Citations
All
Search in:AllTitleAbstractAuthor name
Publications
(77)
Patents
Grants
Pathways
Clinical trials
Publication
Journal: American Journal of Cancer Research
December/8/2020
Abstract
GOLM1, a type II transmembrane protein, is associated with tumor progression, metastasis and immunosuppression. However, the relationship between GOLM1 and the immunosuppressive molecule PD-L1 in HCC remains largely unclear. Here, we revealed that GOLM1 acts as a novel positive regulator of PD-L1, whose abnormal expression plays a crucial role in cancer immune evasion and progression. We found that GOLM1 is overexpressed and positively correlated with PD-L1 expression in HCC. Mechanistically, we found that GOLM1 promotes the phosphorylation of STAT3 by enhancing the level of EGFR, which in turn upregulates the transcriptional expression of PD-L1. Taken together, we demonstrated that GOLM1 acts as a positive regulator of PD-L1 expression via the EGFR/STAT3 signaling pathway in human HCC cells. This study provides a new insight into the regulatory mechanism of PD-L1 expression in HCC, which may provide a novel therapeutic target for HCC immunotherapy.
Keywords: EGFR; GOLM1; PD-L1; STAT3; hepatocellular carcinoma.
Publication
Journal: G3: Genes, Genomes, Genetics
January/9/2019
Abstract
Post-traumatic stress disorder is a concerning psychobehavioral disorder thought to emerge from the complex interaction between genetic and environmental factors. For soldiers exposed to combat, the risk of developing this disorder is twofold and diagnosis is often late, when much sequela has set in. To be able to identify and diagnose in advance those at "risk" of developing post-traumatic stress disorder, would greatly taper the gap between late sequelae and treatment. Therefore, this study sought to determine whether the transcriptome can be used to track the development of post-traumatic stress disorder in this unique and susceptible cohort of individuals. Gene expression levels in peripheral blood samples from 85 Canadian infantry soldiers (n = 58 participants negative for symptoms of post-traumatic stress disorder and n = 27 participants with symptoms of post-traumatic stress disorder) following return from deployment to Afghanistan were determined using RNA sequencing technology. Count-based gene expression quantification, normalization and differential analysis (with thorough correction for confounders) revealed genes associated to PTSD; LRP8 and GOLM1 These preliminary results provide a proof-of-principle for the diagnostic utility of blood-based gene expression profiles for tracking symptoms of post-traumatic stress disorder in soldiers returning from tour. It is also the first to report transcriptome-wide expression profiles alongside a post-traumatic symptom checklist.
Publication
Journal: Scientific Reports
November/15/2017
Abstract
Elevated Golgi phosphoprotein 2 (GP73, also known as GOLPH2 or GOLM1) expression in serum and liver, which can be induced by viral infection and cytokine treatments, is intimately connected with liver disease, including acute hepatitis, cirrhosis and hepatocellular carcinoma (HCC). However, its pathogenic roles in hepatic diseases have never been clarified in detail. Here, we showed that the upregulated GP73 is indispensable for SREBPs activation and lipogenesis. Notably, GP73 overexpression enhanced SCAP-SREBPs binding and its Golgi trafficking even under cholesterol sufficiency. Consistent with these functional findings, GP73 blockage could alleviate tunicamycin-induced liver steatosis by reducing SREBPs activation. A significant positive correlation of GP73 with genes in lipid metabolism pathway was also identified in liver cancer based on data from The Cancer Genome Atlas (TCGA) dataset. Our findings revealed previously unrecognized role of GP73 in lipid metabolism.
Publication
Journal: Genetics and Molecular Biology
April/27/2020
Abstract
We did a comparative analysis of the gene expression profiles of the hippocampus from sleep deprivation and Alzheimer's disease (AD) mice. Differentially expressed genes (DEGs) were identified by comparing the transcriptome profiles of the hippocampus of sleep deprivation or AD mouse models to matched controls. The common DEGs between sleep deprivation and AD were identified by the overlapping analysis, followed by Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses. The results showed that a total of 16 common DEGs showed similar change patterns in both sleep deprivation mice and AD mice. Sgk1, Ly6a, Atp6v0e, Hspb8, Htra1, Pdk4, Pfkfb3, Golm1, and Plin3 were up-regulated in the two disorders, whereas, Marcksl1, Fgd1, Scarb1, Mvd, Klhl13, Elovl2, and Vps29 were down-regulated. Acetyl-CoA metabolic process and lipid biosynthetic process were significantly enriched by those DEGs. The highly expressed DEGs and the two GO terms were associated with neuropathological changes according to the previous studies. As expected, sleep deprivation may contribute the AD development through these common DEGs.
