Citations
All
Search in:AllTitleAbstractAuthor name
Publications
(40K+)
Patents
Grants
Pathways
Clinical trials
Publication
Journal: Cell
June/16/2013
Abstract
Chromatin regulators have become attractive targets for cancer therapy, but it is unclear why inhibition of these ubiquitous regulators should have gene-specific effects in tumor cells. Here, we investigate how inhibition of the widely expressed transcriptional coactivator BRD4 leads to selective inhibition of the MYC oncogene in multiple myeloma (MM). BRD4 and Mediator were found to co-occupy thousands of enhancers associated with active genes. They also co-occupied a small set of exceptionally large super-enhancers associated with genes that feature prominently in MM biology, including the MYC oncogene. Treatment of MM tumor cells with the BET-bromodomain inhibitor JQ1 led to preferential loss of BRD4 at super-enhancers and consequent transcription elongation defects that preferentially impacted genes with super-enhancers, including MYC. Super-enhancers were found at key oncogenic drivers in many other tumor cells. These observations have implications for the discovery of cancer therapeutics directed at components of super-enhancers in diverse tumor types.
Publication
Journal: Nature
April/19/2009
Abstract
Altered glucose metabolism in cancer cells is termed the Warburg effect, which describes the propensity of most cancer cells to take up glucose avidly and convert it primarily to lactate, despite available oxygen. Notwithstanding the renewed interest in the Warburg effect, cancer cells also depend on continued mitochondrial function for metabolism, specifically glutaminolysis that catabolizes glutamine to generate ATP and lactate. Glutamine, which is highly transported into proliferating cells, is a major source of energy and nitrogen for biosynthesis, and a carbon substrate for anabolic processes in cancer cells, but the regulation of glutamine metabolism is not well understood. Here we report that the c-Myc (hereafter referred to as Myc) oncogenic transcription factor, which is known to regulate microRNAs and stimulate cell proliferation, transcriptionally represses miR-23a and miR-23b, resulting in greater expression of their target protein, mitochondrial glutaminase, in human P-493 B lymphoma cells and PC3 prostate cancer cells. This leads to upregulation of glutamine catabolism. Glutaminase converts glutamine to glutamate, which is further catabolized through the tricarboxylic acid cycle for the production of ATP or serves as substrate for glutathione synthesis. The unique means by which Myc regulates glutaminase uncovers a previously unsuspected link between Myc regulation of miRNAs, glutamine metabolism, and energy and reactive oxygen species homeostasis.
Publication
Journal: Cell
April/30/1992
Abstract
Although Rat-1 fibroblasts expressing c-myc constitutively are unable to arrest growth in low serum, their numbers do not increase in culture because of substantial cell death. We show this cell death to be dependent upon expression of c-myc protein and to occur by apoptosis. Regions of the c-myc protein required for induction of apoptosis overlap with regions necessary for cotransformation, autoregulation, and inhibition of differentiation, suggesting that the apoptotic function of c-myc protein is related to its other functions. Moreover, cells with higher levels of c-myc protein are more prone to cell death upon serum deprivation. Finally, we demonstrate that deregulated c-myc expression induces apoptosis in cells growth arrested by a variety of means and at various points in the cell cycle.
Publication
Journal: Nature
January/25/2012
Abstract
Epigenetic pathways can regulate gene expression by controlling and interpreting chromatin modifications. Cancer cells are characterized by altered epigenetic landscapes, and commonly exploit the chromatin regulatory machinery to enforce oncogenic gene expression programs. Although chromatin alterations are, in principle, reversible and often amenable to drug intervention, the promise of targeting such pathways therapeutically has been limited by an incomplete understanding of cancer-specific dependencies on epigenetic regulators. Here we describe a non-biased approach to probe epigenetic vulnerabilities in acute myeloid leukaemia (AML), an aggressive haematopoietic malignancy that is often associated with aberrant chromatin states. By screening a custom library of small hairpin RNAs (shRNAs) targeting known chromatin regulators in a genetically defined AML mouse model, we identify the protein bromodomain-containing 4 (Brd4) as being critically required for disease maintenance. Suppression of Brd4 using shRNAs or the small-molecule inhibitor JQ1 led to robust antileukaemic effects in vitro and in vivo, accompanied by terminal myeloid differentiation and elimination of leukaemia stem cells. Similar sensitivities were observed in a variety of human AML cell lines and primary patient samples, revealing that JQ1 has broad activity in diverse AML subtypes. The effects of Brd4 suppression are, at least in part, due to its role in sustaining Myc expression to promote aberrant self-renewal, which implicates JQ1 as a pharmacological means to suppress MYC in cancer. Our results establish small-molecule inhibition of Brd4 as a promising therapeutic strategy in AML and, potentially, other cancers, and highlight the utility of RNA interference (RNAi) screening for revealing epigenetic vulnerabilities that can be exploited for direct pharmacological intervention.
