Citations
All
Search in:AllTitleAbstractAuthor name
Publications
(2K+)
Patents
Grants
Pathways
Clinical trials
Publication
Journal: Cancer Research
February/22/2006
Abstract
GATA binding protein 3 (GATA3) is a transcriptional activator highly expressed by the luminal epithelial cells in the breast. Here we did a meta-analysis of the available breast cancer cDNA data sets on a cohort of 305 patients and found that GATA3 was one of the top genes with low expression in invasive carcinomas with poor clinical outcome. To validate its prognostic utility, we did a tissue microarray analysis on a cohort of 139 consecutive invasive carcinomas (n = 417 tissue samples) immunostained with a monoclonal antibody against GATA3. Low GATA3 expression was associated with higher histologic grade (P < 0.001), positive nodes (P = 0.002), larger tumor size (P = 0.03), negative estrogen receptor and progesterone receptor (P < 0.001 for both), and HER2-neu overexpression (P = 0.03). Patients whose tumors expressed low GATA3 had significantly shorter overall and disease-free survival when compared with those whose tumors had high GATA3 levels. The hazard ratio of metastasis or recurrence according to the GATA3 status was 0.31 (95% confidence interval, 0.13-0.74; P = 0.009). Cox multivariate analysis showed that GATA3 had independent prognostic significance above and beyond conventional variables. Our data suggest that immunohistochemical analysis of GATA3 may be the basis for a new clinically applicable test to predict tumor recurrence early in the progression of breast cancer.
Publication
Journal: Genome Research
June/10/2013
Abstract
Estrogen receptor (ESR1) drives growth in the majority of human breast cancers by binding to regulatory elements and inducing transcription events that promote tumor growth. Differences in enhancer occupancy by ESR1 contribute to the diverse expression profiles and clinical outcome observed in breast cancer patients. GATA3 is an ESR1-cooperating transcription factor mutated in breast tumors; however, its genomic properties are not fully defined. In order to investigate the composition of enhancers involved in estrogen-induced transcription and the potential role of GATA3, we performed extensive ChIP-sequencing in unstimulated breast cancer cells and following estrogen treatment. We find that GATA3 is pivotal in mediating enhancer accessibility at regulatory regions involved in ESR1-mediated transcription. GATA3 silencing resulted in a global redistribution of cofactors and active histone marks prior to estrogen stimulation. These global genomic changes altered the ESR1-binding profile that subsequently occurred following estrogen, with events exhibiting both loss and gain in binding affinity, implying a GATA3-mediated redistribution of ESR1 binding. The GATA3-mediated redistributed ESR1 profile correlated with changes in gene expression, suggestive of its functionality. Chromatin loops at the TFF locus involving ESR1-bound enhancers occurred independently of ESR1 when GATA3 was silenced, indicating that GATA3, when present on the chromatin, may serve as a licensing factor for estrogen-ESR1-mediated interactions between cis-regulatory elements. Together, these experiments suggest that GATA3 directly impacts ESR1 enhancer accessibility, and may potentially explain the contribution of mutant-GATA3 in the heterogeneity of ESR1+ breast cancer.
Publication
Journal: Genome Research
April/13/2005
Abstract
Multiple-sequence alignment analysis is a powerful approach for understanding phylogenetic relationships, annotating genes, and detecting functional regulatory elements. With a growing number of partly or fully sequenced vertebrate genomes, effective tools for performing multiple comparisons are required to accurately and efficiently assist biological discoveries. Here we introduce Mulan (http://mulan.dcode.org/), a novel method and a network server for comparing multiple draft and finished-quality sequences to identify functional elements conserved over evolutionary time. Mulan brings together several novel algorithms: the TBA multi-aligner program for rapid identification of local sequence conservation, and the multiTF program for detecting evolutionarily conserved transcription factor binding sites in multiple alignments. In addition, Mulan supports two-way communication with the GALA database; alignments of multiple species dynamically generated in GALA can be viewed in Mulan, and conserved transcription factor binding sites identified with Mulan/multiTF can be integrated and overlaid with extensive genome annotation data using GALA. Local multiple alignments computed by Mulan ensure reliable representation of short- and large-scale genomic rearrangements in distant organisms. Mulan allows for interactive modification of critical conservation parameters to differentially predict conserved regions in comparisons of both closely and distantly related species. We illustrate the uses and applications of the Mulan tool through multispecies comparisons of the GATA3 gene locus and the identification of elements that are conserved in a different way in avians than in other genomes, allowing speculation on the evolution of birds. Source code for the aligners and the aligner-evaluation software can be freely downloaded from http://www.bx.psu.edu/miller_lab/.