Authors
Publication
Journal: Hepatic Oncology
July/10/2020
Abstract
Hepatocellular carcinoma (HCC) is one of the most common liver malignancies and is a leading cause of cancer-related deaths. Most HCC patients are diagnosed at an advanced stage and current treatments show poor therapeutic efficacy. It is particularly urgent to explore early diagnosis methods and effective treatments of HCC. There are a growing number of studies that show GOLM1 is one of the most promising markers for early diagnosis and prognosis of HCC. It is also involved in immune regulation, activation and degradation of intracellular signaling factors and promotion of epithelial-mesenchymal transition. GOLM1 can promote HCC progression and metastasis. The understanding of the GOLM1 regulation mechanism may provide new ideas for the diagnosis, monitoring and treatment of HCC.
Keywords: GOLM1; diagnosis; hepatocellular carcinoma; immune system; prognosis.
Publication
Journal: Anti-Cancer Drugs
December/2/2019
Abstract
Hepatocellular carcinoma (HCC) is a complicated and poor prognosis cancer, necessitating the development of a potential treatment strategy. In this study, we initially revealed that LukS-PV belonged to leukocidin family performs an anti-HCC action. Then, we used liquid chromatography-mass spectrometry (LC/MS) to compare protein expression profiles of the LukS-PV-treated human HCC cell lines HepG2 and the control cells. GO annotations and Kyoto Encyclopedia of Genes and Genomes pathway analysis were carried out of differential expression followed by protein-protein interactome, to explore the underlying cancer suppressor mechanisms of LukS-PV for human HCC. A total of 88 upregulated proteins and 46 downregulated proteins were identified. The top 10 proteins identified by the MCC method are FN1, APP, TIMP1, nucleobindin-1, GOLM1, APLP2, CYR61, CD63, ENG, and CD9. Our observation on protein expression indicated that LukS-PV produces a signature affecting central carbon metabolism in cancer, galactose metabolism, and fructose and mannose metabolism pathways. The results give a functional effects and molecular mechanism insight, following LukS-PV treatment.
Publication
Journal: Oncology Letters
January/22/2020
Abstract
Lung adenocarcinoma (LUAD) is a common malignancy; however, the majority of its underlying molecular mechanisms remain unknown. In the present study, weighted gene co-expression network analysis was applied to construct gene co-expression networks for the GSE19804 dataset, in order to screen hub genes associated with the pathogenesis of LUAD. In addition, with the aid of the Database for Annotation, Visualization and Integrated Discovery, Gene Ontology, and Kyoto Encyclopedia of Genes and Genomes, pathway enrichment analyses were performed on the genes in the selected module. Using the GSE40791 dataset and The Cancer Genome Atlas database, the hub genes were identified. It was discovered that the turquoise module was the most significant module associated with the tumor stage of LUAD. After performing functional enrichment analyses, it was indicated that the turquoise module was mainly enriched in signal transduction. Additionally, at the transcriptional and translational level, nine hub genes were identified and validated: Carbonic anhydrase 4 (CA4), platelet and endothelial cell adhesion molecule 1 (PECAM1), DnaJ member B4 (DNAJB4), advanced glycosylation end-product specific receptor (AGER), GTPase, IMAP family member 6 (GIMAP6), chromosome 10 open reading frame 54 (C10orf54), dedicator of cytokinesis 4 (DOCK4), Golgi membrane protein 1 (GOLM1) and platelet activating factor acetylhydrolase 1b catalytic subunit 3 (PAFAH1B3). CA4, PECAM1, DNAJB4, AGER, GIMAP6, C10orf54 and DOCK4 were expressed at lower levels in the tumor samples, whereas GOLM1 and PAFAH1B3 were highly expressed in tumor samples. In addition, all hub genes were associated with prognosis. In conclusion, one module and nine genes were recognized to be associated with the tumor stage of LUAD. These findings may enhance the understanding of the progression and prognosis of LUAD.
