been no studies of the association of DNA methylation with stem cell phenotype. This study was designed to evaluate the promoter CpG island methylation of 15 genes in relation to breast cancer subtype, and to investigate whether the patterns of CpG island methylation in each subtype are associated with their cancer stem cell phenotype represented by CD44+/CD24- and ALDH1 expression. We performed MethyLight analysis of the methylation status of 15 promoter CpG island loci involved in breast cancer progression (APC, DLEC1, GRIN2B, GSTP1, HOXA1, HOXA10, IGF2, MT1G, RARB, RASSF1A, RUNX3, SCGB3A1, SFRP1, SFRP4, and TMEFF2) and determined cancer stem cell phenotype by CD44/CD24 and ALDH1 immunohistochemistry in 36 luminal A, 33 luminal B, 30 luminal-HER2, 40 HER2 enriched, and 40 basal-like subtypes of breast cancer. The number of CpG island loci methylated differed significantly between subtypes, and was highest in the luminal-HER2 subtype and lowest in the basal-like subtype. Methylation frequencies and levels in 12 of the 15 genes differed significantly between subtypes, and the basal-like subtype had significantly lower methylation frequencies and levels in nine of the genes than the other subtypes. CD44+/CD24- and ALDH1+ putative stem cell populations were most enriched in the basal-like subtype. Methylation of promoter CpG islands was significantly lower in CD44+/CD24-cell (+) tumors than in CD44+/CD24-cell (-) tumors, even within the basal-like subtype. ALDH1 (+) tumors were also less methylated than ALDH1 (-) tumors. Our findings showed that promoter CpG island methylation was different in relation to breast cancer subtype and stem cell phenotype of tumor, suggesting that breast cancers have distinct patterns of CpG island methylation according to molecular subtypes and these are associated with different stem cell phenotypes of the tumor.
Publication
Journal: Acta Neuropathologica
November/20/2017
Abstract
Autism spectrum disorder (ASD) has a major impact on the development and social integration of affected individuals and is the most heritable of psychiatric disorders. An increase in the incidence of ASD cases has prompted a surge in research efforts on the underlying neuropathologic processes. We present an overview of current findings in neuropathology studies of ASD using two investigational approaches, postmortem human brains and ASD animal models, and discuss the overlap, limitations, and significance of each. Postmortem examination of ASD brains has revealed global changes including disorganized gray and white matter, increased number of neurons, decreased volume of neuronal soma, and increased neuropil, the last reflecting changes in densities of dendritic spines, cerebral vasculature and glia. Both cortical and non-cortical areas show region-specific abnormalities in neuronal morphology and cytoarchitectural organization, with consistent findings reported from the prefrontal cortex, fusiform gyrus, frontoinsular cortex, cingulate cortex, hippocampus, amygdala, cerebellum and brainstem. The paucity of postmortem human studies linking neuropathology to the underlying etiology has been partly addressed using animal models to explore the impact of genetic and non-genetic factors clinically relevant for the ASD phenotype. Genetically modified models include those based on well-studied monogenic ASD genes (NLGN3, NLGN4, NRXN1, CNTNAP2, SHANK3, MECP2, FMR1, TSC1/2), emerging risk genes (CHD8, SCN2A, SYNGAP1, ARID1B, GRIN2B, DSCAM, TBR1), and copy number variants (15q11-q13 deletion, 15q13.3 microdeletion, 15q11-13 duplication, 16p11.2 deletion and duplication, 22q11.2 deletion). Models of idiopathic ASD include inbred rodent strains that mimic ASD behaviors as well as models developed by environmental interventions such as prenatal exposure to sodium valproate, maternal autoantibodies, and maternal immune activation. In addition to replicating some of the neuropathologic features seen in postmortem studies, a common finding in several animal models of ASD is altered density of dendritic spines, with the direction of the change depending on the specific genetic modification, age and brain region. Overall, postmortem neuropathologic studies with larger sample sizes representative of the various ASD risk genes and diverse clinical phenotypes are warranted to clarify putative etiopathogenic pathways further and to promote the emergence of clinically relevant diagnostic and therapeutic tools. In addition, as genetic alterations may render certain individuals more vulnerable to developing the pathological changes at the synapse underlying the behavioral manifestations of ASD, neuropathologic investigation using genetically modified animal models will help to improve our understanding of the disease mechanisms and enhance the development of targeted treatments.