Publication
Journal: PLoS Genetics
December/18/2011
Abstract
Although significant variations in the metabolic profiles exist among different cells, little is understood in terms of genetic regulations of such cell type-specific metabolic phenotypes and nutrient requirements. While many cancer cells depend on exogenous glutamine for survival to justify the therapeutic targeting of glutamine metabolism, the mechanisms of glutamine dependence and likely response and resistance of such glutamine-targeting strategies among cancers are largely unknown. In this study, we have found a systematic variation in the glutamine dependence among breast tumor subtypes associated with mammary differentiation: basal- but not luminal-type breast cells are more glutamine-dependent and may be susceptible to glutamine-targeting therapeutics. Glutamine independence of luminal-type cells is associated mechanistically with lineage-specific expression of glutamine synthetase (GS). Luminal cells can also rescue basal cells in co-culture without glutamine, indicating a potential for glutamine symbiosis within breast ducts. The luminal-specific expression of GS is directly induced by GATA3 and represses glutaminase expression. Such distinct glutamine dependency and metabolic symbiosis is coupled with the acquisition of the GS and glutamine independence during the mammary differentiation program. Understanding the genetic circuitry governing distinct metabolic patterns is relevant to many symbiotic relationships among different cells and organisms. In addition, the ability of GS to predict patterns of glutamine metabolism and dependency among tumors is also crucial in the rational design and application of glutamine and other metabolic pathway targeted therapies.
Publication
Journal: Immunity
December/21/2011
Abstract
Follicular T helper (Tfh) cells provide critical help to B cells for germinal center (GC) formation. Mutations affecting SLAM-associated protein (SAP) prevent GC formation because of defective T cell-B cell interactions, yet effects on Tfh cell differentiation remain unclear. We describe the in vitro differentiation of functionally competent "Tfh-like" cells that expressed interleukin-21, Tfh cell markers, and Bcl6 and rescued GC formation in SAP-deficient hosts better than other T helper (Th) cells. SAP-deficient Tfh-like cells appeared virtually indistinguishable from wild-type, yet failed to support GCs in vivo. Interestingly, both Tfh-like and in vivo-derived Tfh cells could produce effector cytokines in response to polarizing conditions. Moreover, Th1, Th2, and Th17 cells could be reprogrammed to obtain Tfh cell characteristics. ChIP-Seq analyses revealed positive epigenetic markings on Tbx21, Gata3, and Rorc in Tfh-like and ex vivo Tfh cells and on Bcl6 in non-Tfh cells, supporting the concept of plasticity between Tfh and other Th cell populations.
Publication
Journal: Nature Reviews Immunology
April/2/2009
Abstract
Recent research has uncovered complex transcription factor networks that control the processes of T-cell development and differentiation. RUNX (runt-related transcription factor) proteins are among the many factors that have crucial roles in these networks. In this Review, we examine the mechanisms by which RUNX complexes act together with other transcription factors, such as Th-POK (T-helper-inducing POZ/Kruppel-like factor) and GATA-binding protein 3 (GATA3) in determining the CD4/CD8 lineage choice of developing thymocytes. In addition, we discuss evidence indicating that RUNX complexes are also involved in the differentiation of effector T-cell subsets and that the molecular mechanisms by which RUNX proteins regulate T-cell fate decisions are conserved between the thymus and periphery.
Publication
Journal: PLoS Biology
February/3/2008
Abstract
Transcription factors act in concert to induce lineage commitment towards Th1, Th2, or T regulatory (Treg) cells, and their counter-regulatory mechanisms were shown to be critical for polarization between Th1 and Th2 phenotypes. FOXP3 is an essential transcription factor for natural, thymus-derived (nTreg) and inducible Treg (iTreg) commitment; however, the mechanisms regulating its expression are as yet unknown. We describe a mechanism controlling iTreg polarization, which is overruled by the Th2 differentiation pathway. We demonstrated that interleukin 4 (IL-4) present at the time of T cell priming inhibits FOXP3. This inhibitory mechanism was also confirmed in Th2 cells and in T cells of transgenic mice overexpressing GATA-3 in T cells, which are shown to be deficient in transforming growth factor (TGF)-beta-mediated FOXP3 induction. This inhibition is mediated by direct binding of GATA3 to the FOXP3 promoter, which represses its transactivation process. Therefore, this study provides a new understanding of tolerance development, controlled by a type 2 immune response. IL-4 treatment in mice reduces iTreg cell frequency, highlighting that therapeutic approaches that target IL-4 or GATA3 might provide new preventive strategies facilitating tolerance induction particularly in Th2-mediated diseases, such as allergy.
