Citations
All
Search in:AllTitleAbstractAuthor name
Publications
(517)
Patents
Grants
Pathways
Clinical trials
Publication
Journal: Journal of Pathology
January/17/2012
Abstract
Bile is a complex mixture that includes bile salts, the membrane phospholipid phosphatidylcholine (PC), cholesterol and various endobiotic and xenobiotic toxins, each of which is secreted across the canalicular membrane of the hepatocyte by different ATP-binding cassette (ABC) transporters. The bile salts are essential for the emulsification of dietary fat and lipophilic vitamins. They are synthesized from cholesterol in the hepatocyte and their secretion by the bile salt export pump (BSEP or ABCB11) drives bile flow and is the starting point for the enterohepatic cycle. The detergent nature of bile salts that is key to their physiological role also means that they are inherently cytotoxic, and failure to secrete bile (intraheptic cholestasis) can precipitate severe liver disease and mortality. Such progressive familial intrahepatic cholestasis (PFIC) comes in three types of autosomal recessive disease. PFIC2 is caused by mutation to ABCB11. PFIC3 is caused by mutation of a closely related ABC transporter, ABCB4, which flops PC into the outerleaflet of the canalicular membrane. The flopped PC is extracted by the bile salts in the canaliculus to form a mixed micelle that reduces bile salt detergent activity. The third protein that is essential for bile flow from the hepatocyte is a member of a different class of transporter protein, a P-type ATPase, ATP8B1. Mutation of ATP8B1 causes PFIC1, but ATP8B1 does not transport a component of bile into the canaliculus. Data from different laboratories, published this year, suggests two different roles for ATP8B1 in the hepatocyte: a lipid flippase, that counterbalances the deleterious effects of ABCB4 on barrier function of the canalicular membrane; and an anchor of the actin cytoskeleton necessary to form the microvilli of the brush border. These latest discoveries are described, along with a spectrum of cholestatic disorders whose aetiologies lie in these and other transporters of the canalicular membrane.
Publication
Journal: Gastroenterology
May/8/2011
Abstract
OBJECTIVE
High-density lipoproteins (HDLs) protect against atherosclerotic cardiovascular disease, mainly by promoting reverse cholesterol transport (RCT). Biliary sterol secretion supposedly represents the final step in RCT, but the relevance of this pathway has not been explored. We tested the dependency of RCT on functional biliary sterol secretion.
METHODS
Macrophage-to-feces RCT was studied in mice with abolished (bile duct ligation) or decreased biliary sterol secretion (adenosine triphosphate binding cassette transporter B4 (Abcb4)-/- mice, with and without administration of a liver X receptor [LXR] agonist) after intraperitoneal injection of (3)H-cholesterol-loaded primary macrophage foam cells from mice. Fecal tracer excretion and also fecal mass sterol excretion were measured. Metabolism and tissue uptake of HDL cholesteryl ester was assessed with HDL kinetic studies.
RESULTS
Bile-duct ligation completely abolished RCT from (3)H-cholesterol-loaded macrophages to feces (P < .001). In Abcb4-/- mice lacking biliary cholesterol secretion, RCT was decreased markedly; fecal (3)H-tracer excretion was almost absent within neutral sterols (P < .001) and reduced within bile acids (P < .05). LXR activation stimulated RCT in wild-type (5.5-fold; P < .001) but not Abcb4-/- mice, whereas mass fecal sterol excretion increased similarly in both models (P < .05). Kinetic studies revealed minimal uptake of HDL cholesteryl ester by the intestine, which decreased on LXR activation (P < .05).
CONCLUSIONS
Functional RCT depends on biliary sterol secretion; there is no compensatory increase in RCT via bile acids. The stimulating effect of LXR agonists on RCT requires biliary cholesterol secretion. These results have implications for therapies against atherosclerotic cardiovascular disease targeting the RCT pathway.
Publication
Journal: Gastroenterology
January/19/2012
Abstract
OBJECTIVE
Progressive familial intrahepatic cholestasis can be caused by mutations in ABCB4 or ATP8B1; each encodes a protein that translocates phospholipids, but in opposite directions. ABCB4 flops phosphatidylcholine from the inner to the outer leaflet, where it is extracted by bile salts. ATP8B1, in complex with the accessory protein CDC50A, flips phosphatidylserine in the reverse direction. Abcb4(-/-) mice lack biliary secretion of phosphatidylcholine, whereas Atp8b1-deficient mice have increased excretion of phosphatidylserine into bile. Each system is thought to have a role protecting the canalicular membrane from bile salts.
METHODS
To investigate the relationship between the mechanisms of ABCB4 and ATP8B1, we expressed the transporters separately and together in cultured cells and studied viability and phospholipid transport. We also created mice with disruptions in ABCB4 and ATP8B1 (double knockouts) and studied bile formation and hepatic damage in mice fed bile salts.