Pulse
Views:
2
Posts:
No posts
Rating:
Not rated
Publication
Journal: Virchows Archiv
October/4/2011
Abstract
Multiple genetic and epigenetic alterations are known to be involved in the carcinogenesis of peripheral pulmonary adenocarcinoma (ADC). However, epigenetic abnormalities have not been extensively investigated in the following multistage progression sequence: atypical adenomatous hyperplasia (AAH) to adenocarcinoma in situ (AIS), to invasive ADC. To determine the potential role of promoter methylation during ADC development of the lung, we examined methylation status in 20 normal, 20 AAH, 30 AIS, and 60 ADC lung tissues and compared methylation status among the lesions. The MethyLight assay was used to determine the methylation status of 18 CpG island loci, which were hypermethylated in ADC compared to noncancerous lung tissues. The mean number of methylated CpG island loci was significantly higher in ADC than in AAH and AIS, (p < 0.003 between ADC and AAH, p < 0.005 between ADC and AIS). Aberrant methylation of HOXA1, TMEFF2, and RARB was frequently observed in preinvasive lesions, including AAH and AIS. Furthermore, methylation of PENK, BCL2, RUNX3, DLEC1, MT1G, GRIN2B, CDH13, CCND2, and HOXA10 was significantly more frequent in invasive ADC than AAH or AIS. Our results indicate that epigenetic alterations are involved in the multistep progression of pulmonary ADC development, and aberrant CpG island methylation accumulates during multistep carcinogenesis. In addition, aberrant methylation of HOXA1, TMEFF2, and RARB occurred in preinvasive lesions, which indicates that epigenetic alterations of these genes are involved in the early stages of pulmonary ADC development. In contrast, hypermethylation of PENK, BCL2, RUNX3, DLEC1, MT1G, GRIN2B, CDH13, CCND2, and HOXA10 was more frequent in invasive ADC than in preinvasive lesions, which indicates that methylation of these genes occurs later during tumor invasion in the AAH-AIS-ADC sequence.
Publication
Journal: Psychopharmacology
October/9/2014
Abstract
BACKGROUND
In clinical practice, ketamine, an antagonist of the N-methyl-D-aspartate receptor (NMDAR), is used to alleviate depressive symptoms in patients with major depressive disorder (MDD), especially in those with treatment-resistant depression (TRD). Accordingly, the human gene coding for the 2B subunit of the NMDAR (GRIN2B) is considered a promising candidate gene for MDD susceptibility.
OBJECTIVE
The primary aim of this study is to examine whether potentially functional polymorphisms of GRIN2B confer risk for MDD, and second to investigate whether GRIN2B acts as a genetic predictor for TRD in MDD patients.
METHODS
We enrolled 178 TRD and 612 non-TRD patients as well as 779 healthy controls.
RESULTS
Four potentially functional polymorphisms (rs1805502, rs890, rs1806201, and rs7301328) within GRIN2B were genotyped in all participants. The haplotype analysis found significant differences in the distribution of the G-T haplotype between the TRD and control groups (corrected P = 0.007), and the frequency of the G-T haplotype in TRD group was significantly higher than that in the controls (TRD/control ratio 0.31:0.21). Statistically significant differences in allele and genotype frequencies were detected between TRD and non-TRD groups for the rs1805502 polymorphism within GRIN2B. There was a significant allelic association between rs1805502 and TRD with an excess of the G allele in the TRD group, compared to non-TRD group (OR = 1.55, 95 % CI = 1.18-2.05, corrected P = 0.008).