Publication
Journal: Nature Genetics
June/28/2000
Abstract
Mouse embryos deficient in Gata3 die by 11 days post coitum (d.p.c.) from pathology of undetermined origin. We recently showed that Gata3-directed lacZ expression of a 625-kb Gata3 YAC transgene in mice mimics endogenous Gata3 expression, except in thymus and the sympathoadrenal system. As this transgene failed to overcome embryonic lethality (unpublished data and ref. 3) in Gata3-/- mice, we hypothesized that a neuroendocrine deficiency in the sympathetic nervous system (SNS) might cause embryonic lethality in these mutants. We find here that null mutation of Gata3 leads to reduced accumulation of Th (encoding tyrosine hydroxylase, Th) and Dbh (dopamine beta-hydroxylase, Dbh) mRNA, whereas several other SNS genes are unaffected. We show that Th and Dbh deficiencies lead to reduced noradrenaline in the SNS, and that noradrenaline deficiency is a proximal cause of death in mutants by feeding catechol intermediates to pregnant dams, thereby partially averting Gata3 mutation-induced lethality. These older, pharmacologically rescued mutants revealed abnormalities that previously could not be detected in untreated mutants. These late embryonic defects include renal hypoplasia and developmental defects in structures derived from cephalic neural crest cells. Thus we have shown that Gata3 has a role in the differentiation of multiple cell lineages during embryogenesis.
Publication
Journal: Oncogene
November/15/2004
Abstract
GATA3 is an essential transcription factor that was first identified as a regulator of immune cell function. In recent microarray analyses of human breast tumors, both normal breast luminal epithelium and estrogen receptor (ESR1)-positive tumors showed high expression of GATA3. We sequenced genomic DNA from 111 breast tumors and three breast-tumor-derived cell lines and identified somatic mutations of GATA3 in five tumors and the MCF-7 cell line. These mutations cluster in the vicinity of the highly conserved second zinc-finger that is required for DNA binding. In addition to these five, we identified using cDNA sequencing a unique mis-splicing variant that caused a frameshift mutation. One of the somatic mutations we identified was identical to a germline GATA3 mutation reported in two kindreds with HDR syndrome/OMIM #146255, which is an autosomal dominant syndrome caused by the haplo-insufficiency of GATA3. The ectopic expression of GATA3 in human 293T cells caused the induction of 73 genes including six cytokeratins, and inhibited cell line doubling times. These data suggest that GATA3 is involved in growth control and the maintenance of the differentiated state in epithelial cells, and that GATA3 variants may contribute to tumorigenesis in ESR1-positive breast tumors.
Publication
Journal: Cell Stem Cell
December/13/2009
Abstract
To examine transcription factor (TF) network(s), we created mouse ESC lines, in each of which 1 of 50 TFs tagged with a FLAG moiety is inserted into a ubiquitously controllable tetracycline-repressible locus. Of the 50 TFs, Cdx2 provoked the most extensive transcriptome perturbation in ESCs, followed by Esx1, Sox9, Tcf3, Klf4, and Gata3. ChIP-Seq revealed that CDX2 binds to promoters of upregulated target genes. By contrast, genes downregulated by CDX2 did not show CDX2 binding but were enriched with binding sites for POU5F1, SOX2, and NANOG. Genes with binding sites for these core TFs were also downregulated by the induction of at least 15 other TFs, suggesting a common initial step for ESC differentiation mediated by interference with the binding of core TFs to their target genes. These ESC lines provide a fundamental resource to study biological networks in ESCs and mice.