RESULTS
Overexpression of ABCB4 was toxic to HEK293T cells; the toxicity was counteracted by coexpression of the ATP8B1-CDC50A complex. In Atp8b1-deficient mice, bile salts induced extraction of phosphatidylserine and ectoenzymes from the canalicular membrane; this process was not observed in the double-knockout mice.
CONCLUSIONS
ATP8B1 is required for hepatocyte function, particularly in the presence of ABCB4. This is most likely because the phosphatidylserine flippase complex of ATP8B1-CDC50A counteracts the destabilization of the membrane that occurs when ABCB4 flops phosphatidylcholine. Lipid asymmetry is therefore important for the integrity of the canalicular membrane; ABCB4 and ATP8B1 cooperate to protect hepatocytes from bile salts.
Publication
Journal: Pediatric Research
June/25/2008
Abstract
To investigate how the liver adapts to chronic obstructive cholestasis, liver samples from infants with early- and late-stage cholestasis were analyzed for changes in the levels of hepatocyte transporters and nuclear receptors. At early-stage cholestasis, most canalicular transporters and sinusoidal uptake transporters were downregulated, including bile salt export pump (BSEP, ABCB11), multidrug resistant protein 3 (MDR3, ABCB4), multidrug-resistant associated protein 2 (MRP2, ABCC2), sodium-dependent taurocholate cotransporting polypeptide (NTCP, SLC10A1), organic anion transporter (OATP, SLCO1A2), and nuclear receptor farnesoid X receptor (FXR, NR1H4). At late-stage cholestasis, FXR-BSEP levels returned to normal, MDR3 and MDR1 (ABCB1) were upregulated, and MRP-2 was downregulated. In addition, alternative sinusoidal efflux transporters, organic solute transporter alpha/beta (OSTalpha/beta) and MRP4 were upregulated, and pregnane X receptor (PXR, NR1I2) levels decreased. Cytochrome enzyme P450 7A1 was markedly downregulated at both early and late-stage cholestasis. An analysis of the long-term prognosis of 18 patients revealed lower PXR and constitutive androstane receptor (CAR, NR1I3) levels in the poor prognosis group. In conclusion, at long-term cholestasis, hepatocyte bile efflux was through sinusoidal and canalicular transporters, with FXR-BSEP levels maintained and PXR downregulated. Low PXR and CAR levels were associated with poor prognosis.
Publication
Journal: World Journal of Gastroenterology
March/20/2011
Abstract
Biliary cholesterol secretion is a process important for 2 major disease complexes, atherosclerotic cardiovascular disease and cholesterol gallstone disease. With respect to cardiovascular disease, biliary cholesterol secretion is regarded as the final step for the elimination of cholesterol originating from cholesterol-laden macrophage foam cells in the vessel wall in a pathway named reverse cholesterol transport. On the other hand, cholesterol hypersecretion into the bile is considered the main pathophysiological determinant of cholesterol gallstone formation. This review summarizes current knowledge on the origins of cholesterol secreted into the bile as well as the relevant processes and transporters involved. Next to the established ATP-binding cassette (ABC) transporters mediating the biliary secretion of bile acids (ABCB11), phospholipids (ABCB4) and cholesterol (ABCG5/G8), special attention is given to emerging proteins that modulate or mediate biliary cholesterol secretion. In this regard, the potential impact of the phosphatidylserine flippase ATPase class I type 8B member 1, the Niemann Pick C1-like protein 1 that mediates cholesterol absorption and the high density lipoprotein cholesterol uptake receptor, scavenger receptor class B type I, is discussed.
Publication
Journal: Pancreas
December/9/2013
Abstract
OBJECTIVE
The aim of this study was to evaluate transcript levels of all 49 human ATP-binding cassette transporters (ABCs) in one of the most drug-resistant cancers, namely, the pancreatic ductal adenocarcinoma (PDAC). Association of ABCs levels with clinical-pathologic characteristics and KRAS mutation status was followed as well.
METHODS
Tumors and adjacent nonneoplastic tissues were obtained from 32 histologically verified PDAC patients. The transcript profile of ABCs was assessed using quantitative real-time polymerase chain reaction with a relative standard curve. KRAS mutations in exon 2 were assessed by high-resolution melting analysis and sequencing.
RESULTS
Most ABCs were deregulated in PDAC and 10 ABCs were associated with clinical-pathologic characteristics. KRAS mutations did not change the global expression profile of ABCs.
CONCLUSIONS
The expression of ABC transporters was significantly deregulated in PDAC tumors when compared to nonmalignant tissues. The observed up-regulation of ABCB4, ABCB11, ABCC1, ABCC3, ABCC5, ABCC10, and ABCG2 in tumors may contribute to the generally poor treatment response of PDAC. The up-regulation of ABCA1, ABCA7, and ABCG1 implicates a serious impairment of cellular cholesterol homeostasis in PDAC. On the other hand, the observed down-regulation of ABCA3, ABCC6, ABCC7, and ABCC8 suggests a possible role of stem cells in the development and progression of PDAC.