CONCLUSIONS
These initial findings strengthen the hypothesis that GRIN2B not only confers susceptibility to TRD, but also plays a genetic predictor for TRD in MDD patients.
Publication
Journal: Neuroscience
November/2/2015
Abstract
Status epilepticus (SE) triggers abnormal expression of genes in the hippocampus, such as glutamate receptor subunit epsilon-2 (Grin2b/Nr2b) and brain-derived neurotrophic factor (Bdnf), that is thought to occur in temporal lobe epilepsy (TLE). We examined the underlying DNA methylation mechanisms and investigated whether these mechanisms contribute to the expression of these gene targets in the epileptic hippocampus. Experimental TLE was provoked by kainic acid-induced SE. Bisulfite sequencing analysis revealed increased Grin2b/Nr2b and decreased Bdnf DNA methylation levels that corresponded to decreased Grin2b/Nr2b and increased Bdnf mRNA and protein expression in the epileptic hippocampus. Blockade of DNA methyltransferase (DNMT) activity with zebularine decreased global DNA methylation levels and reduced Grin2b/Nr2b, but not Bdnf, DNA methylation levels. Interestingly, we found that DNMT blockade further decreased Grin2b/Nr2b mRNA expression whereas GRIN2B protein expression increased in the epileptic hippocampus, suggesting that a posttranscriptional mechanism may be involved. Using chromatin immunoprecipitation analysis we found that DNMT inhibition restored the decreases in AP2alpha transcription factor levels at the Grin2b/Nr2b promoter in the epileptic hippocampus. DNMT inhibition increased field excitatory postsynaptic potential in hippocampal slices isolated from epileptic rats. Electroencephalography (EEG) monitoring confirmed that DNMT inhibition did not significantly alter the disease course, but promoted the latency to seizure onset or SE. Thus, DNA methylation may be an early event triggered by SE that persists late into the epileptic hippocampus to contribute to gene expression changes in TLE.
Publication
Journal: American Journal of Medical Genetics, Part B, Neuropsychiatric Genetics
February/13/2012
Abstract
N-methyl-D-aspartate (NMDA) receptors are very important for proper brain development and several lines of evidence support that hypofunction of the NMDA receptors are involved in the pathophysiology of schizophrenia. Gene variation and gene-environmental interactions involving the genes encoding the NMDA receptors are therefore likely to influence the risk of schizophrenia. The aim of this study was to determine (1) whether SNP variation in the genes (GRIN1, GRIN2A, GRIN2B, GRIN2C, and GRIN2D) encoding the NMDA receptor were associated with schizophrenia; (2) whether GRIN gene variation in the offspring interacted with maternal herpes simplex virus-2 (HSV-2) seropositivity during pregnancy influencing the risk of schizophrenia later in life. Individuals from three independently collected Danish case control samples were genotyped for 81 tagSNPs (in total 984 individuals diagnosed with schizophrenia and 1,500 control persons) and antibodies against maternal HSV-2 infection were measured in one of the samples (365 cases and 365 controls). Nine SNPs out of 30 in GRIN2B were significantly associated with schizophrenia. One SNP remained significant after Bonferroni correction (rs1806194, P(nominal) = 0.0008). Significant interaction between maternal HSV-2 seropositivity and GRIN2B genetic variation in the offspring were observed for seven SNPs and two remained significant after Bonferroni correction (rs1805539, P(nominal) = 0.0001 and rs1806205, P(nominal) = 0.0008). The significant associations and interactions were located at the 3' region of GRIN2B suggesting that genetic variation in this part of the gene may be involved in the pathophysiology of schizophrenia.
Publication
Journal: Psychopharmacology
June/9/2014
Abstract
BACKGROUND
Clinical observations indicate that atypical antipsychotics, especially clozapine, induce obsessive-compulsive (OC) symptoms in schizophrenia patients. Recent data from neuroimaging and clinical trials suggest a role for altered glutamate neurotransmission in the etiology of OC disorder (OCD), and SLC1A1, GRIN2B, and GRIK2 have all been reported to regulate glutamate transmission and affect OCD pathophysiology.
