Citations
All
Search in:AllTitleAbstractAuthor name
Publications
(1K+)
Patents
Grants
Pathways
Clinical trials
Publication
Journal: Journal of Immunology
September/13/2000
Abstract
Apoptotic lymphocytes are readily identified in murine lungs, both during the response to particulate Ag and in normal mice. Because apoptotic lymphocytes are seldom detected in other organs, we hypothesized that alveolar macrophages (AMphi) clear apoptotic lymphocytes poorly. To test this hypothesis, we compared in vitro phagocytosis of apoptotic thymocytes by resident AMphi and peritoneal macrophages (PMphi) from normal C57BL/6 mice. AMphi were deficient relative to PMphi both in percentage containing apoptotic thymocytes (19.1 +/- 1% vs 96 +/- 2.6% positive) and in phagocytic index (0.23 +/- 0.02 vs 4.2 +/- 0.67). This deficiency was not due to kinetic differences, was seen with six other inbred mouse strains, and was not observed using carboxylate-modified polystyrene microbeads. Annexin V blockade indicated that both Mphi types cleared apoptotic T cells by a mechanism involving phosphatidylserine expression. By contrast, neither mAb blockade of a variety of receptors (CD11b, CD29, CD51, and CD61) known to be involved in clearance of apoptotic cells, nor the tetrapeptide RGDS (arginine-glycine-aspartic acid-serine) blocked ingestion by either type of macrophage. To confirm these studies, apoptotic thymocytes were given intratracheally or i.p. to normal mice, and then AMphi or PMphi were recovered 30-240 min later. Ingestion of apoptotic thymocytes by AMphi in vivo was significantly decreased at all times. Defective ingestion of apoptotic lymphocytes may preserve AMphi capacity to produce proinflammatory cytokines in host defense, but could contribute to development of autoimmunity by failing to eliminate nucleosomes.
Publication
Journal: Blood
February/2/1995
Abstract
The Mpl receptor (Mpl-R) is a cytokine receptor belonging to the hematopoietin receptor superfamily for which a ligand has been recently characterized. To study the lineage distribution of Mpl-R in normal hematopoietic cells, we developed a monoclonal antibody (designated M1 MoAb) by immunizing mice with a soluble form of the human Mpl-R protein. With few exceptions, Mpl-R was detected by indirect immunofluorescent analysis on all human leukemic hematopoietic cell lines with pluripotential and megakaryocytic phenotypes, but not on other cell lines. By immunoprecipitation and immunoblotting, M1 MoAb recognized a band at 82 to 84 kD corresponding to the expected size of the glycosylated receptor. Among normal hematopoietic cells, M1 MoAb strongly stained megakaryocytes (MK) and Mpl-R was detected on platelets by indirect immunofluorescence staining or immunoblotting. On purified CD34+ cells, less than 2% of the population was stained, but the labeling was weak and just above the threshold of detection. However, dual-labeling with the M1 and antiplatelet glycoprotein MoAbs showed that most Mpl-R+/CD34+ cells coexpressed CD41a, CD61, or CD42a, suggesting that cell surface appearance of Mpl-R and platelet glycoproteins could be coordinated. M1-positive and M1-negative subsets were sorted from purified CD34+ cell populations. Colony assays showed that the absolute number of hematopoietic progenitors was extremely low and no primitive progenitors were present in the CD34+/Mpl-R+ fraction. However, this cell fraction was significantly enriched in low proliferative colony-forming units-MK. When the CD34+/Mpl-R+ fraction was grown in liquid culture containing human aplastic serum and a combination of growth factors, mature MK were seen as early as day 4, whereas the predominant cell population was erythroblasts on day 8. Similar data were also obtained with the CD34+/Mpl-R- fraction with, however, a delay in the time of appearance of both MK and erythroblasts. In conclusion, Mpl-R is a cytokine receptor restricted to the MK cell lineage. Its expression is low on CD34+ cells and these cells mainly correspond to late MK progenitors and transitional cells. These data indicate that the action of the Mpl-R ligand might predominate during the late stages of human MK differentiation.
Publication
Journal: Blood
March/23/2005
Abstract
Accumulating evidence indicates that platelets play a critical role in the pathogenesis of experimental severe malaria (ESM) elicited by infection with Plasmodium berghei. Mice injected on day 1 of P berghei infection (early) with either anti-CD41 or anti-CD61 monoclonal antibodies (mAbs) exhibited significantly (P<.001) increased survival from ESM compared with infection controls, indicating that platelets function early in the disease. In contrast, groups of mice treated on days 4, 5, and 6 (late) with anti-CD41 mAb exhibited similar mortality as controls. Because platelet depletion by anti-CD41 mAb on day 4 of infection did not protect mice, and platelet adherence occurs on day 6, platelet adherence to endothelium is not required to mediate malarial pathogenesis. Few platelet microparticles were detected in the blood during the course of malaria, but large numbers of erythrocyte vesicles, microparticles, and debris were detected. The protective effect of early anti-CD41 mAb treatment was independent of the number of platelets, platelet microparticles, erythrocyte-platelet conjugates, and erythrocyte vesicles. Mice treated early with anti-CD41 mAb exhibited markedly altered cytokine production on day 4 of P berghei infection (increased interleukin 10 [IL-10], IL-1alpha, IL-6, interferon-gamma [IFN-gamma], and tumor necrosis factor alpha [TNF-alpha]; decreased IL-2) but no decline in coagulation factors compared with rat immunoglobulin G (IgG)-treated controls, indicating that platelets regulate the levels of pathogenic cytokines.