Publication
Journal: Signal Transduction and Targeted Therapy
April/13/2021
Abstract
Intestinal epithelium serves as the first barrier against the infections and injuries that mediate colonic inflammation. Colorectal cancer is often accompanied with chronic inflammation. Differed from its well-known oncogenic role in many malignancies, we present here that Golgi membrane protein 1 (GOLM1, also referred to as GP73) suppresses colorectal tumorigenesis via maintenance of intestinal epithelial barrier. GOLM1 deficiency in mice conferred susceptibility to mucosal inflammation and colitis-induced epithelial damage, which consequently promoted colon cancer. Mechanistically, depletion of GOLM1 in intestinal epithelial cells (IECs) led to aberrant Notch activation that interfered with IEC differentiation, maturation, and lineage commitment in mice. Pharmacological inhibition of Notch pathway alleviated epithelial lesions and restrained pro-tumorigenic inflammation in GOLM1-deficient mice. Therefore, GOLM1 maintains IEC homeostasis and protects against colitis and colon tumorigenesis by modulating the equilibrium of Notch signaling pathway.
Publication
Journal: Journal of Gene Medicine
April/5/2021
Abstract
Background: Long noncoding RNAs (lncRNAs) are vital regulators during the biological processes of melanoma. This study intends to uncover biological functions of lncRNA termed NR2F1 antisense RNA 1 (NR2F1-AS1) in melanoma and the potential mechanisms.
Methods: Relative levels of NR2F1-AS1 and miR-493-5p in a total of 137 paired primary melanoma tissues and corresponding non-tumor tissues, and three melanoma cell lines were examined by RT-PCR. The clinical significance of NR2F1-AS1 expression was statistically analyzed. The STAT3 binding motif in the promoter region of NR2F1-AS1 was identified by JASPAR. The association between STAT3 and NR2F1-AS1 was determined by dual-luciferase reporter assay and chromatin immunoprecipitation (ChIP) assays. The effects of NR2F1-AS1 on cell proliferation, migration and were measured by CCK-8 assays, Edu assays, transwell assays and wound healing assays. Dual-luciferase reporter assay and RNA pull-down assay were applied to validate the interaction among NR2F1-AS1, miR-493-5p and GOLM1. Besides, in vivo experiments were conducted to demonstrate the oncogenic role of NR2F1-AS1 in melanoma.
Results: Up-regulated NR2F1-AS1 and down-regulated miR-493-5p were detected in melanoma tumors and cells. The overexpression of NR2F1-AS1 was induced by STAT3. High NR2F1-AS1 expression was correlated to advanced tumor stage and poor prognosis of melanoma. Functional studies using CCK-8 assays, Edu assays, transwell assays and wound healing assays revealed that the proliferative, migratory and invasive capacities of melanoma cells were attenuated by the by inhibition of NR2F1-AS1. Moreover, NR2F1-AS1 was able to up-regulate GOLM1 through recognizing and binding miR-493-5p. Furthermore, knockdown of miR-493-5p distinctly reversed these inhibitory effects of NR2F1-AS1 down-regulation on the tumorigenesis and progression of melanoma.
Conclusion: Our findings demonstrate a key role for NR2F1-AS1 in melanoma progression via targeting miR-493-5p/GOLM1 axis.
Keywords: GOLM1; LncRNA NR2F1-AS1; Melanoma Biomarker; Metastasis; STAT3; miR-493-5p.
Publication
Journal: BMC Cancer
August/12/2020
Abstract
Background: Accumulating evidence has revealed the critical role of long non-coding RNAs (lncRNAs) in cellular processes during tumor progression. As documented in cancer-related literatures, LINC00992 expression is associated with cancer progression, whereas its function in tumors including prostate cancer has not been characterized yet.
Methods: Data from GEPIA database suggested LINC00992 expression in prostate cancer tissues. The expression levels of RNAs were monitored via qRT-PCR. Western blot evaluated the levels of proteins. The proliferation, apoptosis and migration of prostate cancer cells were assessed by CCK-8, EdU, TUNEL, Transwell and wound healing assays. Luciferase reporter, RNA pull down and RIP assays were applied to detect the interplays among LINC00992, miR-3935 and GOLM1.