OBJECTIVE
This study aimed to determine whether SLC1A1, GRIN2B, and GRIK2 are associated with clozapine-induced OC symptoms.
METHODS
A total of 250 clinically stable schizophrenia patients receiving clozapine treatment were recruited. The Yale-Brown Obsessive Compulsive Scale (Y-BOCS) was used to evaluate the severity of OC symptoms. Based on their Y-BOCS scores, 250 patients were divided into the OC and non-OC groups (patients with or without OC symptoms, respectively). Additionally, three reported OCD susceptibility polymorphisms, SLC1A1 (rs2228622), GRIN2B (rs890), and GRIK2 (rs1556995), were genotyped.
RESULTS
Trends of association with OC symptoms were observed in rs2228622A and rs890T alleles. SLC1A1 and GRIN2B interaction was found in the significant two-locus gene-gene interaction model (p = 0.0021), using the multifactor dimensionality reduction method. Further analysis showed a significant interaction between SLC1A1 and GRIN2B on the Y-BOCS score (F 6, 137 = 7.650, p < 0.001), and individuals with AA/TT genotypes had a significantly higher mean Y-BOCS score than those with other genotypes, except AG/TT.
CONCLUSIONS
These results suggest that SLC1A1, GRIN2B, and interactions between the two may potentially confer a susceptibility to OC symptoms in schizophrenia patients receiving clozapine.
Publication
Journal: Proceedings - International Symposium on Biomedical Imaging
February/19/2017
Abstract
Penalized or sparse regression methods are gaining increasing attention in imaging genomics, as they can select optimal regressors from a large set of predictors whose individual effects are small or mostly zero. We applied a multivariate approach, based on L(1)-L(2)-regularized regression (elastic net) to predict a magnetic resonance imaging (MRI) tensor-based morphometry-derived measure of temporal lobe volume from a genome-wide scan in 740 Alzheimer's Disease Neuroimaging Initiative (ADNI) subjects. We tuned the elastic net model's parameters using internal crossvalidation and evaluated the model on independent test sets. Compared to 100,000 permutations performed with randomized imaging measures, the predictions were found to be statistically significant (p ~ 0.001). The rs9933137 variant in the RBFOX1 gene was a highly contributory genotype, along with rs10845840 in GRIN2B and rs2456930, discovered previously in a univariate genomewide search.
Publication
Journal: American Journal of Human Genetics
May/22/2017
Abstract
Epilepsy and intellectual disability are associated with rare variants in the GluN2A and GluN2B (encoded by GRIN2A and GRIN2B) subunits of the N-methyl-D-aspartate receptor (NMDAR), a ligand-gated ion channel with essential roles in brain development and function. By assessing genetic variation across GluN2 domains, we determined that the agonist binding domain, transmembrane domain, and the linker regions between these domains were particularly intolerant to functional variation. Notably, the agonist binding domain of GluN2B exhibited significantly more variation intolerance than that of GluN2A. To understand the ramifications of missense variation in the agonist binding domain, we investigated the mechanisms by which 25 rare variants in the GluN2A and GluN2B agonist binding domains dysregulated NMDAR activity. When introduced into recombinant human NMDARs, these rare variants identified in individuals with neurologic disease had complex, and sometimes opposing, consequences on agonist binding, channel gating, receptor biogenesis, and forward trafficking. Our approach combined quantitative assessments of these effects to estimate the overall impact on synaptic and non-synaptic NMDAR function. Interestingly, similar neurologic diseases were associated with both gain- and loss-of-function variants in the same gene. Most rare variants in GluN2A were associated with epilepsy, whereas GluN2B variants were associated with intellectual disability with or without seizures. Finally, discerning the mechanisms underlying NMDAR dysregulation by these rare variants allowed investigations of pharmacologic strategies to correct NMDAR function.