Publication
Journal: Nature Immunology
September/7/2009
Abstract
The differentiation of activated CD4(+) T cells into the T helper type 1 (T(H)1) or T(H)2 fate is regulated by cytokines and the transcription factors T-bet and GATA-3. Whereas interleukin 12 (IL-12) produced by antigen-presenting cells initiates the T(H)1 fate, signals that initiate the T(H)2 fate are not completely characterized. Here we show that early GATA-3 expression, required for T(H)2 differentiation, was induced by T cell factor 1 (TCF-1) and its cofactor beta-catenin, mainly from the proximal Gata3 promoter upstream of exon 1b. This activity was induced after T cell antigen receptor (TCR) stimulation and was independent of IL-4 receptor signaling through the transcription factor STAT6. Furthermore, TCF-1 blocked T(H)1 fate by negatively regulating interferon-gamma (IFN-gamma) expression independently of beta-catenin. Thus, TCF-1 initiates T(H)2 differentiation of activated CD4(+) T cells by promoting GATA-3 expression and suppressing IFN-gamma expression.
Publication
Journal: Genes and Cancer
November/9/2011
Abstract
It has been almost a quarter century since it was first appreciated that a class of oncogenes contained in rapidly transforming avian retroviruses encoded DNA-binding transcription factors. As with other oncogenes, genetic recombination with the viral genome led to their overexpression or functional alteration. In the years that followed, alterations of numerous transcription factors were shown to be causatively involved in various cancers in human patients and model organisms. Depending on their normal cellular functions, these factors were subsequently categorized as proto-oncogenes or tumor suppressor genes. This review focuses on the role of GATA transcription factors in carcinogenesis. GATA factors are zinc finger DNA binding proteins that control the development of diverse tissues by activating or repressing transcription. GATA factors thus coordinate cellular maturation with proliferation arrest and cell survival. Therefore, a role of this family of genes in human cancers is not surprising. Prominent examples include structural mutations in GATA1 that are found in almost all megakaryoblastic leukemias in patients with Down syndrome; loss of GATA3 expression in aggressive, dedifferentiated breast cancers; and silencing of GATA4 and GATA5 expression in colorectal and lung cancers. Here, we discuss possible mechanisms of carcinogenesis vis-à-vis the normal functions of GATA factors as they pertain to human patients and mouse models of cancer.
Pulse
Views:
2
Posts:
No posts
Rating:
Not rated
Publication
Journal: Journal of Cellular Physiology
November/22/2009
Abstract
There is increasing evidence that the numerous mechanisms that regulate cell differentiation during normal development are also involved in tumorigenesis. In breast cancer, differentiation markers expressed by the primary tumor are routinely profiled to guide clinical decisions. Indeed, numerous studies have shown that the differentiation profile correlates with the metastatic potential of tumors. The transcription factor GATA3 has emerged recently as a strong predictor of clinical outcome in human luminal breast cancer. In the mammary gland, GATA3 is required for luminal epithelial cell differentiation and commitment, and its expression is progressively lost during luminal breast cancer progression as cancer cells acquire a stem cell-like phenotype. Importantly, expression of GATA3 in GATA3-negative, undifferentiated breast carcinoma cells is sufficient to induce tumor differentiation and inhibits tumor dissemination in a mouse model. These findings demonstrate the exquisite ability of a differentiation factor to affect malignant properties, and raise the possibility that GATA3 or its downstream genes could be used in treating luminal breast cancer. This review highlights our recent understanding of GATA3 in both normal mammary development and tumor differentiation.
Publication
Journal: Nature Immunology
October/13/2008
Abstract
The transcription factors GATA-3 and ThPOK are required for intrathymic differentiation of CD4(+) T cells, but their precise functions in this process remain unclear. Here we show that, contrary to previous findings, Gata3 disruption blocked differentiation into the CD4(+) T cell lineage before commitment to the CD4(+) lineage and in some contexts permitted the 'redirection' of major histocompatibility complex class II-restricted thymocytes into the CD8(+) lineage. GATA-3 promoted ThPOK expression and bound to a region of the locus encoding ThPOK established as being critical for ThPOK expression. Finally, ThPOK promoted differentiation into the CD4(+) lineage in a way dependent on GATA-3 but inhibited differentiation into the CD8(+) lineage independently of GATA-3. We propose that GATA-3 acts as a specification factor for the CD4(+) lineage 'upstream' of the ThPOK-controlled CD4(+) commitment checkpoint.