Publication
Journal: Proceedings of the National Academy of Sciences of the United States of America
January/4/2009
Abstract
Mammalian cells fuel their growth and proliferation through the catabolism of two main substrates: glucose and glutamine. Most of the remaining metabolites taken up by proliferating cells are not catabolized, but instead are used as building blocks during anabolic macromolecular synthesis. Investigations of phosphoinositol 3-kinase (PI3K) and its downstream effector AKT have confirmed that these oncogenes play a direct role in stimulating glucose uptake and metabolism, rendering the transformed cell addicted to glucose for the maintenance of survival. In contrast, less is known about the regulation of glutamine uptake and metabolism. Here, we report that the transcriptional regulatory properties of the oncogene Myc coordinate the expression of genes necessary for cells to engage in glutamine catabolism that exceeds the cellular requirement for protein and nucleotide biosynthesis. A consequence of this Myc-dependent glutaminolysis is the reprogramming of mitochondrial metabolism to depend on glutamine catabolism to sustain cellular viability and TCA cycle anapleurosis. The ability of Myc-expressing cells to engage in glutaminolysis does not depend on concomitant activation of PI3K or AKT. The stimulation of mitochondrial glutamine metabolism resulted in reduced glucose carbon entering the TCA cycle and a decreased contribution of glucose to the mitochondrial-dependent synthesis of phospholipids. These data suggest that oncogenic levels of Myc induce a transcriptional program that promotes glutaminolysis and triggers cellular addiction to glutamine as a bioenergetic substrate.
Publication
Journal: Cell
November/11/2002
Abstract
The transactivation of TCF target genes induced by Wnt pathway mutations constitutes the primary transforming event in colorectal cancer (CRC). We show that disruption of beta-catenin/TCF-4 activity in CRC cells induces a rapid G1 arrest and blocks a genetic program that is physiologically active in the proliferative compartment of colon crypts. Coincidently, an intestinal differentiation program is induced. The TCF-4 target gene c-MYC plays a central role in this switch by direct repression of the p21(CIP1/WAF1) promoter. Following disruption of beta-catenin/TCF-4 activity, the decreased expression of c-MYC releases p21(CIP1/WAF1) transcription, which in turn mediates G1 arrest and differentiation. Thus, the beta-catenin/TCF-4 complex constitutes the master switch that controls proliferation versus differentiation in healthy and malignant intestinal epithelial cells.
Publication
Journal: Science
December/3/2008
Abstract
Induced pluripotent stem (iPS) cells have been generated from mouse and human somatic cells by introducing Oct3/4 and Sox2 with either Klf4 and c-Myc or Nanog and Lin28 using retroviruses or lentiviruses. Patient-specific iPS cells could be useful in drug discovery and regenerative medicine. However, viral integration into the host genome increases the risk of tumorigenicity. Here, we report the generation of mouse iPS cells without viral vectors. Repeated transfection of two expression plasmids, one containing the complementary DNAs (cDNAs) of Oct3/4, Sox2, and Klf4 and the other containing the c-Myc cDNA, into mouse embryonic fibroblasts resulted in iPS cells without evidence of plasmid integration, which produced teratomas when transplanted into mice and contributed to adult chimeras. The production of virus-free iPS cells, albeit from embryonic fibroblasts, addresses a critical safety concern for potential use of iPS cells in regenerative medicine.
Publication
Journal: Nature
October/24/1988
Abstract
A common feature of follicular lymphoma, the most prevalent haematological malignancy in humans, is a chromosome translocation (t(14;18] that has coupled the immunoglobulin heavy chain locus to a chromosome 18 gene denoted bcl-2. By analogy with the translocated c-myc oncogene in other B-lymphoid tumours bcl-2 is a candidate oncogene, but no biological effects of bcl-2 have yet been reported. To test whether bcl-2 influences the growth of haematopoietic cells, either alone or together with a deregulated c-myc gene, we have introduced a human bcl-2 complementary DNA using a retroviral vector into bone marrow cells from either normal or E mu-myc transgenic mice, in which B-lineage cells constitutively express the c-myc gene. Bcl-2 cooperated with c-myc to promote proliferation of B-cell precursors, some of which became tumorigenic. To determine how bcl-2 expression impinges on growth factor requirements, the gene was introduced into a lymphoid and a myeloid cell line that require interleukin 3 (IL-3). In the absence of IL-3, bcl-2 promoted the survival of the infected cells but they persisted in a G0 state, rather than proliferating. These results argue that bcl-2 provided a distinct survival signal to the cell and may contribute to neoplasia by allowing a clone to persist until other oncogenes, such as c-myc, become activated.