Results: Elevated levels of LINC00992 and GOLM1 were detected in prostate cancer tissues and cells. LINC00992 exerted facilitating functions in prostate cancer cell proliferation and migration. Mechanically, LINC00992 interacted with and negatively regulated miR-3935 to elevate GOLM1 expression in prostate cancer cells. In addition, the in vitro suppressive effect of silenced LINC00992 on prostate cancer cell proliferation and migration was reversed by GOLM1 upregulation. Likewise, LINC00992 depletion restrained tumor growth in vivo was offset by enhanced GOLM1 expression.
Conclusions: LINC00992 competitively bound with miR-3935 to elevate GOLM1 expression and therefore facilitate the oncogenic phenotypes of prostate cancer cells, implying a potential LINC00992-targeted therapy for prostate cancer.
Keywords: GOLM1; INC00992; Prostate cancer; miR-3935.
Publication
Journal: Carcinogenesis
July/15/2019
Abstract
Prostate cancer (PCa) is the second most common cancer in men. The indolent course of the disease makes the treatment choice a challenge for physicians and patients. In this study, a minimally invasive method was used to evaluate the potential of molecular markers in identifying patients with aggressive disease. Cell-free plasma samples from 60 PCa patients collected before radical prostatectomy were used to evaluate the levels of expression of eight genes (AMACR, BCL2, NKX3-1, GOLM1, OR51E2, PCA3, SIM2, and TRPM8) by quantitative real-time PCR. Overexpression of AMACR, GOLM1, TRPM8, and NKX3-1 genes was significantly associated with aggressive disease characteristics, including extracapsular extension, tumor stage, and vesicular seminal invasion. A trio of genes (GOLM1, NKX3-1, and TRPM8) was able to identify high-risk PCa cases (85% of sensitivity and 58% of specificity), yielding a better overall performance compared with the biopsy Gleason score and PSA, routinely used in the clinical practice. Although more studies are required, these circulating markers have the potential to be used as an additional test to improve the diagnosis and treatment decision of high-risk PCa patients.
Publication
Journal: Journal of Bioenergetics and Biomembranes
February/3/2021
Abstract
Lung cancer is one of the deadliest malignant tumors with non-small cell lung cancer (NSCLC) being the most prevalent type. Patients with NSCLC usually were diagnosed at the advance clinical stages, and these patients often had high rate of tumor-recurrence, thus leading to poor prognosis. Yet, the molecular mechanisms underlying NSCLC progression and recurrence are largely unknown. This study aimed to identify potential hub genes associated with the pathophysiology of NSCLC by bioinformatics analysis and laboratory validation. The GSE51852, GSE52248 and GSE75037 datasets were downloaded from the Gene Expression Omnibus database. The overlapping differentially expressed genes (DEGs) were analyzed by GEO2R tool. Gene Ontology (GO) and KEGG pathway enrichment analysis were performed on these overlapping DEGs. The protein-protein interaction network was constructed to identify hub genes from DEGs. The expression and survival analysis of these hub genes were performed by using the integrated bioinformatics tools. Finally, the effects of GOLM1 on the proliferation and chemo-sensitivity of NSCLC cells were determined by in vitro functional assays. A total of 197 overlapping DEGs (37 up-regulated and 160 down-regulated) were identified from the microarray datasets. Furthermore, the PPI network with 89 nodes and 768 edges was constructed and 17 hub genes were identified from PPI network by using MCODE analysis. The survival analysis revealed that the expression of 5 hub genes (FGF2, GOLM1, GPC3, IL6 and SPP1) were significantly correlated with overall survival of patients with lung cancer. Furthermore, the in vitro functional studies showed that GOLM1 overexpression promoted the NSCLC cell proliferation and colony formation; while GOLM1 knockdown exerted the opposite effects. Importantly, GOLM1 overexpression reduced the chemo-sensitivity of cisplatin in NSCLC cells by attenuating the inhibitory effects of cisplatin on the cell proliferation and colony formation. In conclusion, the present study showed that 5 hub genes including FGF2, GOLM1, GPC3, IL6 and SPP1 were deregulated in NSCLC tissues and may predict the prognosis of patients with NSCLC. GOLM1 may play an important role in regulating the cell proliferation and chemo-sensitivity of cisplatin in NSCLC.
