Citations
All
Search in:AllTitleAbstractAuthor name
Publications
(3K+)
Patents
Grants
Pathways
Clinical trials
Publication
Journal: Nature Genetics
February/12/2013
Abstract
To further investigate susceptibility loci identified by genome-wide association studies, we genotyped 5,500 SNPs across 14 associated regions in 8,000 samples from a control group and 3 diseases: type 2 diabetes (T2D), coronary artery disease (CAD) and Graves' disease. We defined, using Bayes theorem, credible sets of SNPs that were 95% likely, based on posterior probability, to contain the causal disease-associated SNPs. In 3 of the 14 regions, TCF7L2 (T2D), CTLA4 (Graves' disease) and CDKN2A-CDKN2B (T2D), much of the posterior probability rested on a single SNP, and, in 4 other regions (CDKN2A-CDKN2B (CAD) and CDKAL1, FTO and HHEX (T2D)), the 95% sets were small, thereby excluding most SNPs as potentially causal. Very few SNPs in our credible sets had annotated functions, illustrating the limitations in understanding the mechanisms underlying susceptibility to common diseases. Our results also show the value of more detailed mapping to target sequences for functional studies.
Pulse
Views:
2
Posts:
No posts
Rating:
Not rated
Publication
Journal: Blood
October/10/2005
Abstract
Globally suppressed T-cell function has been described in many patients with cancer to be a major hurdle for the development of clinically efficient cancer immunotherapy. Inhibition of antitumor immune responses has been mainly linked to inhibitory factors present in cancer patients. More recently, increased frequencies of CD4+CD25hi regulatory T cells (Treg cells) have been described as an additional mechanism reducing immunity. We assessed 73 patients with B-cell chronic lymphocytic leukemia (CLL) and 42 healthy controls and demonstrated significantly increased frequencies of cytotoxic T lymphocyte-associated protein 4 (CTLA4+)-, Forkhead box P3 (FOXP3+)-, glucocorticoid-induced tumor necrosis factor receptor-related protein (GITR+)-, CD62L+-, transforming growth factor beta1 (TGF-beta1+)-, interleukin 10 (IL-10+)-Treg cells in patients with CLL, with highest frequencies in untreated or progressing patients presenting with extended disease. Most surprisingly, in the majority of patients with CLL treated with fludarabine-containing therapy regimens the inhibitory function of Treg cells was decreased or even abrogated. In addition, frequencies of Treg cells were significantly decreased after therapy with fludarabine. In light of similar findings for cyclophosphamide the combination of fludarabine and cyclophosphamide might be further exploited in strategies reducing immunosuppression prior to cancer immunotherapy.
Publication
Journal: Nature
August/5/2010
Abstract
Alopecia areata (AA) is among the most highly prevalent human autoimmune diseases, leading to disfiguring hair loss due to the collapse of immune privilege of the hair follicle and subsequent autoimmune attack. The genetic basis of AA is largely unknown. We undertook a genome-wide association study (GWAS) in a sample of 1,054 cases and 3,278 controls and identified 139 single nucleotide polymorphisms that are significantly associated with AA (P <or= 5 x 10(-7)). Here we show an association with genomic regions containing several genes controlling the activation and proliferation of regulatory T cells (T(reg) cells), cytotoxic T lymphocyte-associated antigen 4 (<em>CTLA4</em>), interleukin (IL)-2/IL-21, IL-2 receptor A (IL-2RA; CD25) and Eos (also known as Ikaros family zinc finger 4; IKZF4), as well as the human leukocyte antigen (HLA) region. We also find association evidence for regions containing genes expressed in the hair follicle itself (PRDX5 and STX17). A region of strong association resides within the ULBP (cytomegalovirus UL16-binding protein) gene cluster on chromosome 6q25.1, encoding activating ligands of the natural killer cell receptor NKG2D that have not previously been implicated in an autoimmune disease. By probing the role of ULBP3 in disease pathogenesis, we also show that its expression in lesional scalp from patients with AA is markedly upregulated in the hair follicle dermal sheath during active disease. This study provides evidence for the involvement of both innate and acquired immunity in the pathogenesis of AA. We have defined the genetic underpinnings of AA, placing it within the context of shared pathways among autoimmune diseases, and implicating a novel disease mechanism, the upregulation of ULBP ligands, in triggering autoimmunity.