Publication
Journal: American Journal of Medical Genetics, Part B, Neuropsychiatric Genetics
December/19/2010
Abstract
A multi-marker haplotype within GRIN2B, a gene coding for a subunit of the ionotropic glutamate receptor, has recently been found to be associated with variation in human memory performance [de Quervain and Papassotiropoulos, 2006]. The gene locus is located within a region that has been linked to a phonological memory phenotype in a recent genome scan in families with dyslexia [Brkanac et al., 2008]. These findings may indicate the involvement of GRIN2B in memory-related aspects of human cognition. Memory performance is one of the cognitive functions observed to be disordered in dyslexia patients. We therefore investigated whether genetic variation in GRIN2B contributes to specific quantitative measures in a German dyslexia sample by genotyping 66 SNPs in its entire genomic region. We found supportive evidence that markers in intron 3 are associated with short-term memory in dyslexia, and were able to demonstrate that this effect is even stronger when only maternal transmission is considered. These results suggest that variation within GRIN2B may contribute to the genetic background of specific cognitive processes which are correlates of the dyslexia phenotype.
Publication
Journal: Molecular Psychiatry
March/24/2014
Abstract
The complex etiology of suicidal behavior has frequently been investigated in relation to monoaminergic neurotransmission, but other neurosystems have shown alterations as well, involving excitatory glutamatergic and inhibitory γ-aminobutyric acid (GABA) molecular components, together with the modulating polyamines. Sufficiently powered and family-based association studies of glutamatergic and GABAergic genes with suicidal behavior are nonexistent, but several studies have been reported for polyamines. We therefore conducted, for the first time ever, an extensive family-based study of 113 candidate single-nucleotide polymorphisms (SNPs) located in 24 glutamatergic and GABA genes, in addition to interrelated polyaminergic genes, on the outcome of severe suicide attempts (SAs). The family-based analysis (n=660 trios) was supplemented with gene-environment interaction (G × E), case-control (n=519 controls) and subgroup analyses. The main observations were the previously unreported association and linkage of SNPs rs2268115 and rs220557 in GRIN2B, as well as of SNPs rs1049500 and rs2302614 in ODC1 (P<10(-2)). Furthermore, GRIN2B haplotypic associations were observed, in particular with a four-SNP AGGC haplotype (rs1805247-rs1806201-rs1805482-rs2268115; P<10(-5)), and a third SNP rs7559979 in ODC1 showed G × E with serious childhood/adolescent physical assault (P<10(-4)). SA subjects were characterized by transdiagnostic trait anger and past year alcohol-drug use disorders, but not by alcohol-drug use at SA, depression, anxiety or psychosis diagnoses. We also discuss a first ever confirmatory observation of SNP rs6526342 (polyaminergic SAT1) in SA, originally identified in completed suicides. The results suggest that specific genetic variants in a subset of glutamatergic (GRIN2B) and polyaminergic (ODC1) neurosystem genes may be of importance in certain suicidal subjects.
Publication
Journal: Neuroscience Letters
May/6/2013
Abstract
N-Methyl-d-aspartate (NMDA) receptor, one of the glutamate receptors, has a role in the regulation of synaptic activity. It functions as an ion channel in the central nervous system and its inappropriate activation has been implicated in several neurological conditions. To test the association between candidate genes related with NMDA receptors and autism spectrum disorders (ASDs), we examined single nucleotide polymorphisms (SNPs) for GRIN2A and GRIN2B by using the family-based association test (FBAT) in 151 Korean trios. There was a statistically significant associations between ASDs and haplotypes in GRIN2B (bi-allelic mode additive model P-value=0.003; FDR P-value=0.012). This study supports a possible role of GRIN2B as a candidate gene for the etiology of ASDs.