Publication
Journal: Gastroenterology
August/7/2008
Abstract
OBJECTIVE
Adenosine triphosphate-binding cassette subfamily B, member 4 (ABCB4) mutations have not been investigated in patients with unexplained cholestasis. We aimed to investigate ABCB4 mutations in adult patients with unexplained anicteric cholestasis and to describe liver injury associated with ABCB4 mutations.
METHODS
Between February 2004 and March 2007, all adults with unexplained cholestasis despite multiple investigations including liver biopsy and 124 healthy volunteers had ABCB4 sequencing. Fibrosis, bile duct lesions, inflammatory infiltrate, activation of myofibroblasts and multidrug-resistant P-glycoprotein 3 (MDR3) immunostaining were assessed on patients' liver biopsy specimens.
RESULTS
Thirty-two patients were included (23 females, 16-69 years of age). Eight different ABCB4 heterozygous mutations were found in 11 patients (34%). Seven of these mutations (exons 4, 6, 14, 18, 23) were never detected in the control group. One mutation (exon 15) was detected in 4 patients (12.5%) and 4 controls (3%). At the time of liver biopsy, the main clinical and biologic characteristics were similar in the 32 patients regardless of ABCB4 mutation. The histologic pattern in patients with a mutation consisted of portal fibrosis with ductular reaction and strong macrophagic infiltrate of portal tracts without significant periportal and lobular necroinflammatory lesions or cholangitis. Fibrosis score and macrophagic infiltration of portal tracts were significantly increased in patients with ABCB4 mutation (P = .01). Absence or reduced MDR3 canalicular immunostaining was demonstrated in all patients with ABCB4 mutations tested.
CONCLUSIONS
Heterozygous ABCB4 mutations were detected in 34% of adults with unexplained cholestasis, for the most part without biliary symptoms, and could result in significant liver fibrosis.
Publication
Journal: Gastroenterology
March/13/2007
Abstract
OBJECTIVE
Inherited syndromes of intrahepatic cholestasis commonly result from mutations in the genes SERPINA1 (alpha(1)-antitrypsin deficiency), JAG1 (Alagille syndrome), ATP8B1 (progressive familial intrahepatic cholestasis type 1 [PFIC1]), ABCB11 (PFIC2), and ABCB4 (PFIC3). However, the large gene sizes and lack of mutational hotspots make it difficult to survey for disease-causing mutations in clinical practice. Here, we aimed to develop a technological tool that reads out the nucleotide sequence of these genes rapidly and accurately.
METHODS
25-mer nucleotide probes were designed to identify each base for all exons, 10 bases of intronic sequence bordering exons, 280-500 bases upstream from the first exon for each gene, and 350 bases of the second intron of the JAG1 gene and tiled using the Affymetrix resequencing platform. We then developed high-fidelity polymerase chain reactions to produce amplicons using 1 mL of blood from each subject; amplicons were hybridized to the chip, and nucleotide calls were validated by standard capillary sequencing methods.
RESULTS
Hybridization of amplicons with the chip produced a high nucleotide sequence readout for all 5 genes in a single assay, with an automated call rate of 93.5% (range, 90.3%-95.7%). The accuracy of nucleotide calls was 99.99% when compared with capillary sequencing. Testing the chip on subjects with cholestatic syndromes identified disease-causing mutations in SERPINA1, JAG1, ATP8B1, ABCB11, or ABCB4.
CONCLUSIONS
The resequencing chip efficiently reads SERPINA1, JAG1, ATP8B1, ABCB11, and ABCB4 with a high call rate and accuracy in one assay and identifies disease-causing mutations.
Publication
Journal: Essays in Biochemistry
January/29/2012
Abstract
ABC (ATP-binding cassette) proteins actively transport a wide variety of substrates, including peptides, amino acids, sugars, metals, drugs, vitamins and lipids, across extracellular and intracellular membranes. Of the 49 hum an ABC proteins, a significant number are known to mediate the extrusion of lipids from membranes or the flipping of membrane lipids across the bilayer to generate and maintain membrane lipid asymmetry. Typical lipid substrates include phospholipids, sterols, sphingolipids, bile acids and related lipid conjugates. Members of the ABCA subfamily of ABC transporters and other ABC proteins such as ABCB4, ABCG1 and ABCG5/8 implicated in lipid transport play important roles in diverse biological processes such as cell signalling, membrane lipid asymmetry, removal of potentially toxic compounds and metabolites, and apoptosis. The importance of these ABC lipid transporters in cell physiology is evident from the finding that mutations in the genes encoding many of these proteins are responsible for severe inherited diseases. For example, mutations in ABCA1 cause Tangier disease associated with defective efflux of cholesterol and phosphatidylcholine from the plasma membrane to the lipid acceptor protein apoA1 (apolipoprotein AI), mutations in ABCA3 cause neonatal surfactant deficiency associated with a loss in secretion of the lipid pulmonary surfactants from lungs of newborns, mutations in ABCA4 cause Stargardt macular degeneration, a retinal degenerative disease linked to the reduced clearance of retinoid compounds from photoreceptor cells, mutations in ABCA12 cause harlequin and lamellar ichthyosis, skin diseases associated with defective lipid trafficking in keratinocytes, and mutations in ABCB4 and ABCG5/ABCG8 are responsible for progressive intrafamilial hepatic disease and sitosterolaemia associated with defective phospholipid and sterol transport respectively. This chapter highlights the involvement of various mammalian ABC transporters in lipid transport in the context of their role in cell signalling, cellular homoeostasis, apoptosis and inherited disorders.