Keywords: Chemo‐resistance; DEGs; GOLM1; Hub genes; NSCLC; Proliferation.
Publication
Journal: Oncology Letters
October/3/2019
Abstract
Prostate cancer (PCa) is one of the most common malignant tumors worldwide. The aim of the present study was to determine potential diagnostic and prognostic biomarkers for PCa. The GSE103512 dataset was downloaded, and the differentially expressed genes (DEGs) were screened. Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) and protein-protein interaction (PPI) analyses of DEGs were performed. The result of GO analysis suggested that the DEGs were mostly enriched in 'carboxylic acid catabolic process', 'cell apoptosis', 'cell proliferation' and 'cell migration'. KEGG analysis results indicated that the DEGs were mostly concentrated in 'metabolic pathways', 'ECM-receptor interaction', the 'PI3K-Akt pathway' and 'focal adhesion'. The PPI analysis results showed that Golgi membrane protein 1 (GOLM1), melanoma inhibitory activity member 3 (MIA3), ATP citrate lyase (ACLY) and G protein subunit β2 (GNB2) were the key genes in PCa, and the Module analysis revealed that they were associated with 'ECM-receptor interaction', 'focal adhesion', the 'PI3K-Akt pathway' and the 'metabolic pathway'. Subsequently, the gene expression was confirmed using Gene Expression Profiling Interactive Analysis and the Human Protein Atlas. The results demonstrated that GOLM1 and ACLY expression was significantly upregulated (P<0.05) in PCa compared with that in normal tissues. Receiver operating characteristic and survival analyses were performed. The results showed that area under the curve values of these genes all exceeded 0.85, and high expression of these genes was associated with poor survival in patients with PCa. In conclusion, this study identified GOLM1 and ACLY in PCa, which may be potential diagnostic and prognostic biomarker of PCa.
Publication
Journal: Frontiers in Oncology
April/18/2021
Abstract
Long non-coding RNAs(lncRNAs) play an important role in cancer initiation and progression. However, hub lncRNAs involved in breast cancer still remain underexplored. In this study, integrated bioinformatics analysis was used to define LINC01977 as a key oncogenic driver in breast cancer. Subsequently, in vitro assays showed that LINC01977 could significantly promote breast cancer progression and chemoresistance to doxorubicin. To further investigate its biological mechanism, we performed dual-luciferase reporter assay, real-time PCR, RNA immunoprecipitation (RIP), and rescue assay. Our results indicated that LINC01977 may function as ceRNA to prevent GOLM1 gene from miRNA-mediated repression by sponging miR-212-3p. Overall, LINC01977 can serve as a novel prognostic indicator, and help develop more effective therapeutic approaches for breast cancer patients.
Keywords: GOLM1; bioinformatics; breast cancer; chemoresistance; long non-coding RNAs; miR-212-3p.
Publication
Journal: World Journal of Gastroenterology
May/18/2021
Abstract
Background: Previous studies have suggested that long non-coding RNAs (lncRNA) TP73-AS1 is significantly upregulated in several cancers. However, the biological role and clinical significance of TP73-AS1 in pancreatic cancer (PC) remain unclear.
Aim: To investigate the role of TP73-AS1 in the growth and metastasis of PC.
Methods: The expression of lncRNA TP73-AS1, miR-128-3p, and GOLM1 in PC tissues and cells was detected by quantitative real-time polymerase chain reaction. The bioinformatics prediction software ENCORI was used to predict the putative binding sites of miR-128-3p. The regulatory roles of TP73-AS1 and miR-128-3p in cell proliferation, migration, and invasion abilities were verified by Cell Counting Kit-8, wound-healing, and transwell assays, as well as flow cytometry and Western blot analysis. The interactions among TP73-AS1, miR-128-3p, and GOLM1 were explored by bioinformatics prediction, luciferase assay, and Western blot.
Results: The expression of TP73-AS1 and miRNA-128-3p was dysregulated in PC tissues and cells. High TP73-AS1 expression was correlated with a poor prognosis. TP73-AS1 silencing inhibited PC cell proliferation, migration, and invasion in vitro as well as suppressed tumor growth in vivo. Mechanistically, TP73-AS1 was validated to promote PC progression through GOLM1 upregulation by competitively binding to miR-128-3p.