Pulse
Views:
1
Posts:
No posts
Rating:
Not rated
Publication
Journal: Nature Reviews Cancer
October/7/2015
Abstract
Immunotherapy has now been clinically validated as an effective treatment for many cancers. There is tremendous potential for synergistic combinations of immunotherapy agents and for combining immunotherapy agents with conventional cancer treatments. Clinical trials combining blockade of cytotoxic T lymphocyte-associated antigen 4 (CTLA4) and programmed cell death protein 1 (PD1) may serve as a paradigm to guide future approaches to immuno-oncology combination therapy. In this Review, we discuss progress in the synergistic design of immune-targeting combination therapies and highlight the challenges involved in tailoring such strategies to provide maximal benefit to patients.
Publication
Journal: Cancer Discovery
November/2/2017
Abstract
Immune checkpoint blockade represents a major breakthrough in cancer therapy; however, responses are not universal. Genomic and immune features in pretreatment tumor biopsies have been reported to correlate with response in patients with melanoma and other cancers, but robust biomarkers have not been identified. We studied a cohort of patients with metastatic melanoma initially treated with cytotoxic T-lymphocyte-associated antigen-4 (CTLA4) blockade (n = 53) followed by programmed death-1 (PD-1) blockade at progression (n = 46), and analyzed immune signatures in longitudinal tissue samples collected at multiple time points during therapy. In this study, we demonstrate that adaptive immune signatures in tumor biopsy samples obtained early during the course of treatment are highly predictive of response to immune checkpoint blockade and also demonstrate differential effects on the tumor microenvironment induced by CTLA4 and PD-1 blockade. Importantly, potential mechanisms of therapeutic resistance to immune checkpoint blockade were also identified.
These studies demonstrate that adaptive immune signatures in early on-treatment tumor biopsies are predictive of response to checkpoint blockade and yield insight into mechanisms of therapeutic resistance. These concepts have far-reaching implications in this age of precision medicine and should be explored in immune checkpoint blockade treatment across cancer types. Cancer Discov; 6(8); 827-37. ©2016 AACR.See related commentary by Teng et al., p. 818This article is highlighted in the In This Issue feature, p. 803.
Publication
Journal: Journal of Immunology
July/29/2004
Abstract
Human monocyte-derived dendritic cells (DCs) are capable of expressing the tryptophan-degrading enzyme indoleamine 2,3-dioxygenase (IDO), which allows them to suppress Ag-driven proliferation of T cells in vitro. In DCs that express IDO, the activity of the enzyme is tightly regulated, with the protein being constitutively expressed, but functional activity requiring an additional set of triggering signals supplied during Ag presentation. We now show that triggering of functional IDO obligately requires ligation of B7-1/B7-2 molecules on the DCs by CTLA4/CD28 expressed on T cells. When this interaction was disrupted, IDO remained in the inactive state, and the DCs were unable to inhibit T cell proliferation. Inhibition could be fully restored by direct Ab-mediated cross-linking of B7-1/B7-2. Although both CD4(+) and CD8(+) T cells were susceptible to inhibition once IDO was induced, the ability to trigger functionally active IDO was strictly confined to the CD4(+) subset. Thus, the ability of CD4(+) T cells to induce IDO activity in DCs allowed the CD4(+) population to dominantly inhibit proliferation of the CD8(+) population via the bridge of a conditioned DC. We hypothesize that IDO activation via engagement of B7-1/B7-2 molecules on DCs, specifically, engagement by CTLA4 expressed on regulatory CD4(+) T cells, may function as a physiologic regulator of T cell responses in vivo.
Publication
Journal: Journal of Experimental Medicine
August/29/1994
Abstract
Antigen-specific T cell activation requires the engagement of the T cell receptor (TCR) with antigen as well as the engagement of appropriate costimulatory molecules. The most extensively characterized pathway of costimulation has been that involving the interaction of CD28 and CTLA4 on the T cell with B7 (now termed B7-1) on antigen presenting cells. Recently, B7-2 a second costimulatory ligand for CTLA4, was described, demonstrating the potential complexity of costimulatory interactions. This report examines and compares the expression and function of B7-1 and B7-2. Overall these results indicate that (a) B7-1 and B7-2 can be expressed by multiple cell types, including B cells, T cells, macrophages, and dendritic cells, all of which are therefore candidate populations for delivering costimulatory signals mediated by these molecules; (b) stimulating B cells with either LPS or anti-IgD-dextran induced expression of both B7-1 and B7-2, and peak expression of both costimulatory molecules occurred after 18-42 h of culture. Expression of B7-2 on these B cell populations was significantly higher than expression of B7-1 at all times assayed after stimulation; (c) blocking of B7-2 costimulatory activity inhibited TCR-dependent T cell proliferation and cytokine production, without affecting early consequences of TCR signaling such as induction of CD69 or interleukin 2 receptor alpha (IL-2R alpha); and (d) expression of B7-1 and of B7-2 can be regulated by a variety of stimuli. Moreover, expression of B7-1 and B7-2 can be independently regulated by the same stimulus, providing an additional complexity in the mechanisms available for regulating costimulation and hence immune response.