Publication
Journal: Thrombosis and Haemostasis
August/26/2012
Abstract
From the discovery of the platelet glycoprotein (GP) IIb/IIIa and identification of its central role in haemostasis, the integrin GPIIb/IIIa (αIIbβ3, CD41/CD61) was destined to be an anti-thrombotic target. The subsequent successful development of intravenous ligand-mimetic inhibitors occurred during a time of limited understanding of integrin physiology. Although efficient inhibitors of ligand binding, they also mimic ligand function. In the case of GPIIb/IIIa inhibitors, despite strongly inhibiting platelet aggregation, paradoxical fibrinogen binding and platelet activation can occur. The quick progression to development of small-molecule orally available inhibitors meant that this approach inherited many potential flaws, which together with a short half-life resulted in an increase in mortality and a halt to the numerous pharmaceutical development programs. Limited clinical benefits, together with the success of other anti-thrombotic drugs, in particular P2Y12 ADP receptor blockers, have also led to a restrictive use of intravenous GPIIb/IIIa inhibitors. However, with a greater understanding of this key platelet-specific integrin, GPIIb/IIIa remains a potentially attractive target and future drug developments will be better informed by the lessons learnt from taking the current inhibitors back to the bench. This overview will review the physiology behind the inherent problems of a ligand-based integrin inhibitor design and discuss novel promising approaches for GPIIb/IIIa inhibition.
Publication
Journal: Blood
January/22/2003
Abstract
Vector-containing medium harvested from murine packaging cell lines has been shown to contain factors that can negatively influence the transduction and maintenance of hematopoietic stem cells. Thus, we generated a human packaging cell line with a gibbon ape leukemia virus pseudotype (Phoenix-GALV), and we evaluated vectors produced by Phoenix-GALV for their ability to transduce hematopoietic progenitor/stem cells. In 3 baboons, we used a competitive repopulation assay to directly compare GALV-pseudotype retrovirus vectors produced by either Phoenix-GALV or by the NIH 3T3-derived packaging cell line, PG13. In 3 additional baboons we compared Phoenix-GALV-derived vectors to more recently developed lentiviral vectors. Gene transfer efficiency into hematopoietic repopulating cells was assessed by evaluating the number of genetically modified peripheral blood and marrow cells using flow cytometry and real-time polymerase chain reaction. Transduction efficiency of hematopoietic repopulating cells was significantly higher using the Phoenix-GALV-derived vector as compared with the PG13-derived vectors or lentiviral vectors, with stable transduction levels up to 25%. We followed 2 animals for more than one year. Flow cytometric analysis of hematopoietic subpopulations in these animals revealed transgene expression in CD13(+) granulocytes, CD20(+) B lymphocytes, CD3(+) T lymphocytes, CD61(+) platelets, as well as red blood cells, indicating multilineage engraftment of cells transduced by Phoenix-GALV-pseudotype vectors. In addition, transduction of human CD34(+) cells was significantly more efficient than transduction of baboon CD34(+) cells, suggesting that Phoenix-GALV-derived oncoretroviral vectors may be even more efficient in human stem cell gene therapy applications.
Publication
Journal: British Journal of Haematology
February/14/2001
Abstract
Osteoclast precursors (OCPs) circulate in the mononuclear fraction of peripheral blood (PB), but their abundance and surface characteristics are unknown. Previous studies suggest that the receptor activator for NF-kappaB (RANK) on cytokine-treated OCPs in mouse bone marrow interacts with osteoprotegerin ligand (OPGL/TRANCE/RANKL/ODF) to initiate osteoclast differentiation. Hence, we used a fluorescent form of human OPGL (Hu-OPGL-F) to identify possible RANK-expressing OCPs in untreated peripheral blood mononuclear cells (PBMCs) using fluorescence-activated cell sorting analysis. Monocytes [CD14-phycoerythrin (PE) antibody (Ab) positive (+) cells, 10-15% of PBMCs] all (98-100%) co-labelled with Hu-OPGL-F (n>> 18). T lymphocytes (CD3-PE Ab+ cells, 66% of PBMCs) did not bind Hu-OPGL-F; however, B cells (CD19-PE Ab+ cells, 9% of PBMCs) were also positive for Hu-OPGL-F. All Hu-OPGL-F+ monocytes also co-labelled with CD33, CD61, CD11b, CD38, CD45 and CD54 Abs, but not CD34 or CD56 Abs. Hu-OPGL-F binding was dose dependent and competed with excess Hu-OPGL. When Hu-OPGL-F+, CD14-PE Ab+, CD33-PE Ab+, Hu-OPGL-F+/CD14-PE Ab+ or Hu-OPGL-F+/CD33-PE Ab+ cells were cultured with OPGL (20 ng/ml) and colony-stimulating factor (CSF)-1 (25 ng/ml), OC-like cells readily developed. Thus, all freshly isolated monocytes demonstrate displaceable Hu-OPGL-F binding, suggesting the presence of RANK on OCPs in PB; also, OCPs within a purified PB monocyte population form osteoclast-like cells in the complete absence of other cell types in OPGL and CSF-1 containing medium.