Publication
Journal: Plant Cell
April/13/2011
Abstract
Multidrug resistance ABC transporters in plants are required for polar transport of the hormone auxin (indole-3-acetic acid). They are studied in animals primarily because their overexpression confers resistance to anticancer agents. Immunophilins are studied in both plants and animals for their roles in folding and trafficking of proteins, particularly those with signal transducing functions and susceptibility to immunosuppressant drugs. Previous genetic and molecular studies in Arabidopsis thaliana established a physical and functional interaction between some ABCB transporters and the TWISTED DWARF1 (TWD1) immunophilin. In this work, confocal microscopy of fluorescently tagged TWD1 shows it to reside at the endoplasmic reticulum (ER). Mutations in TWD1 caused mislocalization of ABCB1, ABCB4, and ABCB19 to the ER instead of the plasma membrane as shown by confocal microscopy of fluorescently tagged fusion proteins and transmission electron microscopy of immunogold-labeled samples in the case of ABCB19. Localization of the unrelated PIN-FORMED2 auxin transporter or plasma membrane marker proteins was not affected by loss of TWD1. Abnormal spread of auxin signaling into the elongation zone of twd1 roots, attributable to mislocalized ABCB transporters and suppressed by an auxin transport inhibitor, appeared to cause the twisted cell files characteristic of twd1 roots.
Publication
Journal: Clinics and Research in Hepatology and Gastroenterology
September/14/2011
Abstract
Phase separation of cholesterol crystals from supersaturated bile is still considered the key event in cholesterol gallstone formation. In this review, we will first provide a basal framework of the interactions between the sterol, bile salts and phospholipids in aqueous solutions and then summarize new developments. The hepatocytic apical membrane harbours specific transport proteins for these lipids. Polymorphisms in the gene encoding the cholesterol transporter ABCG5-G8 have been found to increase overall gallstone risk, whereas functional mutations in the gene encoding the phospholipid floppase ABCB4 lead to the rare clinical syndrome of low phospholipid associated cholelithiasis. Expression of bile salt and phospholipid transport proteins is regulated bij the bile salt nuclear receptor Farnesoid X receptor (FXR), while the Liver X Receptor (LXR) α regulates ABCG5-G8. Although data from murine experiments suggest a critical role of FXR in gallstone formation, its role in human lithogenesis remains controversial. Variants of the gene encoding UGT1A1 (uridine 5'-diphosphate (UDP)-glucuronosyltransferase 1A1) responsible for bilirubin conjugation were recently associated with risk of gallstones as well as stone bilirubin content, suggesting common factors in cholesterol and pigment gallstone pathogenesis.
Publication
Journal: Plant and Cell Physiology
September/3/2013
Abstract
The phytohormone auxin is critical for plant growth and many developmental processes. Members of the P-glycoprotein (PGP/ABCB) subfamily of ATP-binding cassette (ABC) transporters have been shown to function in the polar movement of auxin by transporting auxin over the plasma membrane in both monocots and dicots. Here, we characterize a new Arabidopsis member of the ABCB subfamily, ABCB21/PGP21, a close homolog of ABCB4, for which conflicting transport directionalities have been reported. ABCB21 is strongly expressed in the abaxial side of cotyledons and in junctions of lateral organs in the aerial part, whereas in roots it is specifically expressed in pericycle cells. Membrane fractionation by sucrose density gradient centrifugation followed by Western blot showed that ABCB21 is a plasma membrane-localized ABC transporter. A transport assay with Arabidopsis protoplasts suggested that ABCB21 was involved in IAA transport in an outward direction, while naphthalene acetic acid (NAA) was a less preferable substrate for ABCB21. Further functional analysis of ABCB21 using yeast import and export assays showed that ABCB21 mediates the 1-N-naphthylphthalamic acid (NPA)-sensitive translocation of auxin in an inward direction when the cytoplasmic IAA concentration is low, whereas this transporter mediates outward transport under high internal IAA. An increase in the cytoplasmic IAA concentration by pre-loading of IAA into yeast cells abolished the IAA uptake activity by ABCB21 as well as ABCB4. These findings suggest that ABCB21 functions as a facultative importer/exporter controlling auxin concentrations in plant cells.
Publication
Journal: Gut
October/22/2007
Abstract
BACKGROUND
Intrahepatic cholestasis of pregnancy (ICP) is characterised by troublesome maternal pruritus, raised serum bile acid levels and increased fetal risk. Mutations of the ABCB4 gene encoding the hepatobiliary phospholipid transporter have been identified in a small proportion of patients with cholestasis of pregnancy. In a recent prospective study on 693 patients with cholestasis of pregnancy, a cut-off level for serum bile acid >> or =40 micromol/l) was determined for increased risk of fetal complications.