Publication
Journal: Journal of Immunology
October/30/2003
Abstract
In mice, immunoregulatory APCs express the dendritic cell (DC) marker CD11c, and one or more distinctive markers (CD8alpha, B220, DX5). In this study, we show that expression of the tryptophan-degrading enzyme indoleamine 2,3 dioxygenase (IDO) is selectively induced in specific splenic DC subsets when mice were exposed to the synthetic immunomodulatory reagent CTLA4-Ig. CTLA4-Ig did not induce IDO expression in macrophages or lymphoid cells. Induction of IDO completely blocked clonal expansion of T cells from TCR transgenic mice following adoptive transfer, whereas CTLA4-Ig treatment did not block T cell clonal expansion in IDO-deficient recipients. Thus, IDO expression is an inducible feature of specific subsets of DCs, and provides a potential mechanistic explanation for their T cell regulatory properties.
Publication
Journal: Nature Genetics
March/6/2016
Abstract
Adult T cell leukemia/lymphoma (ATL) is a peripheral T cell neoplasm of largely unknown genetic basis, associated with human T cell leukemia virus type-1 (HTLV-1) infection. Here we describe an integrated molecular study in which we performed whole-genome, exome, transcriptome and targeted resequencing, as well as array-based copy number and methylation analyses, in a total of 426 ATL cases. The identified alterations overlap significantly with the HTLV-1 Tax interactome and are highly enriched for T cell receptor-NF-κB signaling, T cell trafficking and other T cell-related pathways as well as immunosurveillance. Other notable features include a predominance of activating mutations (in PLCG1, PRKCB, CARD11, VAV1, IRF4, FYN, CCR4 and CCR7) and gene fusions (CTLA4-CD28 and ICOS-CD28). We also discovered frequent intragenic deletions involving IKZF2, CARD11 and TP73 and mutations in GATA3, HNRNPA2B1, GPR183, CSNK2A1, CSNK2B and CSNK1A1. Our findings not only provide unique insights into key molecules in T cell signaling but will also guide the development of new diagnostics and therapeutics in this intractable tumor.
Publication
Journal: Nature
December/9/2012
Abstract
The AP1 transcription factor Batf3 is required for homeostatic development of CD8α(+) classical dendritic cells that prime CD8 T-cell responses against intracellular pathogens. Here we identify an alternative, Batf3-independent pathway in mice for CD8α(+) dendritic cell development operating during infection with intracellular pathogens and mediated by the cytokines interleukin (IL)-12 and interferon-γ. This alternative pathway results from molecular compensation for Batf3 provided by the related AP1 factors Batf, which also functions in T and B cells, and Batf2 induced by cytokines in response to infection. Reciprocally, physiological compensation between Batf and Batf3 also occurs in T cells for expression of IL-10 and CTLA4. Compensation among BATF factors is based on the shared capacity of their leucine zipper domains to interact with non-AP1 factors such as IRF4 and IRF8 to mediate cooperative gene activation. Conceivably, manipulating this alternative pathway of dendritic cell development could be of value in augmenting immune responses to vaccines.
Publication
Journal: Current Opinion in Immunology
April/27/2006
Abstract
Cytotoxic T lymphocyte antigen-4 has become recognized as one of the key negative regulators of adaptive immune responses, having a central role in the maintenance of peripheral tolerance and in shaping the repertoire of emergent T cell responses. Concurrent recognition of the potential importance of inhibitory immune regulators in limiting antitumor responses, either as a result of chronic antigenic stimulation or the self-nature of many tumor-selective target antigens, has led to the development of cytotoxic T lymphocyte antigen-4-blocking antibodies as therapeutic anticancer agents. Following extensive preclinical modeling, these agents have entered clinical trials, where they are showing encouraging activity in heavily pretreated patients with advanced-stage disease, particularly with melanoma or renal carcinoma. Finding ways to dissociate antitumor activity from adverse immune events should enable actualization of their therapeutic potential in the coming years.