Publication
Journal: Frontiers in Pharmacology
August/15/2013
Abstract
A large subgroup of around 25% of schizophrenia patients suffers from obsessive-compulsive symptoms (OCS) and about 12% fulfill the diagnostic criteria of an obsessive-compulsive disorder (OCD). The additional occurrence of OCS is associated with high subjective burden of disease, additional neurocognitive impairment, poorer social and vocational functioning, greater service utilization and high levels of anxiety and depression. Comorbid patients can be assigned to heterogeneous subgroups. One hypothesis assumes that second generation antipsychotics (SGAs), most importantly clozapine, might aggravate or even induce second-onset OCS. Several arguments support this assumption, most importantly the observed chronological order of first psychotic manifestation, start of treatment with clozapine and onset of OCS. In addition, correlations between OCS-severity and dose and serum levels and duration of clozapine treatment hint toward a dose-dependent side effect. It has been hypothesized that genetic risk-factors dispose patients with schizophrenia to develop OCS. One study in a South Korean sample reported associations with polymorphisms in the gene SLC1A1 (solute carrier family 1A1) and SGA-induced OCS. However, this finding could not be replicated in European patients. Preliminary results also suggest an involvement of polymorphisms in the BDNF gene (brain-derived neurotrophic factor) and an interaction between markers of SLC1A1 and the gene DLGAP3 (disc large associated protein 3) as well as GRIN2B (N-methyl-D-aspartate receptor subunit 2B). Further research of well-defined samples, in particular studies investigating possible interactions of genetic risk-constellations and pharmacodynamic properties, are needed to clarify the assumed development of SGA-induced OCS. Results might improve pathogenic concepts and facilitate the definition of at risk populations, early detection and monitoring of OCS as well as multimodal therapeutic interventions.
Publication
Journal: Molecular Genetics and Metabolism
October/12/2015
Abstract
The National Institutes of Health Undiagnosed Diseases Program evaluates patients for whom no diagnosis has been discovered despite a comprehensive diagnostic workup. Failure to diagnose a condition may arise from the mutation of genes previously unassociated with disease. However, we hypothesized that this could also co-occur with multiple genetic disorders. Demonstrating a complex syndrome caused by multiple disorders, we report two siblings manifesting both similar and disparate signs and symptoms. They shared a history of episodes of hypoglycemia and lactic acidosis, but had differing exam findings and developmental courses. Clinical acumen and exome sequencing combined with biochemical and functional studies identified three genetic conditions. One sibling had Smith-Magenis Syndrome and a nonsense mutation in the RAI1 gene. The second sibling had a de novo mutation in GRIN2B, which resulted in markedly reduced glutamate potency of the encoded receptor. Both siblings had a protein-destabilizing homozygous mutation in PCK1, which encodes the cytosolic isoform of phosphoenolpyruvate carboxykinase (PEPCK-C). In summary, we present the first clinically-characterized mutation of PCK1 and demonstrate that complex medical disorders can represent the co-occurrence of multiple diseases.
Publication
Journal: Movement Disorders
June/5/2011
Abstract
To examine whether there is a differential genetic susceptibility in the diphasic and peak-dose forms of levodopa-induced dyskinesias (LID) in patients with Parkinson's disease (PD). The study cohort comprised 503 unrelated Korean PD patients who were treated with levodopa and had a disease duration of at least 5 years. The presence of LID was identified during a routine follow-up and special care was taken to separate the two distinct forms of LID into diphasic and peak-dose dyskinesias (PDSK). Genotyping was performed in the 503 patients and in 559 healthy controls to search for polymorphisms of DRD3 p.S9G, DRD2 Taq1A, GRIN2B c.2664C>T, c.366C>G, c.-200T>G, and the promoter region of SLC6A4. A total of 229 patients expressed LID (peak-dose in 205, diphasic in 57, and both in 33). The presence of diphasic dyskinesia (DDSK) was exclusively associated with the DRD3 p.S9G variant after adjusting for gender, age at PD onset, Hoehn & Yahr stage, and duration of levodopa treatment. Carrying the AA genotype was likely to shorten the onset of DDSK according to the duration of levodopa therapy (P = 0.02). The presence of PDSK was not significantly associated with any of the six genetic variants studied. There may be a genetic susceptibility in the development of DDSK in PD patients on chronic levodopa therapy, and its underlying pathophysiological mechanism might be distinct from that of PDSK.
load more...