Publication
Journal: Cell Transplantation
October/12/2005
Abstract
Mesenchymal stem cells (MSCs) have been successfully isolated from a broad range of adult, fetal, and other nonembryonic tissues. Fetal lung has been identified as a rich source of MSCs. However, the biological characteristics and differentiation potential of fetal lung MSCs remain to be explored. In this study, we established a series of methods for isolation and expansion of fetal lung MSCs. These MSCs could withstand more than 40 passages without obvious decline in proliferation ability, significant changes in morphology, and expression of cell markers. Flow cytometric analysis showed that fetal lung MSCs expressed CD13, CD29, CD44, CD90, CD105, CD166, and HLA-ABC, but not CD14, CD31, CD34, CD38, CD41a, CD42b, CD45, CD49d, CD61, CD106, CD133, and HLA-DR. Cell cycle analysis revealed that when the MSCs reached their log phase of growth, more than 90% of the cells were in G0/G1 phase while the proportion of cells in S phase and G2/M phase were about 5.56% and 2.08% cells, respectively. These MSCs could differentiate into neural cells in addition to their mesenchymal differentiation potential. Our data suggest that the fetal lung MSC population is an alternative source of stem cells for cell-based therapy of neurological defects or mesenchymal-originating diseases.
Publication
Journal: Laboratory Investigation
June/16/2004
Abstract
Hemangiosarcoma (HSA) is a common untreatable cancer of dogs that resembles human angiosarcoma. Detailed studies of these diseases have been historically hindered by the paucity of suitable reagents. Here, we show that expression of CD117 (c-Kit) can distinguish primitive (malignant) from mature (benign) proliferative endothelial lesions, and we describe eight independent cell lines derived from canine HSA explants. Endothelial origin was confirmed by sustained expression of surface CD105 (endoglin), CD146 (MUC18), and CD51/CD61 (alpha(v)beta(3) integrin). The cell lines showed anchorage-independent growth and were motile and invasive when cultured on a basement membrane matrix. They required endothelial growth factors for growth and survival, and they could be induced to form tubular structures resembling blood vessels when cultured under low calcium conditions. The formation of vessel-like structures was blocked by nicotine, and restored by FK506, suggesting that 'nuclear factor of activated T cells' activity prevents differentiation of these cells. In summary, these cell lines represent a unique and novel resource to improve our understanding of endothelial cell biology in general and canine HSA in particular.
Publication
Journal: Cytometry Part A
November/10/2016
Abstract
Extracellular vesicles (EVs) are attracting attention as vehicles for inter-cellular signaling that may have value as diagnostic or therapeutic targets. EVs are released by many cell types and by different mechanisms, resulting in phenotypic heterogeneity that makes them a challenge to study. Flow cytometry is a popular tool for characterizing heterogeneous mixtures of particles such as cell types within blood, but the small size of EVs makes them difficult to measure using conventional flow cytometry. To address this limitation, a high sensitivity flow cytometer was constructed and EV measurement approaches that allowed them to enumerate and estimate the size of individual EVs, as well as measure the presence of surface markers to identify phenotypic subsets of EVs. Several fluorescent membrane probes were evaluated and it was found that the voltage sensing dye di-8-ANEPPS could produce vesicle fluorescence in proportion to vesicle surface area, allowing for accurate measurements of EV number and size. Fluorescence-labeled annexin V and anti-CD61 antibody was used to measure the abundance of these surface markers on EVs in rat plasma. It was shown that treatment of platelet rich plasma with calcium ionophore resulted in an increase in the fraction of annexin V and CD61-positive EVs. Vesicle flow cytometry using fluorescence-based detection of EVs has the potential to realize the potential of cell-derived membrane vesicles as functional biomarkers for a variety of applications.
Publication
Journal: Transfusion
June/27/2005
Abstract
BACKGROUND
The Cord Blood Transplantation (COBLT) Study banking program was initiated in 1996. The study goals were to develop standard operating procedures for cord blood (CB) donor recruitment and banking and to build an ethnically diverse unrelated CB bank to support a transplantation protocol.