Publication
Journal: Leukemia
July/28/2014
Abstract
Blockade of immune checkpoints is emerging as a new form of anticancer therapy. We studied the expression of programmed death ligand 1 (PD-L1), PD-L2, programmed death 1 (PD-1) and cytotoxic T lymphocyte-associated antigen 4 (CTLA4) mRNA in CD34+ cells from myelodysplastic syndrome (MDS), chronic myelomonocytic leukemia (CMML) and acute myeloid leukemia (AML) patients (N=124). Aberrant upregulation (⩾2-fold) was observed in 34, 14, 15 and 8% of the patients. Increased expression of these four genes was also observed in peripheral blood mononuclear cells (PBMNCs) (N=61). The relative expression of PD-L1 from PBMNC was significantly higher in MDS (P=0.018) and CMML (P=0.0128) compared with AML. By immunohistochemical analysis, PD-L1 protein expression was observed in MDS CD34+ cells, whereas stroma/non-blast cellular compartment was positive for PD-1. In a cohort of patients treated with epigenetic therapy, PD-L1, PD-L2, PD-1 and CTLA4 expression was upregulated. Patients resistant to therapy had relative higher increments in gene expression compared with patients who achieved response. Treatment of leukemia cells with decitabine resulted in a dose-dependent upregulation of above genes. Exposure to decitabine resulted in partial demethylation of PD-1 in leukemia cell lines and human samples. This study suggests that PD-1 signaling may be involved in MDS pathogenesis and resistance mechanisms to hypomethylating agents. Blockade of this pathway can be a potential therapy in MDS and AML.
Publication
Journal: Journal of Experimental Medicine
February/21/1996
Abstract
Antigen presentation by host dendritic cells (DC) is critical for the initiation of adaptive immune responses. We have previously demonstrated in immunogenic murine tumor models that bone marrow (BM)-derived DC pulsed ex vivo with synthetic tumor-associated peptides, naturally expressed by tumor cells, serve as effective antitumor vaccines, protecting animals against an otherwise lethal tumor challenge (Mayordomo, J.I., T. Zorina, W.J. Storkus, C. Celluzzi, L.D. Falo, C.J. Melief, T. Ildstad, W.M. Kast, A.B. DeLeo, and M.T. Lotze. 1995. Nature Med. 1:1297-1302). However, T cell-defined epitopes have not been identified for most human cancers. To explore the utility of this approach in the treatment of tumors expressing as yet uncharacterized epitopes, syngeneic granulocyte/macrophage colony-stimulating factor-stimulated and BM-derived DC, pulsed with unfractionated acid-eluted tumor peptides (Storkus, W.J., H.J. Zeh III, R.D. Salter, and M.T. Lotze. 1993. J. Immunother. 14:94-103) were used to treat mice bearing spontaneous, established tumors. The adoptive transfer of 5 x 10(5) tumor peptide-pulsed DC dramatically suppressed the growth of weakly immunogenic tumors in day 4 to day 8 established MCA205 (H-2b) and TS/A (H-2d) tumor models, when applied in three biweekly intravenous injections. Using the immunogenic C3 (H-2b) tumor model in B6 mice, tumor peptide-pulsed DC therapy resulted in the erradication of established d14 tumors and long-term survival in 100% of treated animals. The DC-driven antitumor immune response was primarily cell mediated since the transfer of spleen cells, but not sera, from immunized mice efficiently protected sublethally irradiated naive mice against a subsequent tumor challenge. Furthermore, depletion of either CD4+ or CD8+ T cells from tumor-bearing mice before therapy totally suppressed the therapeutic efficacy of DC pulsed with tumor-derived peptides. Costimulation of the host cell-mediated antitumor immunity was critical since inoculation of the chimeric fusion protein CTLA4-Ig virtually abrogated the therapeutic effects of peptide-pulsed DC in vivo. The analysis of the cytokine pattern in the draining lymph nodes and spleens of tumor-bearing mice immunized with DC pulsed with tumor-eluted peptides revealed a marked upregulation of interleukin (IL) 4 and interferon (IFN) gamma production, as compared with mice immunized with DC alone or DC pulsed with irrelevant peptides. DC-induced antitumor effects were completely blocked by coadministration of neutralizing monoclonal antibody directed against T helper cell 1-associated cytokines (such as IL-12, tumor necrosis factor alpha, IFN-gamma), and eventually, but not initially, blocked by anti-mIL-4 mAb. Based on these results, we believe that DC pulsed with acid-eluted peptides derived from autologous tumors represents a novel approach to the treatment of established, weakly immunogenic tumors, and serves as a basis for designing clinical trials in cancer patients.