OBJECTIVE
To investigate whether common combinations of polymorphic alleles (haplotypes) of the genes encoding the hepatobiliary ATP-binding cassette (ABC) transporters for phospholipids (ABCB4) and bile acids (ABCB11) were associated with this severe form of cholestasis of pregnancy.
METHODS
For genetic analysis, 52 women with bile acid levels>> or =40 micromol/l (called cases) and 52 unaffected women (called controls) matched for age, parity and geographical residence were studied. Gene variants tagging common ABCB4 and ABCB11 haplotypes were genotyped and haplotype distributions were compared between cases and controls by permutation testing.
RESULTS
In contrast with ABCB11 haplotypes, ABCB4 haplotypes differed between the two groups (p = 0.019), showing that the severe form of cholestasis of pregnancy is associated with the ABCB4 gene variants. Specifically, haplotype ABCB4_5 occurred more often in cases, whereas haplotypes ABCB4_3 and ABCB4_7 were more common in controls. These associations were reflected by different frequencies of at-risk alleles of the two tagging polymorphisms (c.711A: odds ratio (OR) 2.27, p = 0.04; deletion intron 5: OR 14.68, p = 0.012).
CONCLUSIONS
Variants of ABCB4 represent genetic risk factors for the severe form of ICP in Sweden.
Publication
Journal: Hepatology
August/15/2007
Abstract
Human ABCB4 (multidrug resistance [MDR]3 P-glycoprotein) is expressed in the canalicular membrane of the hepatocyte. ABCB4 has been shown to be required for phosphatidylcholine (PC) secretion into the bile and to translocate PC across the plasma membrane. To further investigate the function of ABCB4, we established a cell line stably expressing ABCB4 (human embryonic kidney [HEK]/ABCB4). The efflux of phospholipids from HEK/ABCB4 cells was remarkably increased by the addition of taurocholate. In addition, the cholesterol efflux from HEK/ABCB4 cells was also enhanced in the presence of taurocholate. Light scattering measurements suggested that the taurocholate monomer plays an important role in ABCB4-mediated lipid secretion. On the other hand, the efflux of phospholipids and cholesterol was not mediated by ABCB1 (MDR1) even in the presence of taurocholate. Taurocholate promoted the efflux of phospholipids and cholesterol from HEK/ABCB4 cells more efficiently than glycocholate and cholate. ABCB4-K435M and ABCB4-K1075M, Walker A lysine mutants, did not mediate the phospholipid and cholesterol efflux in the presence of taurocholate, suggesting that ATP hydrolysis is essential for the efflux. Verapamil completely inhibited the taurocholate-dependent efflux of phospholipids and cholesterol from HEK/ABCB4 cells. Mass spectrometry revealed that, in the presence of taurocholate, HEK/ABCB4 cells preferentially secreted PC compared to sphingomyelin. PC vesicles induced cholesterol diffusion from cell membrane, but did not accept cholesterol from ABCB4.
CONCLUSIONS
ABCB4 mediates the efflux of phospholipids into the canalicular lumen in the presence of bile salts, and plays a crucial role in bile formation and lipid homeostasis.
Publication
Journal: BMC Biology
June/18/2014
Abstract
BACKGROUND
In mammals, ABCB1 constitutes a cellular "first line of defense" against a wide array of chemicals and drugs conferring cellular multidrug or multixenobiotic resistance (MDR/MXR). We tested the hypothesis that an ABCB1 ortholog serves as protection for the sensitive developmental processes in zebrafish embryos against adverse compounds dissolved in the water.
RESULTS
Indication for ABCB1-type efflux counteracting the accumulation of chemicals in zebrafish embryos comes from experiments with fluorescent and toxic transporter substrates and inhibitors. With inhibitors present, levels of fluorescent dyes in embryo tissue and sensitivity of embryos to toxic substrates were generally elevated. We verified two predicted sequences from zebrafish, previously annotated as abcb1, by cloning; our synteny analyses, however, identified them as abcb4 and abcb5, respectively. The abcb1 gene is absent in the zebrafish genome and we explored whether instead Abcb4 and/or Abcb5 show toxicant defense properties. Quantitative real-time polymerase chain reaction (qPCR) analyses showed the presence of transcripts of both genes throughout the first 48 hours of zebrafish development. Similar to transporter inhibitors, morpholino knock-down of Abcb4 increased accumulation of fluorescent substrates in embryo tissue and sensitivity of embryos toward toxic compounds. In contrast, morpholino knock-down of Abcb5 did not exert this effect. ATPase assays with recombinant protein obtained with the baculovirus expression system confirmed that dye and toxic compounds act as substrates of zebrafish Abcb4 and inhibitors block its function. The compounds tested comprised model substrates of human ABCB1, namely the fluorescent dyes rhodamine B and calcein-am and the toxic compounds vinblastine, vincristine and doxorubicin; cyclosporin A, PSC833, MK571 and verapamil were applied as inhibitors. Additionally, tests were performed with ecotoxicologically relevant compounds: phenanthrene (a polycyclic aromatic hydrocarbon) and galaxolide and tonalide (two polycyclic musks).