Publication
Journal: Nature
February/15/2007
Abstract
Tumorigenesis is a multi-step process that requires activation of oncogenes and inactivation of tumour suppressor genes. Mouse models of human cancers have recently demonstrated that continuous expression of a dominantly acting oncogene (for example, Hras, Kras and Myc) is often required for tumour maintenance; this phenotype is referred to as oncogene addiction. This concept has received clinical validation by the development of active anticancer drugs that specifically inhibit the function of oncoproteins such as BCR-ABL, c-KIT and EGFR. Identifying additional gene mutations that are required for tumour maintenance may therefore yield clinically useful targets for new cancer therapies. Although loss of p53 function is a common feature of human cancers, it is not known whether sustained inactivation of this or other tumour suppressor pathways is required for tumour maintenance. To explore this issue, we developed a Cre-loxP-based strategy to temporally control tumour suppressor gene expression in vivo. Here we show that restoring endogenous p53 expression leads to regression of autochthonous lymphomas and sarcomas in mice without affecting normal tissues. The mechanism responsible for tumour regression is dependent on the tumour type, with the main consequence of p53 restoration being apoptosis in lymphomas and suppression of cell growth with features of cellular senescence in sarcomas. These results support efforts to treat human cancers by way of pharmacological reactivation of p53.
Publication
Journal: Nature Medicine
February/15/2016
Abstract
Colorectal cancer (CRC) is a frequently lethal disease with heterogeneous outcomes and drug responses. To resolve inconsistencies among the reported gene expression-based CRC classifications and facilitate clinical translation, we formed an international consortium dedicated to large-scale data sharing and analytics across expert groups. We show marked interconnectivity between six independent classification systems coalescing into four consensus molecular subtypes (CMSs) with distinguishing features: CMS1 (microsatellite instability immune, 14%), hypermutated, microsatellite unstable and strong immune activation; CMS2 (canonical, 37%), epithelial, marked WNT and MYC signaling activation; CMS3 (metabolic, 13%), epithelial and evident metabolic dysregulation; and CMS4 (mesenchymal, 23%), prominent transforming growth factor-β activation, stromal invasion and angiogenesis. Samples with mixed features (13%) possibly represent a transition phenotype or intratumoral heterogeneity. We consider the CMS groups the most robust classification system currently available for CRC-with clear biological interpretability-and the basis for future clinical stratification and subtype-based targeted interventions.
Pulse
Views:
1
Posts:
No posts
Rating:
Not rated
Publication
Journal: Cell
April/10/2008
Abstract
Much attention has focused on a small set of transcription factors that maintain human or mouse embryonic stem (ES) cells in a pluripotent state. To gain a more complete understanding of the regulatory network that maintains this state, we identified target promoters of nine transcription factors, including somatic cell reprogramming factors (Oct4, Sox2, Klf4, and c-Myc) and others (Nanog, Dax1, Rex1, Zpf281, and Nac1), on a global scale in mouse ES cells. We found that target genes fall into two classes: promoters bound by few factors tend to be inactive or repressed, whereas promoters bound by more than four factors are largely active in the pluripotent state and become repressed upon differentiation. Furthermore, we propose a transcriptional hierarchy for reprogramming factors and broadly distinguish targets of c-Myc versus other factors. Our data provide a resource for exploration of the complex network maintaining pluripotency.
Publication
Journal: Cell
February/14/1984
Abstract
We show that c-myc is an inducible gene that is regulated by specific growth signals in a cell-cycle-dependent manner. Specifically, agents that initiate the first phase of a proliferative response in lymphocytes (lipopolysaccharide or Concanavalin A) and fibroblasts (platelet-derived growth factor) induce c-myc mRNA. Within one to three hr after the addition of these mitogens to the appropriate cells, c-myc mRNA concentration is increased between 10- and 40-fold. This induction of c-myc mRNA occurs in the presence of cycloheximide and, therefore, does not require the synthesis of new protein species. Consequently, the induction of c-myc mRNA is not secondary to growth. In addition, c-myc mRNA is "superinduced" by the combination of cycloheximide and mitogen, a finding consistent with a model that a labile protein may regulate c-myc levels in these cells. Further, this work suggests a regulatory linkage between the function of two oncogenes--c-myc and c-sis--the latter being the putative structural gene for PDGF.