Publication
Journal: Journal of Clinical Oncology
January/11/2006
Abstract
OBJECTIVE
Cytotoxic T lymphocyte-associated antigen 4 (CTLA4) blockade with CP-675,206, a fully human anti-CTLA4 monoclonal antibody, may break peripheral immunologic tolerance leading to effective immune responses to cancer in humans. A phase I trial was conducted to test the safety of CP-675,206.
METHODS
Thirty-nine patients with solid malignancies (melanoma, n = 34; renal cell, n = 4; colon, n = 1) received an intravenous (IV) infusion of CP-675,206 at seven dose levels. The primary objective was to determine the maximum-tolerated dose and the recommended phase II dose.
RESULTS
Dose-limiting toxicities and autoimmune phenomena included diarrhea, dermatitis, vitiligo, panhypopituitarism and hyperthyroidism. Two patients experienced complete responses (maintained for 34+ and 25+ months), and there were two partial responses (26+ and 25+ months) among 29 patients with measurable melanoma. There have been no relapses thus far after objective response to therapy. Four other patients had stable disease at end of study evaluation (16, 7, 7, and 4 months). Additionally, five patients had extended periods without disease progression (36+, 35+, 26+, 24+, and 23+ months) after local treatment of progressive metastases. Longer systemic exposure to CP-675,206 achieved in higher dose cohorts predicted for a higher probability of response.
CONCLUSIONS
CP-675,206 can be administered safely to humans as a single IV dose up to 15 mg/kg, resulting in breaking of peripheral immune tolerance to self-tissues and antitumor activity in melanoma.
Publication
Journal: PLoS ONE
September/29/2010
Abstract
BACKGROUND
Wharton's jelly derived stem cells (WJMSCs) are gaining attention as a possible clinical alternative to bone marrow derived mesenchymal stem cells (BMMSCs) owing to better accessibility, higher expansion potential and low immunogenicity. Usage of allogenic mesenchymal stem cells (MSC) could be permissible in vivo only if they retain their immune properties in an inflammatory setting. Thus the focus of this study is to understand and compare the immune properties of BMMSCs and WJMSCs primed with key pro-inflammatory cytokines, Interferon-gamma (IFNgamma) and Tumor Necrosis Factor-alpha (TNFalpha).
RESULTS
Initially the effect of priming on MSC mediated suppression of alloantigen and mitogen induced lymphoproliferation was evaluated in vitro. Treatment with IFNgamma or TNFalpha, did not ablate the immune-suppression caused by both the MSCs. Extent of immune-suppression was more with WJMSCs than BMMSCs in both the cases. Surprisingly, priming BMMSCs enhanced suppression of mitogen driven lymphoproliferation only; whereas IFNgamma primed WJMSCs were better suppressors of MLRs. Further, kinetic analysis of cytokine profiles in co-cultures of primed/unprimed MSCs and Phytohematoagglutinin (PHA) activated lymphocytes was evaluated. Results indicated a decrease in levels of pro-inflammatory cytokines. Interestingly, a change in kinetics and thresholds of Interleukin-2 (IL-2) secretion was observed only with BMMSCs. Analysis of activation markers on PHA-stimulated lymphocytes indicated different expression patterns in co-cultures of primed/unprimed WJMSCs and BMMSCs. Strikingly, co-culture with WJMSCs resulted in an early activation of a negative co-stimulatory molecule, CTLA4, which was not evident with BMMSCs. A screen for immune suppressive factors in primed/unprimed WJMSCs and BMMSCs indicated inherent differences in IFNgamma inducible Indoleamine 2, 3-dioxygenase (IDO) activity, Hepatocyte growth factor (HGF) and Prostaglandin E-2 (PGE2) levels which could possibly influence the mechanism of immune-modulation.
CONCLUSIONS
This study demonstrates that inflammation affects the immune properties of MSCs distinctly. Importantly different tissue derived MSCs could utilize unique mechanisms of immune-modulation.