CONCLUSIONS
We show that zebrafish Abcb4 is a cellular toxicant transporter and provides protection of embryos against toxic chemicals dissolved in the water. Zebrafish Abcb4 thus is functionally similar to mammalian ABCB1, but differs from mammalian ABCB4, which is not involved in cellular resistance to chemicals but specifically transports phospholipids in the liver. Our data have important implications: Abcb4 could affect bioavailability - and thus toxicologic and pharmacologic potency - of chemicals to zebrafish embryos and inhibition of Abcb4 therefore causes chemosensitization, that is, enhanced sensitivity of embryos to toxicants. These aspects should be considered in (eco)toxicologic and pharmacologic chemical screens with the zebrafish embryo, a major vertebrate model.
Publication
Journal: Journal of Hepatology
December/19/2016
Abstract
OBJECTIVE
Approximately 95% of bile acids (BAs) excreted into bile are reabsorbed in the gut and circulate back to the liver for further biliary secretion. Therefore, pharmacological inhibition of the ileal apical sodium-dependent BA transporter (ASBT/SLC10A2) may protect against BA-mediated cholestatic liver and bile duct injury.
METHODS
Eight week old Mdr2(-/-) (Abcb4(-/-)) mice (model of cholestatic liver injury and sclerosing cholangitis) received either a diet supplemented with A4250 (0.01% w/w) - a highly potent and selective ASBT inhibitor - or a chow diet. Liver injury was assessed biochemically and histologically after 4weeks of A4250 treatment. Expression profiles of genes involved in BA homeostasis, inflammation and fibrosis were assessed via RT-PCR from liver and ileum homogenates. Intestinal inflammation was assessed by RNA expression profiling and immunohistochemistry. Bile flow and composition, as well as biliary and fecal BA profiles were analyzed after 1week of ASBT inhibitor feeding.
RESULTS
A4250 improved sclerosing cholangitis in Mdr2(-/-) mice and significantly reduced serum alanine aminotransferase, alkaline phosphatase and BAs levels, hepatic expression of pro-inflammatory (Tnf-α, Vcam1, Mcp-1) and pro-fibrogenic (Col1a1, Col1a2) genes and bile duct proliferation (mRNA and immunohistochemistry for cytokeratin 19 (CK19)). Furthermore, A4250 significantly reduced bile flow and biliary BA output, which correlated with reduced Bsep transcription, while Ntcp and Cyp7a1 were induced. Importantly A4250 significantly reduced biliary BA secretion but preserved HCO3(-) and biliary phospholipid secretion resulting in an increased HCO3(-)/BA and PL/BA ratio. In addition, A4250 profoundly increased fecal BA excretion without causing diarrhea and altered BA pool composition, resulting in diminished concentrations of primary BAs tauro-β-muricholic acid and taurocholic acid.
CONCLUSIONS
Pharmacological ASBT inhibition attenuates cholestatic liver and bile duct injury by reducing biliary BA concentrations in mice.
Publication
Journal: Drug Metabolism and Disposition
December/3/2006
Abstract
Biliary excretion of bile salts and other bile constituents from hepatocytes is mediated by the apical (canalicular) transporters P-glycoprotein 3 (MDR3, ABCB4) and the bile salt export pump (ABCB11). Mutations in ABCB4 and ABCB11 contribute to cholestatic diseases [e.g., progressive familial intrahepatic cholestasis 2 (PFIC2), PFIC3, and intrahepatic cholestasis of pregnancy], and our objective was to establish genetic variability and haplotype structures of ABCB4 and ABCB11 in healthy populations of different ethnic backgrounds. All coding exons, 5 of 6 noncoding exons, 50 to 300 base pairs of the flanking intronic regions, and 2.5 to 2.8 kilobase pairs of the promoter regions of ABCB4 and ABCB11 were sequenced in 159 and 196 DNA samples of Caucasian, African-American, Japanese, and Korean origin. In total, 76 and 86 polymorphisms were identified in ABCB4 and ABCB11, respectively; among them, 14 and 28 exonic polymorphisms, and 8 and 10 protein-altering variants, of which 4 were predicted to have functional consequences. Both genes showed substantial ethnic differences with respect to allele number, frequency of common and population-specific sites, and patterns of linkage disequilibrium. Population genetic analysis suggested some selective pressure against changes in the protein, supporting the important endogenous role of these transporters. Haplotype variability was greater in ABCB11 than in ABCB4. An ABCB11 promoter haplotype was associated with significant decrease of activity compared with wild type. Our results contribute to a better understanding of the molecular basis and of ethnic differences in drug response, and provide a valuable tool for future research on the heredity of cholestatic liver injury.