METHODS
The hematopoietic progenitor cell (HPC) and lymphocyte subset (LS) content of approximately 8000 CB units were characterized, and these results were correlated with donor ethnicity, birth weight, gestational age, sex, and type of delivery.
RESULTS
There was a significant correlation of CD34+ cell count with colony-forming unit (CFU)-granulocyte-macrophage (r=0.68, p<0.001), CFU-granulocyte-erythroid-macrophage-megakaryocyte (r=0.52, p<0.001), burst-forming unit-erythroid (BFU-E; r=0.61, p<0.001), and total CFUs (r=0.67, p<0.001). Nucleated red blood cell count was significantly correlated with total CD34+ (r=0.56, p<0.001), total CFU (r=0.50, p<0.001), BFU-E (r=0.48, p<0.001), and counts of CD34+ subsets (p<0.001). Caucasian ethnicity was significantly correlated with higher CD3+/CD4+, CD19+, and CD16+/CD56+ LSs. Furthermore, CD34+/CD38- and CD34+/CD61+ CB units (HPC-C) were significantly lower in African American and Asian persons compared to Caucasian and Hispanic persons. Male sex was associated with significantly fewer CD3+/CD4+, CD19+, and CD16+/CD56+ but increased CD3+/CD8+ LSs (p<0.001). Finally, cesarean section was associated with significantly higher total CFU and CD16+/CD56+ but lower CD3+/CD4+, CD3+/CD8+, and CD19+ LSs.
CONCLUSIONS
These results provide a standard and range for uniformly processed HPC-C progenitor cells and LSs. CB progenitor cells and/or LSs may in the future predict for rapidity of engraftment, incidence of graft-versus-host disease, speed and quality of immunore- constitution, graft-versus-tumor effects, and/or success of gene transfection after CB transplantation.
Publication
Journal: Experimental Hematology
January/24/2001
Abstract
GATA-1 and GATA-2 transcription factors are required for effective hematopoiesis. These regulatory proteins present overlapping yet distinct patterns of expression in hematopoietic cells. Absence of GATA-2 leads to defective hematopoiesis and an embryonic lethal phenotype. Disruption of GATA-1 results in a compensatory increase in GATA-2 in early erythroid cells and incomplete erythropoiesis with embryos dying at 11.5 days. We examine the specific role of GATA-2 later in hematopoiesis, during erythroid differentiation. Stable K562 cell lines expressing various levels of GATA-2 were generated using a GATA-2 expression plasmid. Overexpression of GATA-2 transcripts was determined by quantitative polymerase chain reaction (PCR). Cytospin smears, growth curve analysis, PCR, and flow cytometry were used to examine the effects of increased levels of GATA-2 in altering cell phenotype and activation of megakaryocytic markers. Human progenitor erythroid cells also were transfected with a GATA-2 expression vector. Growth curve analysis, benzidine staining, and high-performance liquid chromatographic analysis were used to study the effects of GATA-2 on erythroid maturation and proliferation.K562/GATA-2 cell lines expressing high levels of GATA-2 mRNA showed a marked decrease in proliferation and a shift in phenotype toward the megakaryocyte lineage. Ploidy analyses showed that these cell lines developed a multinuclear phenotype, including tetraploids and octaploids. PCR analysis showed activation of megakaryocyte-specific genes including thrombopoietin receptor (c-mpl). Surface expression of platelet glycoprotein receptors Ib/IX (CD42b/CD42a) and IIb/IIIa (CD41/CD61) also was demonstrated by flow cytometry. In primary human adult erythroid cultures transfected with a GATA-2 expression vector, production of total hemoglobin and cell proliferation decreased in a dose-dependent manner.GATA-2 plays an important role in deciding cell lineage throughout hematopoiesis, and increased expression of GATA-2 determines megakaryocytic differentiation. Downregulation of GATA-2 is required for erythroid differentiation.
Publication
Journal: Cancer Research
July/27/2017
Abstract
Cancer stem-like cells contribute to tumor heterogeneity and have been implicated in disease relapse and drug resistance. Here we show the coexistence of distinct breast cancer stem-like cells (BCSC) as identified by ALDH(+) and CD29(hi)CD61(+) markers, respectively, in murine models of breast cancer. While both BCSC exhibit enhanced tumor-initiating potential, CD29(hi)CD61(+) BCSC displayed increased invasive abilities and higher expression of epithelial-to-mesenchymal transition and mammary stem cell-associated genes, whereas ALDH(+) BCSC were more closely associated with luminal progenitors. Attenuating the autophagy regulator FIP200 diminished the tumor-initiating properties of both ALDH(+) and CD29(hi)CD61(+) BCSC, as achieved by impairing either the Stat3 or TGFβ/Smad pathways, respectively. Furthermore, combining the Stat3 inhibitor Stattic and the Tgfβ-R1 inhibitor LY-2157299 inhibited the formation of both epithelial and mesenchymal BCSC colonies. In vivo, this combination treatment was sufficient to limit tumor growth and reduce BCSC number. Overall, our findings reveal a differential dependence of heterogeneous BCSC populations on divergent signaling pathways, with implications on how to tailor drug combinations to improve therapeutic efficacy. Cancer Res; 76(11); 3397-410. ©2016 AACR.