Publication
Journal: Cell
May/8/2017
Abstract
Therapeutic blocking of the PD1 pathway results in significant tumor responses, but resistance is common. We demonstrate that prolonged interferon signaling orchestrates PDL1-dependent and PDL1-independent resistance to immune checkpoint blockade (ICB) and to combinations such as radiation plus anti-CTLA4. Persistent type II interferon signaling allows tumors to acquire STAT1-related epigenomic changes and augments expression of interferon-stimulated genes and ligands for multiple T cell inhibitory receptors. Both type I and II interferons maintain this resistance program. Crippling the program genetically or pharmacologically interferes with multiple inhibitory pathways and expands distinct T cell populations with improved function despite expressing markers of severe exhaustion. Consequently, tumors resistant to multi-agent ICB are rendered responsive to ICB monotherapy. Finally, we observe that biomarkers for interferon-driven resistance associate with clinical progression after anti-PD1 therapy. Thus, the duration of tumor interferon signaling augments adaptive resistance and inhibition of the interferon response bypasses requirements for combinatorial ICB therapies.
Publication
Journal: The Lancet
March/10/2014
Abstract
In the past decade, major advances have been made in the understanding of melanoma. New predisposition genes have been reported and key somatic events, such as BRAF mutation, directly translated into therapeutic management. Surgery for localised melanoma and regional lymph node metastases is the standard of care. Sentinel-node biopsy provides precise staging, but has not been reported to affect survival. The effect of lymph-node dissection on survival is a topic of investigation. Two distinct approaches have emerged to try to extend survival in patients with metastatic melanoma: immunomodulation with anti-CTLA4 monoclonal antibodies, and targeted therapy with BRAF inhibitors or MEK inhibitors for BRAF-mutated melanoma. The combination of BRAF inhibitors and MEK inhibitors might improve progression-free survival further and, possibly, increase overall survival. Response patterns differ substantially-anti-CTLA4 immunotherapy can induce long-term responses, but only in a few patients, whereas targeted drugs induce responses in most patients, but nearly all of them relapse because of pre-existing or acquired resistance. Thus, the long-term prognosis of metastatic melanoma remains poor. Anti-PD1 and anti-PDL1 antibodies have emerged as breakthrough drugs for melanoma that have high response rates and long durability. Biomarkers that have predictive value remain elusive in melanoma, although emerging data for adjuvant therapy indicate that interferon sensitivity is associated with ulceration of the primary melanoma. Intense investigation continues for clinical and biological markers that predict clinical benefit of immunotherapeutic drugs, such as interferon alfa or anti-CTLA4 antibodies, and the mechanisms that lead to resistance of targeted drugs.
Publication
Journal: Haematologica
September/19/2007
Abstract
OBJECTIVE
Mesenchymal stem cells (MSC) have been proposed as a way to treat graft-versus-host disease based of their immunosuppressive effect. We analyzed whether regulatory T cells can be generated in co-cultures of peripheral blood mononuclear cells (PBMC) and MSC.
METHODS
MSC were obtained from the bone marrow of four healthy donors and nine patients with acute leukemia in complete remission following chemotherapy. Short-term (4 days) co-cultures of MSC and autologous or allogeneic PBMC were set up, the lymphocytes harvested and their regulatory activity assessed.
RESULTS
Lymphocytes harvested from MSC-PBMC co-cultures strongly inhibit (up to 95%) mixed lymphocyte reaction (MLR), recall to alloantigen, and CD3- or PHA-induced lymphocyte proliferation. These lymphocytes, termed regulatory cells (Regc), were all CD45+CD2+ with variable proportions of CD25+ cells (range 40-75% n=10) and a minor fraction expressed CTLA4 (2-4%, n=10) or glucocorticoid-induced tumor necrosis factcor receptor-related gene (0.5-4% n=10). Both CD4+ and CD8+ Regc purified from MSC-PBMC co-cultures strongly inhibited lymphocyte proliferation at a 1:100 Regc:responder cell ratio. CD4+ Regc expressed high levels of forkhead box P3 (Foxp3) mRNA while CD8+ Regc did not. The effectiveness of Regc, whether CD4+ or CD8+, was 100-fold higher than that of CD4+CD25+high regulatory T cells. Regc were also generated from highly purified CD25- PBMC or CD4+ or CD8+ T cell subsets. Soluble factors, such as interleukin-10, transforming growth factor-b and prostaglandin E2 did not appear to be involved in the generation of Regc or in the Regc-mediated immunosuppressive effect. Furthermore, cyclosporin A did not affect Regc generation or the immunosuppression induced by Regc.
CONCLUSIONS
These findings indicate that powerful regulatory CD4+ or CD8+ lymphocytes are generated in co-cultures of PBMC with MSC. This strongly suggests that these regulatory cells may amplify the reported MSC-mediated immunosuppressive effect.