Publication
Journal: Oncogene
May/9/2001
Abstract
The multidrug resistance (MDR) phenotype is a major cause of cancer treatment failure. Here the expressions of 4224 genes were analysed for association with intrinsic or acquired doxorubicin (DOX) resistance. A cluster of overexpressed genes related to DOX resistance was observed. Included in this cluster was ABCB1 the P-glycoprotein transporter protein gene and MMP1 (Matrix Metalloproteinase 1), indicative of the invasive nature of resistant cells, and the oxytocin receptor (OXTR), a potential new therapeutic target. Overexpression of genes associated with xenobiotic transformation, cell transformation, cell signalling and lymphocyte activation was also associated with DOX resistance as was estrogen receptor negativity. In all carcinoma cells, compared with HBL100 a putatively normal breast epithelial cell line, a cluster of overexpressed genes was identified which included several keratins, in particular keratins 8 and 18 which are regulated through the ras signalling pathway. Analysis of genomic amplifications and deletions revealed specific genetic alterations common to both intrinsic and acquired DOX resistance including ABCB1, PGY3 (ABCB4) and BAK. The findings shown here indicate new possibilities for the diagnosis of DOX resistance using gene expression, and potential novel therapeutic targets for pharmacological intervention.
Publication
Journal: Journal of Hepatology
January/21/2004
Abstract
OBJECTIVE
Mutations in genes encoding the ATP-binding cassette (ABC)-transporters ABCG5 and ABCG8 underlie sitosterolemia, which is characterized by elevated plasma levels of phytosterols due to increased intestinal absorption and impaired biliary secretion of sterols. The aim of our study was to correlate the expression levels of Abcg5 and Abcg8 to biliary cholesterol secretion in various (genetically-modified) mouse models.
METHODS
Bile was collected from genetically-modified mice fed a chow diet, or from mice fed either a chow diet, or chow supplemented with either 1% diosgenin, 0.1% simvastatin, or a synthetic liver X receptor agonist, for determination of biliary lipids. Livers and small intestines were harvested and expression levels of Abcg5, Abcg8 and Abcb4 were determined by real-time polymerase chain reaction.
RESULTS
Intestinal expression of Abcg5 and Abcg8 did not show much variation between the various models. In contrast, a linear correlation between hepatic expression levels of Abcg5 and Abcg8 and biliary cholesterol secretion rates was found. This relation was independent of Abcb4-mediated phospholipid secretion. However, in diosgenin-fed mice showing cholesterol hypersecretion, hepatic Abcg5 and Abcg8 expression levels remained unchanged.
CONCLUSIONS
Our results strongly support a role for Abcg5 and Abcg8 in regulation of biliary cholesterol secretion, but also indicate the existence of a largely independent route of cholesterol secretion.
Publication
Journal: Orphanet Journal of Rare Diseases
November/5/2007
Abstract
Low phospholipid-associated cholelithiasis (LPAC) is characterized by the association of ABCB4 mutations and low biliary phospholipid concentration with symptomatic and recurring cholelithiasis. This syndrome is infrequent and corresponds to a peculiar small subgroup of patients with symptomatic gallstone disease. The patients with the LPAC syndrome present typically with the following main features: age less than 40 years at onset of symptoms, recurrence of biliary symptoms after cholecystectomy, intrahepatic hyperechoic foci or sludge or microlithiasis along the biliary tree. Defect in ABCB4 function causes the production of bile with low phospholipid content, increased lithogenicity and high detergent properties leading to bile duct luminal membrane injuries and resulting in cholestasis with increased serum gamma-glutamyltransferase (GGT) activity. Intrahepatic gallstones may be evidenced by ultrasonography (US), computing tomography (CT) abdominal scan or magnetic resonance cholangiopancreatography, intrahepatic hyperechogenic foci along the biliary tree may be evidenced by US, and hepatic bile composition (phospholipids) may be determined by duodenoscopy. In all cases where the ABCB4 genotyping confirms the diagnosis of LPAC syndrome in young adults, long-term curative or prophylactic therapy with ursodeoxycholic acid (UDCA) should be initiated early to prevent the occurrence or recurrence of the syndrome and its complications. Cholecystectomy is indicated in the case of symptomatic gallstones. Biliary drainage or partial hepatectomy may be indicated in the case of symptomatic intrahepatic bile duct dilatations filled with gallstones. Patients with end-stage liver disease may be candidates for liver transplantation.