Publication
Journal: Development (Cambridge)
May/24/2006
Abstract
The mammalian pro- and mesonephros are transient embryonic kidneys essential for urogenital system development. The nephric (Wolffian) duct, which is a central constituent of both structures, elongates caudally along a stereotypical path to reach the hindlimb level where it induces metanephros (adult kidney) formation, while the remaining duct gives rise to the male genital tract (epidydimis, vas deferens). The transcription factors Pax2 and Pax8 are essential for the initiation of pro- and mesonephros development. In a cDNA microarray screen for genes specifically expressed in the pro/mesonephros and regulated by Pax proteins, we identified Gata3, a transcription factor gene associated with hypoparathyroidism, deafness and renal anomaly (HDR) syndrome. Gata3 is already expressed in the pronephric anlage, together with Pax2 and Pax8, suggesting that it may be a direct Pax2/8 target gene. Inactivation of Gata3 by insertion of an Ires-GFP reporter gene resulted in a massive increase in nephric duct cellularity, which was accompanied by enhanced cell proliferation and aberrant elongation of the nephric duct. Interestingly, however, the nephrogenic cord extended, with delayed kinetics, along the entire caudal path up to the level of the hindlimb bud, indicating that extension of the nephric duct and cord is controlled by different guidance cues. At the molecular level, the nephric duct of Gata3(-/-) embryos is characterized by the loss of Ret expression and signaling, which may contribute to the guidance defect of the nephric duct. Together, these results define Gata3 as a key regulator of nephric duct morphogenesis and guidance in the pro/mesonephric kidney.
Publication
Journal: Journal of Clinical Investigation
June/20/2011
Abstract
Epithelial tumor cells transit to a mesenchymal state in response to extracellular cues, in a process known as epithelial-to-mesenchymal transition (EMT). The precise nature of these cues has not been fully defined, an important issue given that EMT is an early event in tumor metastasis. Here, we have found that a population of metastasis-prone mouse lung adenocarcinoma cells expresses Notch and Notch ligands and that the Notch ligand Jagged2 promotes metastasis. Mechanistically, Jagged2 was found to promote metastasis by increasing the expression of GATA-binding (Gata) factors, which suppressed expression of the microRNA-200 (miR-200) family of microRNAs that target the transcriptional repressors that drive EMT and thereby induced EMT. Reciprocally, miR-200 inhibited expression of Gata3, which reversed EMT and abrogated metastasis, suggesting that Gata3 and miR-200 are mutually inhibitory and have opposing effects on EMT and metastasis. Consistent with this, high levels of Gata3 expression correlated with EMT in primary tumors from 2 cohorts of lung adenocarcinoma patients. These findings reveal what we believe to be a novel Jagged2/miR-200-dependent pathway that mediates lung adenocarcinoma EMT and metastasis in mice and may have implications for the treatment of human epithelial tumors.
Publication
Journal: American Journal of Human Genetics
June/3/2013
Abstract
Analysis of 4,405 variants in 89,050 European subjects from 41 case-control studies identified three independent association signals for estrogen-receptor-positive tumors at 11q13. The strongest signal maps to a transcriptional enhancer element in which the G allele of the best candidate causative variant rs554219 increases risk of breast cancer, reduces both binding of ELK4 transcription factor and luciferase activity in reporter assays, and may be associated with low cyclin D1 protein levels in tumors. Another candidate variant, rs78540526, lies in the same enhancer element. Risk association signal 2, rs75915166, creates a GATA3 binding site within a silencer element. Chromatin conformation studies demonstrate that these enhancer and silencer elements interact with each other and with their likely target gene, CCND1.
Pulse
Views:
1
Posts:
No posts
Rating:
Not rated
Publication
Journal: Development (Cambridge)
June/16/2010
Abstract
FOXA1, estrogen receptor alpha (ERalpha) and GATA3 independently predict favorable outcome in breast cancer patients, and their expression correlates with a differentiated, luminal tumor subtype. As transcription factors, each functions in the morphogenesis of various organs, with ERalpha and GATA3 being established regulators of mammary gland development. Interdependency between these three factors in breast cancer and normal mammary development has been suggested, but the specific role for FOXA1 is not known. Herein, we report that Foxa1 deficiency causes a defect in hormone-induced mammary ductal invasion associated with a loss of terminal end bud formation and ERalpha expression. By contrast, Foxa1 null glands maintain GATA3 expression. Unlike ERalpha and GATA3 deficiency, Foxa1 null glands form milk-producing alveoli, indicating that the defect is restricted to expansion of the ductal epithelium, further emphasizing the novel role for FOXA1 in mammary morphogenesis. Using breast cancer cell lines, we also demonstrate that FOXA1 regulates ERalpha expression, but not GATA3. These data reveal that FOXA1 is necessary for hormonal responsiveness in the developing mammary gland and ERalpha-positive breast cancers, at least in part, through its control of ERalpha expression.