Publication
Journal: Blood
September/19/2007
Abstract
Gene replacement therapy is complicated by the risk of an immune response against the therapeutic transgene product, which in part is determined by the route of vector administration. Our previous studies demonstrated induction of immune tolerance to coagulation factor IX (FIX) by hepatic adeno-associated viral (AAV) gene transfer. Using a regulatory T-cell (T(reg))-deficient model (Rag-2(-/-) mice transgenic for ovalbumin-specific T-cell receptor DO11.10), we provide first definitive evidence for induction of transgene product-specific CD4(+)CD25(+) T(regs) by in vivo gene transfer. Hepatic gene transfer-induced T(regs) express FoxP3, GITR, and CTLA4, and suppress CD4(+)CD25(-) T cells. T(regs) are detected as early as 2 weeks after gene transfer, and increase in frequency in thymus and secondary lymphoid organs during the following 2 months. Similarly, adoptive lymphocyte transfers from mice tolerized to human FIX by hepatic AAV gene transfer indicate induction of CD4(+)CD25(+)GITR(+) that suppresses antibody formation to FIX. Moreover, in vivo depletion of CD4(+)CD25(+) T(regs) leads to antibody formation to the FIX transgene product after hepatic gene transfer, which strongly suggests that these regulatory cells are required for tolerance induction. Our study reveals a crucial role of CD4(+)CD25(+) T(regs) in preventing immune responses to the transgene product in gene transfer.
Publication
Journal: Journal of Clinical Investigation
December/11/2005
Abstract
Modified anti-CD3 mAbs are emerging as a possible means of inducing immunologic tolerance in settings including transplantation and autoimmunity such as in type 1 diabetes. In a trial of a modified anti-CD3 mAb [hOKT3gamma1(Ala-Ala)] in patients with type 1 diabetes, we identified clinical responders by an increase in the number of peripheral blood CD8+ cells following treatment with the mAb. Here we show that the anti-CD3 mAb caused activation of CD8+ T cells that was similar in vitro and in vivo and induced regulatory CD8+CD25+ T cells. These cells inhibited the responses of CD4+ cells to the mAb itself and to antigen. The regulatory CD8+CD25+ cells were CTLA4 and Foxp3 and required contact for inhibition. Foxp3 was also induced on CD8+ T cells in patients during mAb treatment, which suggests a potential mechanism of the anti-CD3 mAb immune modulatory effects involving induction of a subset of regulatory CD8+ T cells.
Publication
Journal: PLoS Genetics
December/8/2011
Abstract
The genetic basis of autoantibody production is largely unknown outside of associations located in the major histocompatibility complex (MHC) human leukocyte antigen (HLA) region. The aim of this study is the discovery of new genetic associations with autoantibody positivity using genome-wide association scan single nucleotide polymorphism (SNP) data in type 1 diabetes (T1D) patients with autoantibody measurements. We measured two anti-islet autoantibodies, glutamate decarboxylase (GADA, n = 2,506), insulinoma-associated antigen 2 (IA-2A, n = 2,498), antibodies to the autoimmune thyroid (Graves') disease (AITD) autoantigen thyroid peroxidase (TPOA, n = 8,300), and antibodies against gastric parietal cells (PCA, n = 4,328) that are associated with autoimmune gastritis. Two loci passed a stringent genome-wide significance level (p<10(-10)): 1q23/FCRL3 with IA-2A and 9q34/ABO with PCA. Eleven of 52 non-MHC T1D loci showed evidence of association with at least one autoantibody at a false discovery rate of 16%: 16p11/IL27-IA-2A, 2q24/IFIH1-IA-2A and PCA, 2q32/STAT4-TPOA, 10p15/IL2RA-GADA, 6q15/BACH2-TPOA, 21q22/UBASH3A-TPOA, 1p13/PTPN22-TPOA, 2q33/CTLA4-TPOA, 4q27/IL2/TPOA, 15q14/RASGRP1/TPOA, and 12q24/SH2B3-GADA and TPOA. Analysis of the TPOA-associated loci in 2,477 cases with Graves' disease identified two new AITD loci (BACH2 and UBASH3A).