Publication
Journal: Hepatology
May/7/2009
Abstract
Progressive familial intrahepatic cholestasis type 3 (PFIC3) is a rare liver disease characterized by early onset of cholestasis that leads to cirrhosis and liver failure before adulthood. PFIC3 may be improved by chronic administration of ursodeoxycholic acid, although in many cases liver transplantation is the only therapy. The disease is caused by mutations of the adenosine triphosphate (ATP)-binding cassette, sub-family B, member 4 (ABCB4) [multidrug resistance 3 (MDR3)] gene encoding a specific hepatocellular canalicular transporter involved in biliary phosphatidylcholine secretion. Several mutations have been reported; however, the effect of individual mutations has not been investigated. ABCB4 is highly homologous to ATP-binding cassette, sub-family B, member 1 (ABCB1) (MDR1), the multidrug transporter responsible for drug resistance of cancer cells. We have studied the effect of mutation I541F localized to the first nucleotide-binding domain, which is highly conserved between ABCB4 and ABCB1. Plasmids encoding the wild-type human ABCB4 or rat ABCB1-green fluorescing protein (GFP) construct, and corresponding I541F-mutants, were expressed in hepatocellular carcinoma, human (HepG2) and Madin-Darby canine kidney (MDCK) cells. Expression studies showed that ABCB4 was localized at the bile canalicular membrane in HepG2 cells and at the apical surface in MDCK cells, whereas the I541F mutant was intracellular. In MDCK cells, ABCB1-I541F also accumulated intracellularly in compartments, which were identified as the endoplasmic reticulum and cis-Golgi, and remained partially endoH-sensitive. After shifting cells to 27 degrees C, ABCB1-I541F was expressed at the apical cell surface in a mature and active form. Similarly, ABCB4 was significantly trafficked to the membrane of bile canaliculi in HepG2 cells.
CONCLUSIONS
Mutation I541F causes mislocalization of both ABCB4 and ABCB1. Intracellular retention of ABCB4-I541F can explain the disease in PFIC3 patients bearing this mutation. The observation that plasma membrane expression and activity can be rescued by low temperature opens perspectives to develop novel therapies for the treatment of PFIC3.
Publication
Journal: Journal of Biological Chemistry
April/15/2012
Abstract
The ATP-binding cassette transporter ABCB4 is a phosphatidylcholine translocator specifically expressed at the bile canalicular membrane in hepatocytes, highly homologous to the multidrug transporter ABCB1. Variations in the ABCB4 gene sequence cause progressive familial intrahepatic cholestasis type 3. We have shown previously that the I541F mutation, when reproduced either in ABCB1 or in ABCB4, led to retention in the endoplasmic reticulum (ER)/Golgi. Here, Madin-Darby canine kidney cells expressing ABCB1-GFP were used as a model to investigate this mutant. We show that ABCB1-I541F is not properly folded and is more susceptible to in situ protease degradation. It colocalizes and coprecipitates with the ER chaperone calnexin and coprecipitates with the cytosolic chaperone Hsc/Hsp70. Silencing of calnexin or overexpression of Hsp70 have no effect on maturation of the mutant. We also tested potential rescue by chemical and pharmacological chaperones. Thapsigargin and sodium 4-phenyl butyrate were inefficient. Glycerol improved maturation and exit of the mutant from the ER. Cyclosporin A, a competitive substrate for ABCB1, restored maturation, plasma membrane expression, and activity of ABCB1-I541F. Cyclosporin A also improved maturation of ABCB4-I541F in Madin-Darby canine kidney cells. In HepG(2) cells transfected with ABCB4-I541F cDNA, cyclosporin A allowed a significant amount of the mutant protein to reach the membrane of bile canaliculi. These results show that the best strategy to rescue conformation-defective ABCB4 mutants is provided by pharmacological chaperones that specifically target the protein. They identify cyclosporin A as a potential novel therapeutic tool for progressive familial intrahepatic cholestasis type 3 patients.
Publication
Journal: British Journal of Clinical Pharmacology
November/12/2017
Abstract
Anthracycline-induced cardiotoxicity (ACT) occurs in 57% of treated patients and remains an important limitation of anthracycline-based chemotherapy. In various genetic association studies, potential genetic risk markers for ACT have been identified. Therefore, we developed evidence-based clinical practice recommendations for pharmacogenomic testing to further individualize therapy based on ACT risk.
We followed a standard guideline development process, including a systematic literature search, evidence synthesis and critical appraisal, and the development of clinical practice recommendations with an international expert group.
RARG rs2229774, SLC28A3 rs7853758 and UGT1A6 rs17863783 variants currently have the strongest and the most consistent evidence for association with ACT. Genetic variants in ABCC1, ABCC2, ABCC5, ABCB1, ABCB4, CBR3, RAC2, NCF4, CYBA, GSTP1, CAT, SULT2B1, POR, HAS3, SLC22A7, SCL22A17, HFE and NOS3 have also been associated with ACT, but require additional validation. We recommend pharmacogenomic testing for the RARG rs2229774 (S427L), SLC28A3 rs7853758 (L461L) and UGT1A6*4 rs17863783 (V209V) variants in childhood cancer patients with an indication for doxorubicin or daunorubicin therapy (Level B - moderate). Based on an overall risk stratification, taking into account genetic and clinical risk factors, we recommend a number of management options including increased frequency of echocardiogram monitoring, follow-up, as well as therapeutic options within the current standard of clinical practice.
Existing evidence demonstrates that genetic factors have the potential to improve the discrimination between individuals at higher and lower risk of ACT. Genetic testing may therefore support both patient care decisions and evidence development for an improved prevention of ACT.
Publication
Journal: Journal of Medical Genetics
August/4/2003
load more...