Publication
Journal: American Journal of Respiratory Cell and Molecular Biology
December/8/1997
Abstract
Airway epithelium may actively participate in inflammatory responses, such as occur in asthma. The presence and regulation of surface molecules on the airway epithelium, however, is incompletely understood. We have determined the phenotype of the human bronchial epithelial cell line BEAS-2B by flow cytometry. We confirmed previous observations that human bronchial epithelial cells constitutively express CD29, CD44, CD49a, CD49b, CD49c, CD49d, CD49e, CD49f, CD51, CD54 (ICAM-1), CD61, and HLA class 1. BEAS-2B cells were also found to constitutively express CD9, CD13, CD15, CD15s, CD23, CD33, CD36, CD40, CD41b, CD42b, CD48, CD50, CD71, and CD102 (ICAM-2). Culture of BEAS-2B cells with tumor necrosis factor (TNF)-alpha or interleukin (IL)-1beta (1 ng/ml) was found to enhance intercellular adhesion molecule-1 (ICAM-1) expression (several fold) and induce de novo CD106 [vascular cell adhesion molecule-1 (VCAM-1)] expression. TNF-alpha or IL-1beta did not change the expression of CD9, CD13, CD16, CD23, CD29, CD31, CD32, CD35, CD45, CD61, or CD64 in BEAS-2B cells. IL-4 (1 ng/ml) also induced expression of VCAM-1 (1.5-fold) but not ICAM- expression while interferon-gamma (1 ng/ml) enhanced only ICAM-1 expression (2-fold). Maximal VCAM-1 expression was obtained with the combination of TNF-alpha and IL-4 (8-fold). Using Northern blot hybridization analysis, ICAM-1 and VCAM-1 mRNA was detected in BEAS-2B cells stimulated with cytokines. VCAM-1 on stimulated BEAS-2B was functionally active as determined by adhesion of purified eosinophils and blockade with specific antibodies. Primary isolates of bronchial epithelial cells produced detectable levels of VCAM-1 protein and mRNA as detected by enzyme-linked immunosorbent assay and reverse transcription-polymerase chain reaction, respectively. These results suggest that cytokine activation induces expression of ICAM-1 and VCAM-1 on airway epithelium, an event which may influence leukocyte infiltration and activation.
Publication
Journal: Biochemical and Biophysical Research Communications
May/12/2003
Abstract
In this study, chitosan (MW=50,000) was tested for its enhancing platelet activity in rabbit platelet suspensions and the possible mechanisms involved were further investigated. Our results showed that after initial (5 min) and long-term (30 min) contact of platelets with chitosan, the platelet adhesion to chitosan-coated microtiter plates was dose-dependently increased compared to that of solvent control. Similarly, chitosan also dose-dependently increased the platelet aggregation and the intracellular free Ca(2+) rise of Fura-2-AM loaded platelets. Additionally, in the presence of FITC-labeled anti-CD41/CD61, chitosan significantly enhanced the expression of platelet glycoprotein IIb/IIIa complex assayed by a flow cytometer. It is concluded that chitosan is an effective inducer for platelet adhesion and aggregation and the mechanisms of action of chitosan may be associated, at least partly, with the increasing [Ca(2+)](i) mobilization and enhancing expression of GPIIb/IIIa complex on platelet membrane surfaces.
Publication
Journal: International Journal of Gynecology and Obstetrics
January/26/2009
Abstract
OBJECTIVE
To determine whether mesenchymal stem cells (MSCs) can be isolated in third-trimester amniotic fluid (AF) and their differentiation induced.
METHODS
Sufficient numbers of MSCs were isolated from the AF of 15 healthy women undergoing cesarean delivery in the third trimester to be cultured and induced to differentiate into osteocytes.
RESULTS
Reverse-transcriptase polymerase chain reaction showed the MSCs to express the pluripotency marker gene OCT4, and flow cytometry showed these cells to be positive for CD29, CD73, CD90, and CD105 and negative for CD31, CD45, and CD61. The MSCs were also determined to be nontumorigenic.
CONCLUSIONS
Multipotent MSCs can be obtained from AF in the third trimester, which may be less dangerous than the second trimester to women and their fetuses.