Publication
Journal: Nature Communications
June/19/2013
Abstract
Chemotherapy resistance frequently drives tumour progression. However, the underlying molecular mechanisms are poorly characterized. Epithelial-to-mesenchymal transition has been shown to correlate with therapy resistance, but the functional link and signalling pathways remain to be elucidated. Here we report that microRNA-30c, a human breast tumour prognostic marker, has a pivotal role in chemoresistance by a direct targeting of the actin-binding protein twinfilin 1, which promotes epithelial-to-mesenchymal transition. An interleukin-6 family member, interleukin-11 is identified as a secondary target of twinfilin 1 in the microRNA-30c signalling pathway. Expression of microRNA-30c inversely correlates with interleukin-11 expression in primary breast tumours and low interleukin-11 correlates with relapse-free survival in breast cancer patients. Our study demonstrates that microRNA-30c is transcriptionally regulated by GATA3 in breast tumours. Identification of a novel microRNA-mediated pathway that regulates chemoresistance in breast cancer will facilitate the development of novel therapeutic strategies.
Publication
Journal: Rheumatology
August/3/2006
Abstract
OBJECTIVE
To obtain a global view of the immunological alterations occurring in early systemic sclerosis (SSc) by transcriptional profiling of peripheral blood cells (PBCs).
METHODS
Oligonucleotide microarrays were used to compare PBC gene expression profiles in 18 SSc cases (<2 yr duration) and 18 controls matched for race, gender and ethnicity. SSc cases had no prior or current exposure to cytotoxic drugs. PAXgene tubes were used to stabilize RNA during phlebotomy. Changes in gene expression were independently validated by real-time polymerase chain reaction.
RESULTS
SSc PBCs demonstrated differential expression of 18 interferon-inducible genes. Six of these genes were identical to the interferon signature genes in lupus peripheral blood mononuclear cells. Notably, SSc PBCs also had increased expression of allograft inflammatory factor (AIF1) and several selectins and integrins involved in cellular adhesion to the endothelium. Global analysis of 284 known biological pathways revealed that 13 were differentially regulated in SSc PBCs, including two pathways (IL2RB and GATA3) that lead to T(H)2 polarization.
CONCLUSIONS
Transcriptional profiling reliably discriminates between PBCs from SSc and normal donors despite the fact that they represent a heterogeneous cell population. Multiple biological pathways were differentially regulated in SSc PBCs, but a common thread across these pathways was alterations in protein tyrosine kinase 2beta and mitogen-activated protein kinase signalling. Although the SSc PBC gene expression profile demonstrated some parallels with the lupus interferon gene signature, there was also increased expression of transcripts encoding proteins that target PBCs to the endothelium, which might be relevant to the vasculopathy of SSc.
Publication
Journal: Endocrine-Related Cancer
February/28/2007
Abstract
The estrogen receptor alpha (ERalpha) plays a critical role in the pathogenesis and clinical behavior of breast cancer. To obtain further insights into the molecular basis of estrogen-dependent forms of this malignancy, we used real-time quantitative reverse transcription (RT)-PCR to compare the mRNA expression of 560 selected genes in ERalpha-positive and ERalpha-negative breast tumors. Fifty-one (9.1%) of the 560 genes were significantly upregulated in ERalpha-positive breast tumors compared with ERalpha-negative breast tumors. In addition to well-known ERalpha-induced genes (PGR, TFF1/PS2, BCL2, ERBB4, CCND1, etc.) and genes recently identified by cDNA microarray-based approaches (GATA3, TFF3, MYB, STC2, HPN/HEPSIN, FOXA1, XBP1, SLC39A6/LIV-1, etc.), an appreciable number of novel genes were identified, many of, which were weakly expressed. This validates the use of large-scale real-time RT-PCR as a method complementary to cDNA microarrays for molecular tumor profiling. Most of the new genes identified here encoded secreted proteins (SEMA3B and CLU), growth factors (BDNF, FGF2 and EGF), growth factor receptors (IL6ST, PTPRT, RET, VEGFR1 and FGFR2) or metabolic enzymes (CYP2B6, CA12, ACADSB, NAT1, LRBA, SLC7A2 and SULT2B1). Importantly, we also identified a large number of genes encoding proteins with either pro-apoptotic (PUMA, NOXA and TATP73) or anti-apoptotic properties (BCL2, DNTP73 and TRAILR3). Surprisingly, only a small proportion of the 51 genes identified in breast tumor biopsy specimens were confirmed to be ERalpha-regulated and/or E2-regulated in vitro (cultured cell lines). Therefore, this study identified a limited number of genes and signaling pathways, which better delineate the role of ERalpha in breast cancer. Some of the genes identified here could be useful for diagnosis or for predicting endocrine responsiveness, and could form the basis for novel therapeutic strategies.