Conclusion: Our results demonstrated that TP73-AS1 promotes PC progression by regulating the miR-128-3p/GOLM1 axis, which might provide a potential treatment strategy for patients with PC.
Keywords: GOLM1; Long non-coding RNA; Pancreatic cancer; TP73-AS1; miR-128-3p.
Publication
Journal: Molecular Medicine Reports
March/21/2019
Abstract
Hereditary spherocytosis (HS) is characterized by the morphological transformation of erythrocytes into a spherical shape due to a hereditary defect in cell membrane proteins (ghosts) associated with disruption of erythrocyte skeletal structures. Contrary to the literature, pores were detected in the erythrocytes of a patient with HS. The aim of the present study was to determine the affected proteins and genes that were responsible for the pores. Ghost isolation was performed to determine the proteins responsible for the pores observed on the erythrocytes of the patient. Erythrocyte membrane proteins were visualized using SDS‑PAGE. Exome and matrix‑assisted laser desorption/ionization time‑of‑flight mass spectrometry (MALDI TOF MS) analyses were used to identify the genes and proteins responsible for the observed defect. Quantitative protein assessments were performed using MALDI TOF MS. A difference was detected in the components of the erythrocyte membrane proteins. Band 3 and protein 4.2, which serve a particular role in membrane structure, decreased 4.573 and 4.106 fold, respectively. Through proteomic analyses, a non‑synonymous exonic mutation region was identified in the Golgi membrane protein 1 (GOLM1) gene (Chr9 rs142242230). Sorting Intolerant From Tolerant and Polymorphism Phenotyping Scores, Likelihood Ratio Tests and MutationTaster revealed that the mutation was deleterious. The pores observed in the morphology of the erythrocytes may have developed due to the decrease in these proteins, which reside in the erythrocyte membrane structure. Furthermore, genetic profiling of the patient with HS and her family was conducted in the present study. Next‑generation sequencing was used, and the genetic source of HS was identified as a GOLM1 gene mutation. The assessment of specific molecular defects is often not performed as the majority of mutations are unique to a family. However, molecular analyses should be performed in severe cases where prenatal diagnosis is required, or for unique HS phenotypes to aid scientific investigation.
Publication
Journal: Cancers
October/13/2020
Abstract
Extracellular vesicles (EVs) mediate critical intercellular communication within healthy tissues, but are also exploited by tumour cells to promote angiogenesis, metastasis, and host immunosuppression under hypoxic stress. We hypothesize that hypoxic tumours synthesize hypoxia-sensitive proteins for packing into EVs to modulate their microenvironment for cancer progression. In the current report, we employed a heavy isotope pulse/trace quantitative proteomic approach to study hypoxia sensitive proteins in tumour-derived EVs protein. The results revealed that hypoxia stimulated cells to synthesize EVs proteins involved in enhancing tumour cell proliferation (NRSN2, WISP2, SPRX1, LCK), metastasis (GOLM1, STC1, MGAT5B), stemness (STC1, TMEM59), angiogenesis (ANGPTL4), and suppressing host immunity (CD70). In addition, functional clustering analyses revealed that tumour hypoxia was strongly associated with rapid synthesis and EV loading of lysosome-related hydrolases and membrane-trafficking proteins to enhance EVs secretion. Moreover, lung cancer-derived EVs were also enriched in signalling molecules capable of inducing epithelial-mesenchymal transition in recipient cancer cells to promote their migration and invasion. Together, these data indicate that lung-cancer-derived EVs can act as paracrine/autocrine mediators of tumorigenesis and metastasis in hypoxic microenvironments. Tumour EVs may, therefore, offer novel opportunities for useful biomarkers discovery and therapeutic targeting of different cancer types and at different stages according to microenvironmental conditions.
Keywords: epithelial–mesenchymal transition; extracellular vesicles; hypoxia; pulsed-SILAC; quantitative proteomics; tumorigenesis; tumour microenvironment.