Publication
Journal: Journal of Pathology
November/3/1993
Abstract
In order to evaluate the significance of adhesion molecules expressed on melanocytic tumours for progression and prognosis in vivo, we studied integrin expression (VLA-1 to VLA-6, CD18, CD51, CD61) on 10 naevi, 40 primary malignant melanomas, and 11 metastases by immunohistology using the APAAP technique. Evaluation was done by grouping the percentage of positive tumour cells in six categories. Statistical analysis (Wilcoxon rank test, Scheffe test) revealed significant differences in the expression of VLA-1 (P < 0.0001), VLA-2 (P = 0.0001), VLA-5 (P = 0.0093), VLA-6 (P = 0.0232), and CD61 (P = 0.0002) between naevi and primary melanomas. Comparing primary melanomas with metastases, a statistically significant decrease in the expression of VLA-1, VLA-2, and VLA-6 was detectable, as well as a significant increase in VLA-4 and VLA-5. There was no correlation between integrin expression and tumour type (superficial spreading melanoma, nodular melanoma, lentigo maligna melanoma), regression and ulceration. Changes of VLA-1, VLA-4, and VLA-6 expression correlated with the tumour thickness of the primary melanoma, but only VLA-4 and VLA-6 expression on primary melanomas correlated significantly with the development of metastases (P = 0.024 and P = 0.001). These changes of integrin expression during tumour progression particularly, the data showing an increase of VLA-4, and a decrease of VLA-6 expression support the concept that integrins are a new additional set of prognostic markers which indicate predisposition to the development of metastases.
Publication
Journal: Molecular and Cellular Biology
June/20/1996
Abstract
Thrombopoietin (TPO) is the major regulator of growth and differentiation of megakaryocytes. To identify functionally important regions in the cytoplasmic domain of the TPO receptor, mpl, we introduced wild-type mpl and deletion mutants of murine mpl into the granulocyte-macrophage colony-stimulating factor (GM-CSF)- or erythropoietin (EPO)-dependent human cell line UT7. TPO induced differentiation of UT7-Wtmpl cells, not parental UT7 cells, along the megakaryocytic lineage, as evidenced by decreased proliferation, changes in cell morphology, and increased surface expression and mRNA levels of megakaryocytic markers CD41, CD61, and CD42b. When UT7-mpl cells were cultured long-term in EPO instead of GM-CSF, the TPO effect was dominant over that of EPO. Moreover, the differentiation induced by TPO was more pronounced for cells shifted from EPO to TPO than for cells shifted from GM-CSF to TPO, as shown by the appearance of polyploid cells. Mutational analysis of the cytoplasmic domain of mpl showed that proliferation and maturation functions of mpl can be uncoupled. Two functional regions were identified: (i) the first 69 amino acids comprising the cytokine receptor motifs, box I and box 2, which are necessary for both TPO-induced mitogenesis and maturation; and (ii) amino acids 71 to 94, which are dispensable for proliferation but required for differentiation. Surprisingly, however, EPO could complement this latter domain for TPO-induced differentiation, suggesting a close relationship between EPO and TPO signaling.
Publication
Journal: Blood
June/9/2002
Abstract
The megakaryoblastic CHRF-288 cell line was used to investigate signal transduction pathways responsible for proplateletlike formation (PPF). The role of fibronectin (FN) and protein kinase C (PKC) activation in PPF were examined. In the presence of serum and phorbol 12-myristate 13-acetate (PMA), a PKC activator, cells exhibited full megakaryocytic differentiation, manifested by adhesion, shape change, increased cell size, polyploidy, PPF, and expression of CD41(+), CD61(+), and CD62P(+). The same morphologic and phenotypic features were observed in serum-free cultures in the presence of FN/PMA. Only partial differentiation occurred when other integrin ligands were substituted for FN. FN alone induced minimal cell adhesion and spreading, while PMA alone induced only polyploidy without adhesion. Signal transduction changes involved the activation of the extracellular signal-regulated protein kinase 1 (ERK1)/ERK2 as well as c-Jun amino-terminal kinase 1 (JNK1)/stress-activated protein kinase (SAPK). Phosphoinositide-3 kinase and p38 were not stimulated under these conditions. Inhibitors were used to identify the causal relationship between signaling pathways and PPF. PD98059 and GF109203X, inhibitors of ERK1/ERK2 pathway and PKC, respectively, blocked PPF, while adhesion, spreading, and polyploidy were normal. These studies show that activation of ERK1/ERK2 mitogen-activated protein kinase pathway plays a critical role in PPF. The elucidation of the signal transduction pathway on megakaryocyte development and PPF is of crucial importance for understanding this unique biological process.