Publication
Journal: Immunity
July/30/2000
Abstract
By DNase I hypersensitivity analysis, we have identified an inducible, cyclosporin A-sensitive enhancer located 3' of the interleukin-4 (IL-4) gene. The enhancer binds the Th2-specific transcription factor GATA3 in vivo but is not perceptibly influenced by the absence of a second Th2-specific factor, cMaf. The antigen-inducible transcription factor NFAT1 binds the IL-4 enhancer and the IL-4 promoter only in stimulated Th2 cells; conversely, NFAT1 binds to the interferon (IFN)-gamma promoter only in stimulated Th1 cells. Our results support a model whereby transcription factors such as NFAT1, which are nonselectively induced in antigen-stimulated T cells, gain access to cytokine regulatory regions only in the appropriate subset of differentiated T cells in vivo. This restricted access enables antigen-dependent and subset-specific transcription of cytokine genes.
Publication
Journal: Blood
December/14/2010
Abstract
The clinical impact of FLT3-internal tandem duplications (ITDs), an adverse prognostic marker in adults aged < 60 years with primary cytogenetically normal acute myeloid leukemia (CN-AML), requires further investigation in older patients. In CN-AML patients aged ≥ 60 years treated on Cancer and Leukemia Group B frontline trials, we found that FLT3-ITD remained associated with shorter disease-free survival (P < .001; hazard ratio = 2.10) and overall survival (P < .001; hazard ratio = 1.97) in multivariable analyses. This impact on shorter disease-free survival and overall survival was in patients aged 60-69 (P < .001, each) rather than in those aged ≥ 70 years. An FLT3-ITD-associated gene-expression signature revealed overexpression of FLT3, homeobox genes (MEIS1, PBX3, HOXB3), and immunotherapeutic tar-gets (WT1, CD33) and underexpression of leukemia-associated (MLLT3, TAL1) and erythropoiesis-associated (GATA3, EPOR, ANK1, HEMGN) genes. An FLT3-ITD-associated microRNA-expression signature included overexpressed miR-155 and underexpressed miR-144 and miR-451. FLT3-ITD identifies older CN-AML patients with molecular high risk and is associated with gene- and microRNA-expression signatures that provide biologic insights for novel therapeutic approaches.
Publication
Journal: EMBO Molecular Medicine
June/5/2013
Abstract
In amyotrophic lateral sclerosis (ALS) mice, regulatory T-lymphocytes (Tregs) are neuroprotective, slowing disease progression. To address whether Tregs and FoxP3, a transcription factor required for Treg function, similarly influence progression rates of ALS patients, T-lymphocytes from patients were assessed by flow cytometry. Both numbers of Tregs and their FoxP3 protein expressions were reduced in rapidly progressing ALS patients and inversely correlated with progression rates. The mRNA levels of FoxP3, TGF-β, IL4 and Gata3, a Th2 transcription factor, were reduced in rapidly progressing patients and inversely correlated with progression rates. Both FoxP3 and Gata3 were accurate indicators of progression rates. No differences in IL10, Tbx21, a Th1 transcription factor or IFN-γ expression were found between slow and rapidly progressing patients. A 3.5-year prospective study with a second larger cohort revealed that early reduced FoxP3 levels were indicative of progression rates at collection and predictive of future rapid progression and attenuated survival. Collectively, these data suggest that Tregs and Th2 lymphocytes influence disease progression rates. Importantly, early reduced FoxP3 levels could be used to identify rapidly progressing patients.
load more...