Publication
Journal: Science Translational Medicine
December/20/2015
Abstract
Combining immunotherapy and BRAF targeted therapy may result in improved antitumor activity with the high response rates of targeted therapy and the durability of responses with immunotherapy. However, the first clinical trial testing the combination of the BRAF inhibitor vemurafenib and the CTLA4 antibody ipilimumab was terminated early because of substantial liver toxicities. MEK [MAPK (mitogen-activated protein kinase) kinase] inhibitors can potentiate the MAPK inhibition in BRAF mutant cells while potentially alleviating the unwanted paradoxical MAPK activation in BRAF wild-type cells that lead to side effects when using BRAF inhibitors alone. However, there is the concern of MEK inhibitors being detrimental to T cell functionality. Using a mouse model of syngeneic BRAF(V600E)-driven melanoma, SM1, we tested whether addition of the MEK inhibitor trametinib would enhance the antitumor activity of combined immunotherapy with the BRAF inhibitor dabrafenib. Combination of dabrafenib and trametinib with pmel-1 adoptive cell transfer (ACT) showed complete tumor regression, increased T cell infiltration into tumors, and improved in vivo cytotoxicity. Single-agent dabrafenib increased tumor-associated macrophages and T regulatory cells (Tregs) in tumors, which decreased with the addition of trametinib. The triple combination therapy resulted in increased melanosomal antigen and major histocompatibility complex (MHC) expression and global immune-related gene up-regulation. Given the up-regulation of PD-L1 seen with dabrafenib and/or trametinib combined with antigen-specific ACT, we tested the combination of dabrafenib, trametinib, and anti-PD1 therapy in SM1 tumors, and observed superior antitumor effect. Our findings support the testing of triple combination therapy of BRAF and MEK inhibitors with immunotherapy in patients with BRAF(V600E) mutant metastatic melanoma.
Publication
Journal: International Immunology
February/21/2005
Abstract
Murine dendritic cells (DCs) expressing indoleamine 2,3 dioxygenase (IDO) catabolize tryptophan and can suppress T cell responses elicited in vivo. Here, we identify specific subsets of splenic (CD11c+) dendritic cells competent to mediate IDO-dependent T cell suppression following CTLA4-mediated ligation of B7 molecules. IDO-competent DC subsets acquired potent and dominant T cell suppressive properties as a consequence of IDO up-regulation, as they blocked the ability of T cells to respond to other stimulatory DCs in the same cultures. Soluble CTLA4 (CTLA4-Ig) and cloned CTLA4+ regulatory T cells (Tr1D1) up-regulated IDO selectively in DC subsets co-expressing B220 or CD8alpha. The ability of Tr1D1 T cells to suppress CD8+ T cell responses was completely dependent on their ability to induce tryptophan catabolism in DCs. Selective IDO up-regulation in DCs did not inhibit T cell activation, but prevented T cell clonal expansion due to rapid death of activated T cells. T cell responses were restored by genetic or pharmacologic inhibition of IDO enzyme activity, or by adding excess tryptophan. DCs from interferon gamma (IFNgamma)-receptor-deficient mice were effective in promoting IDO-dependent T cell suppression following CTLA4-Ig exposure in vivo, indicating that IFNgamma signaling was not necessary for IDO up-regulation in this model. These findings suggest that IDO-competent DCs provide a regulatory bridge, mediated by CTLA4-B7 engagement, between certain regulatory T cell subsets and naive responder T cells.
Publication
Journal: Cancer Research
February/19/2009
Abstract
CTL-associated antigen 4 (CTLA4) is a costimulatory molecule expressed on activated T cells that delivers an inhibitory signal to these T cells. CTLA4 blockade with antibody treatment has been shown to augment antitumor immunity in animal models and is being developed as a treatment for cancer patients. As has been seen in preclinical models, combining CTLA4 blockade and granulocyte macrophage colony-stimulating factor (GM-CSF)-based immunotherapies can enhance the antitumor efficacy of this approach. We therefore examined whether CTLA4 blockade could be combined with GM-CSF administration. We treated 24 patients with metastatic, castration-resistant prostate cancer in a phase I trial where sequential cohorts were treated with increasing doses of ipilimumab, a fully human anti-CTLA4 antibody. Study subjects also received s.c. injections of GM-CSF at a fixed dose. Of the six patients treated at the highest dose level, three had confirmed PSA declines of >50%, including one patient that had a partial response in visceral metastases. Expansion of activated, circulating CD25(+) CD69(+) CD8(+) T cells occurred more frequently at higher doses of treatment and was greater in magnitude than was seen in patients who received the same doses of either ipilimumab or GM-CSF alone. By screening sera with protein arrays, we showed that our treatment can induce antibody responses to NY-ESO-1. These results show that this combination immunotherapy can induce the expansion not only of activated effector CD8 T cells in vivo but also of T cells that are specific for known tumor-associated antigens from the endogenous immune repertoire.
load more...