Publication
Journal: Calcified Tissue International
July/10/2005
Abstract
Several cell surface markers were used to isolate monocytes as osteoclast progenitors with an immunomagnetic cell separation system. Use of this system with specific monocyte antibodies produced 99% pure monocytes. When purified monocytes were cultured on bovine bone slices in the presence of receptor activator of nuclear factor-kappaB (RANKL), macrophage-colony stimulating factor (M-CSF), tumor necrosis factor alpha (TNF-alpha), and dexamethasone for 14 days, CD14(+) CD11b(+), and CD61(+) monocytes had approximately 90-, 30- and 20-fold higher osteoclast formation capacities/plated cells compared to the control culture. CD15(+) monocytes generated few tartrate-resistant acid phosphatase-positive multinucleated cells (TRACP+ MNC), and CD169(+) monocytes generated no TRACP+ MNC. This suggests, that there are various subsets of monocytes in the blood circulation and that they have different capacities in osteoclast formation. These results show that circulating human osteoclast progenitors can be efficiently purified by immunomagnetic cell separation system using anti-CD14, -CD11b, and -CD61 antibodies. These purified monocyte fractions had different ability to give rise to osteoclasts. CD169 was not found to be suitable for osteoclast progenitor isolation. Optimal concentration of dexamethasone for osteoclast formation and bone resorption was 10 nM. To develop a human resorption assay, osteoclasts were first induced for 7 days, whole media were replaced, cultures were continued for additional 3 days and C-terminal telopeptide of type I collagen was determined from culture media. This assay was shown to be functional, since two well-known resorption inhibitors, bafilomycin A(1) and calcitonin, dose-dependently inhibited the resorption activity of osteoclasts.
Publication
Journal: Bone
January/22/2007
Abstract
It has been previously reported that addition of megakaryocytes (MKs) to osteoblasts in vitro results in increased osteoblastic collagen and osteoprotegerin (OPG) production, suggesting a role for MKs in bone formation. To further investigate this role, we have studied the effects of MKs on osteoclast formation and activity. Human osteoclasts were generated from CD14 monocytes isolated from peripheral blood and cultured in the presence of M-CSF and sRANKL on dentine and calcium phosphate substrates. MKs were generated from CD34+ cells isolated from either human peripheral blood or cord blood and cultured in liquid medium for 6 days, after which time maturing MKs (CD61-positive cells) were isolated and added to monocyte cultures. After 6 and 9 days of culture, the number of osteoclasts identified morphologically and by TRAP staining was counted. Cells were removed and the area of resorption was identified by von Kossa staining and quantitatively assessed by image analysis. The addition of MKs to osteoclast cultures at day 0 inhibited the number of osteoclasts formed 1.9-fold (p>0.003), whereas addition at 3 days had no effect on osteoclast number. The presence of MKs inhibited resorption 8.7-fold when co-cultured with osteoclasts from day 0 (p>0.004), but only by 3.1-fold when co-cultured from day 3 (p>0.01). In dose-response experiments, it was found that 1-10% of MKs added to monocyte cultures elicited the greatest inhibition of resorption. Similar osteoclast cultures were treated with CD61-negative cells (non-MKs) to confirm that the inhibition of osteoclast formation and activity was specifically due to MKs. Experiments with a cell-impermeable membrane indicated that both cell to cell contact and release of soluble factor(s) were involved in mediating these effects. These results show that MKs inhibit osteoclast formation and activity. The most pronounced effects were seen when MKs and osteoclasts were co-cultured from day 0, suggesting that MKs act primarily on osteoclast precursors.
Publication
Journal: Asia-Pacific Journal of Clinical Oncology
October/11/2010
Abstract
The precise cell types that give rise to tumors and mechanisms that underpin tumor heterogeneity are poorly understood. There is increasing evidence to suggest that diverse solid tumors are hierarchically organized and may be sustained by a distinct subpopulation of cancer stem cells (CSCs). The CSC hypothesis provides an attractive cellular mechanism that can account for the therapeutic refractoriness and dormant behavior exhibited by many tumor types. Breast cancer was the first solid malignancy from which CSCs were identified and isolated. Direct evidence for the CSC hypothesis has also recently emerged from mouse models of mammary tumorigenesis, although alternative models to explain heterogeneity also seem to apply. Our group has found that the luminal epithelial progenitor marker CD61/beta3 integrin identified a CSC population in mammary tumors from MMTV-wnt-1 mice. However, no CSCs could be identified in the more homogeneous MMTV-neu/erbB2 model, suggesting an alternate (clonal evolution or stochastic) model of tumorigenesis. It seems likely that both paradigms of tumor propagation exist in human cancer. From a clinical perspective, the CSC concept has significant implications. Quiescent CSCs are thought to be more resistant to chemotherapy and targeted therapy. Enrichment of putative CSCs has been noted in studies of chemotherapy-treated patients, lending support to the CSC hypothesis and their potential role in chemoresistance. Although many unresolved questions on CSCs remain, ongoing efforts to identify and characterize CSCs continue to be an important area of investigation, with the potential to identify novel tumor targeting strategies.