Publication
Journal: Cancer Discovery
October/3/2016
Publication
Journal: Cancer biomarkers : section A of Disease markers
October/23/2019
Abstract
Metastatic gastric carcinoma (GC) is a typically incurable disease. The progression of anti-metastatic treatment is hampered because the underlying mechanisms regulating the metastasis of GC cell are not well illuminated.Therefore, further elucidation of the molecular mechanism behind the metastatic traits of GC cells is needed for optimizing GC treatment.The levels of GOLM1 and MMP13 in GC cells and tissues were measured by using qPCR assay. The growth of GC cells in vitro was detected using MTS and colony formation assays. The migration and invasion of GC cells was analyzed using wound healing test and Transwell invasion assay. The level of MMP13 in GC cell was measured using immunoblotting and the level of GOLM1 was measured using immunofluorescence staining. The role of GOLM1 on the distant metastasis of GC SGC7910 cell was analyzed using experimental metastasis assay. Transplanted tumor model was constructed to analyze the influence of GOLM1 on GC cell growth in vivo.Here, we report that GOLM1 is over-expressed in GC and knockdown GOLM1 impairs the aggressive phenotypes of GC cell in vitro. Furthermore, downregulation of GOLM1 restrains the tumor growth of GC cell in nude mice. Nevertheless, upregulation of GOLM1 distinctly elevated the growth, migration ability and invasiveness of GC SGC7910 cell. Finally, GOLM1 increases the metastatic phenotypes of GC cell in a MMP13-dependent manner.Altogether, this investigation demonstrates the crucial function of GOLM1 in the progression of GC, which indicating GOLM1 as a potential target for GC treatment.
Authors
Publication
Journal: OncoTargets and Therapy
October/28/2020
Abstract
Purpose: Cervical cancer (CC) is the fourth most common cancer with high death rate in females. The study aims to detect the mechanism of long non-coding RNA (LncRNA) PCAT1 on radiosensitivity of CC.
Methods: The expression of PCAT1, miR-128 and GOLM1 in CC tissues and cells was measured by qRT-PCR. Different doses of X-ray were used for radiation treatment of CC cells and 6 Gy was chosen to perform the following experiments. The proliferation, migration and invasion of CC cells were measured by MTT assay, wound healing assay and transwell assay, respectively. The target relationships among PCAT1, miR-128 and GOLM1 were predicted by StarBase and TargetScan and verified by luciferase reporter assay. The protein level of GOLM1 was determined by Western blot. The xenograft tumor model was constructed in nude mice to verify the effect of PCAT1 on radiosensitivity of CC in vivo.
Results: The PCAT1 expression was upregulated in CC tissues and cells. PCAT1 silencing enhances radiosensitivity of CC cells on proliferation, migration and invasion. MiR-128 was the target of PCAT1 and was negatively regulated by PCAT1. Upregulation of miR-128 enhances radiosensitivity of CC cells on proliferation, migration and invasion. GOLM1 was a target of miR-128 and was negatively regulated by miR-128. Upregulation of GOLM1 and downregulation of miR-128 both reversed the enhanced effect of PCAT1 knockdown on radiosensitivity of CC cells, which partly promoted the proliferation, migration and invasion of CC cells.
Conclusion: Silencing of PCAT1 enhanced radiosensitivity of CC via targeting miR-128/GOLM1, which provided a new idea for treating CC.
Keywords: GOLM1; cervical cancer; lncPCAT1; miR-128; radiosensitivity.
Publication
Journal: Cancer Cell
September/19/2017
Abstract
Receptor tyrosine kinase (RTK) recycling is of critical importance for RTK signaling and cancer, yet the process is poorly understood. In this issue, Ye et al. identify GOLM1 as a cargo adaptor that drives hepatocellular carcinoma metastasis by promoting EGFR recycling and provide insights into how this process is regulated.