Publication
Journal: Platelets
January/22/2008
Abstract
In comparison to age-matched men, young women are at increased risk to suffer from venous thromboembolism (VTE). Some risk factors of inherited and acquired thrombophilia are known, but approximately 30% of the overall risk remains unexplained. Recently, a role for microparticles (MP) in coagulation has been suggested. We investigated, if gender- and menstrual cycle-specific differences in circulating MP exist. Platelet- and endothelial cell-derived microparticles (PMP, EMP) and subpopulations thereof were evaluated flow-cytometrically in healthy women (n = 27) in different phases of their menstrual cycles (follicular phase: n = 14, luteal phase: n = 13) and in healthy men (n = 18). Additionally, D-dimer levels were determined. Compared to men, women had elevated numbers of annexin V-binding MP (p = 0.007), PMP (CD61; p = 0.013), P-selectin-exposing PMP (p = 0.002) and E-selectin-exposing EMP (p = 0.009). During the luteal phase, women had strongly elevated concentrations of MP, PMP, P-selectin- and CD63-exposing PMP as well as E-selectin-exposing EMP (p = 0.001, p < 0.001, p = 0.004, p = 0.003, and p < 0.001, respectively), and the ratio of P-selectin-exposing PMP/platelet increased more than three-fold as compared to men (p = 0.01). When different phases of the menstrual cycle were analysed, MP (annexin V; p = 0.025), PMP (CD61: p < 0.001; CD63: p = 0.015) and E-Selectin-positive EMP (p = 0.006) were all increased in the luteal phase. Although D-dimer concentrations in women were increased compared to men (p = 0 = 0.006), no menstrual cycle-specific differences were observed. In summary, circulating MP and subpopulations thereof are increased in women when compared to men, and this increase seems to be modulated by the menstrual cycle. Therefore, circulating MP may be an additional risk factor contributing to the hitherto unexplained procoagulatory state of young women.
Publication
Journal: Journal of Thrombosis and Haemostasis
May/31/2018
Abstract
Essentials Platelet extracellular vesicles (EVs) concentrations measured by flow cytometers are incomparable. A model is applied to convert ambiguous scatter units to EV diameter in nanometer. Most included flow cytometers lack the sensitivity to detect EVs of 600 nm and smaller. The model outperforms polystyrene beads for comparability of platelet EV concentrations.
CONCLUSIONS
Background Detection of extracellular vesicles (EVs) by flow cytometry has poor interlaboratory comparability, owing to differences in flow cytometer (FCM) sensitivity. Previous workshops distributed polystyrene beads to set a scatter-based diameter gate in order to improve the comparability of EV concentration measurements. However, polystyrene beads provide limited insights into the diameter of detected EVs. Objectives To evaluate gates based on the estimated diameter of EVs instead of beads. Methods A calibration bead mixture and platelet EV samples were distributed to 33 participants. Beads and a light scattering model were used to set EV diameter gates in order to measure the concentration of CD61-phycoerythrin-positive platelet EVs. Results Of the 46 evaluated FCMs, 21 FCMs detected the 600-1200-nm EV diameter gate. The 1200-3000-nm EV diameter gate was detected by 31 FCMs, with a measured EV concentration interlaboratory variability of 81% as compared with 139% with the bead diameter gate. Part of the variation in both approaches is caused by precipitation in some of the provided platelet EV samples. Flow rate calibration proved essential because systems configured to 60 μL min-1 differed six-fold in measured flow rates between instruments. Conclusions EV diameter gates improve the interlaboratory variability as compared with previous approaches. Of the evaluated FCMs, 24% could not detect 400-nm polystyrene beads, and such instruments have limited utility for EV research. Finally, considerable differences were observed in sensitivity between optically similar instruments, indicating that maintenance and training affect the sensitivity.
Publication
Journal: Leukemia Research
August/12/1998
Abstract
We describe changes in antigen expression on HL60 cells with differentiation into granulocytes induced by all-trans retinoic acid (ATRA) or dimethylsulphoxide (DMSO), into monocytes by alpha1,25-dihydroxyvitamin D3 (D3), or into macrophages by 12-O-tetradecanoyl phorbol-13-acetate (TPA). Undifferentiated cells expressed CD13, CD14 (at a low level), CD15, CDw17, CD32, CD33, CD49e, CD63, CD64, CDw65, CD71 and CD87 antigens and bound the unclustered mAb D171 and Mo5. Differentiated and undifferentiated cells were negative for CD16, CD34, CD61, CD66abcde, CD68, CD88, CDw90 and CD93. Four panels of markers were identified whose expression changes significantly following differentiation. CD15, CD49e, CD63, CDw65, CD71 and mAb D171 and IGR-2,1A6 for DMSO; CD13, CD15, CDw17, CD49e, CD63, CDw65, CD71, CD87, CDw92 and mAb D171 and IGR-2,1A6 for ATRA; CD14, CD31, CD35, CD71, CD87, CDw92 and mAb D171 and BRIC18 for D3; CDw12, CD13, CD15, CD31, CD35, CD49e, CD71, CD87, CDw92 and mAb D171 for TPA. These will be useful for analyzing the pathways that regulate differentiation, whether the observed changes are consequences of differentiation or more direct effects of the inducers. HL60 cells provide a model for investigating the regulation of these antigens.
load more...