Publication
Journal: Frontiers in Oncology
December/23/2021
Abstract
Golgi phosphoprotein 73 (GP73, also termed as GOLM1 or GOLPH2) is a glycosylated protein residing on cis-Golgi cisternae and highly expressed in various types of cancer tissues. Since GP73 is a secretory protein and detectable in serum derived from cancer patients, it has been regarded as a novel serum biomarker for the diagnosis of different cancers, especially hepatocellular carcinoma (HCC). However, the functional roles of GP73 in cancer development are still poorly understood. In recent years, it has been discovered that GP73 acts as a multifunctional protein-facilitating cancer progression, and strikingly, it has been identified as a leading factor promoting epithelial-mesenchymal transition (EMT) of cancer cells and causing cancer metastasis. In this review, we have overviewed the latest findings of the functional roles of GP73 in elevating cancer progression, especially in facilitating EMT and cancer metastasis through modulating expression, transactivation, and trafficking of EMT-related proteins. In addition, unsolved research fields of GP73 have been lightened, which might be helpful to elucidate the regulatory mechanisms of GP73 on EMT and provide potential approaches in therapeutics against cancer metastasis.
Keywords: GP73; cancer biomarker; cancer metastasis; epithelial mesenchymal transition; protein trafficking.
Publication
Journal: Signal Transduction and Targeted Therapy
November/18/2021
Abstract
The immunosuppressive microenvironment plays an important role in tumor progression and immunotherapy responses. Golgi membrane protein 1 (GOLM1) is correlated to hepatocellular carcinoma (HCC) progression and metastasis. However, little is known about the role of GOLM1 in regulating the immunosuppressive environment and its impact on immunotherapeutic efficacy in HCC. In this study, GOLM1 was positively correlated with infiltrating tumor-associated macrophages (TAMs) expressed high levels of programmed death-ligand 1 (PD-L1) and CD8+ T cell suppression in HCC tissues. Both gain- and loss-of-function studies determined a close correlation between GOLM1 and immunosuppression. In the mechanism, GOLM1 promoted COP9 signalosome 5-mediated PD-L1 deubiquitination in HCC cells and increased the transport of PD-L1 into exosomes via suppression of Rab27b expression. Furthermore, co-culture with exosomes derived from HCC cells upregulated the expression of PD-L1 on macrophages. Zoledronic acid in combination with anti-PD-L1 therapy reduced PD-L1+ TAMs infiltration and alleviated CD8+ T cell suppression, resulting in tumor growth inhibition in the mouse HCC model. Together, our study unveils a mechanism by which GOLM1 induces CD8+ T cells suppression through promoting PD-L1 stabilization and transporting PD-L1 into TAMs with exosome dependent. Targeting PD-L1+ TAM could be a novel strategy to enhance the efficacy of anti-PD-L1 therapy in HCC.
Publication
Journal: Hepatology
December/29/2021
Abstract
Background and aims: The overall survival (OS) of hepatocellular carcinoma (HCC) remains dismal. Bioinformatic analysis of transcriptome data could identify patients with poor OS and may facilitate clinical decision. This study aimed to develop a prognostic gene model for HCC.
Methods: GSE14520 was retrieved as a training set to identify differential expressed genes (DEGs) between tumor and adjacent liver tissues in HCC patients with different OS. A DEG-based prognostic model was then constructed and the TCGA-LIHC and ICGC-LIRI datasets were used to validate the model. The area under the receiver operating characteristic curve (AUC) and hazard ratio (HR) of the model for OS were calculated. A model-based nomogram was established and verified.
Results: In the training set, differential expression analysis identified 80 genes dysregulated in oxidation-reduction and metabolism regulation. After univariate Cox and LASSO regression, eight genes (LPCAT1, DHRS1, SORBS2, ALDH5A1, SULT1C2, SPP1, HEY1 and GOLM1) were selected to build the prognostic model. The AUC for 1-, 3- and 5-year OS were 0.779, 0.736, 0.754 in training set and 0.693, 0.689, 0.693 in the TCGA-LIHC validation set, respectively. The AUC for 1- and 3-year OS were 0.767 and 0.705 in the ICGC-LIRI validation set. Multivariate analysis confirmed the model was an independent prognostic factor (training set: HR=4.422, p<0.001; TCGA-LIHC validation set: HR=2.561, p<0.001; ICGC-LIRI validation set: HR=3.931, p<0.001). Furthermore, a nomogram combining the model and AJCC stage was established and validated, showing increased OS predictive efficacy compared with the prognostic model (p=p<0.001).
Conclusions: Our eight-gene prognostic model and the related nomogram represent as reliable prognostic tools for OS prediction in HCC patients.
Keywords: Bioinformatic analysis; Hepatocellular carcinoma; Prognostic model.
load more...