Publication
Journal: Cell Stem Cell
September/29/2008
Abstract
Ectopic expression of the four transcription factors Oct4, Sox2, c-Myc, and Klf4 is sufficient to confer a pluripotent state upon the fibroblast genome, generating induced pluripotent stem (iPS) cells. It remains unknown if nuclear reprogramming induced by these four factors globally resets epigenetic differences between differentiated and pluripotent cells. Here, using novel selection approaches, we have generated iPS cells from fibroblasts to characterize their epigenetic state. Female iPS cells showed reactivation of a somatically silenced X chromosome and underwent random X inactivation upon differentiation. Genome-wide analysis of two key histone modifications indicated that iPS cells are highly similar to ES cells. Consistent with these observations, iPS cells gave rise to viable high-degree chimeras with contribution to the germline. These data show that transcription factor-induced reprogramming leads to the global reversion of the somatic epigenome into an ES-like state. Our results provide a paradigm for studying the epigenetic modifications that accompany nuclear reprogramming and suggest that abnormal epigenetic reprogramming does not pose a problem for the potential therapeutic applications of iPS cells.
Publication
Journal: Nature
April/19/2009
Abstract
Transgenic expression of just four defined transcription factors (c-Myc, Klf4, Oct4 and Sox2) is sufficient to reprogram somatic cells to a pluripotent state. The resulting induced pluripotent stem (iPS) cells resemble embryonic stem cells in their properties and potential to differentiate into a spectrum of adult cell types. Current reprogramming strategies involve retroviral, lentiviral, adenoviral and plasmid transfection to deliver reprogramming factor transgenes. Although the latter two methods are transient and minimize the potential for insertion mutagenesis, they are currently limited by diminished reprogramming efficiencies. piggyBac (PB) transposition is host-factor independent, and has recently been demonstrated to be functional in various human and mouse cell lines. The PB transposon/transposase system requires only the inverted terminal repeats flanking a transgene and transient expression of the transposase enzyme to catalyse insertion or excision events. Here we demonstrate successful and efficient reprogramming of murine and human embryonic fibroblasts using doxycycline-inducible transcription factors delivered by PB transposition. Stable iPS cells thus generated express characteristic pluripotency markers and succeed in a series of rigorous differentiation assays. By taking advantage of the natural propensity of the PB system for seamless excision, we show that the individual PB insertions can be removed from established iPS cell lines, providing an invaluable tool for discovery. In addition, we have demonstrated the traceless removal of reprogramming factors joined with viral 2A sequences delivered by a single transposon from murine iPS lines. We anticipate that the unique properties of this virus-independent simplification of iPS cell production will accelerate this field further towards full exploration of the reprogramming process and future cell-based therapies.
Pulse
Views:
2
Posts:
No posts
Rating:
Not rated
Publication
Journal: Cell
May/6/2010
Abstract
Recruitment of the RNA polymerase II (Pol II) transcription initiation apparatus to promoters by specific DNA-binding transcription factors is well recognized as a key regulatory step in gene expression. We report here that promoter-proximal pausing is a general feature of transcription by Pol II in mammalian cells and thus an additional step where regulation of gene expression occurs. This suggests that some transcription factors recruit the transcription apparatus to promoters, whereas others effect promoter-proximal pause release. Indeed, we find that the transcription factor c-Myc, a key regulator of cellular proliferation, plays a major role in Pol II pause release rather than Pol II recruitment at its target genes. We discuss the implications of these results for the role of c-Myc amplification in human cancer.
Publication
Journal: Nature Biotechnology
September/9/2008
Abstract
Reprogramming of mouse and human somatic cells can be achieved by ectopic expression of transcription factors, but with low efficiencies. We report that DNA methyltransferase and histone deacetylase (HDAC) inhibitors improve reprogramming efficiency. In particular, valproic acid (VPA), an HDAC inhibitor, improves reprogramming efficiency by more than 100-fold, using Oct4-GFP as a reporter. VPA also enables efficient induction of pluripotent stem cells without introduction of the oncogene c-Myc.
Publication
Journal: Plant Cell
May/4/2003
Abstract
In Arabidopsis, the induction of a dehydration-responsive gene, rd22, is mediated by abscisic acid (ABA). We reported previously that <em>MYC</em> and MYB recognition sites in the rd22 promoter region function as cis-acting elements in the drought- and ABA-induced gene expression of rd22. bHLH- and MYB-related transcription factors, rd22BP1 (renamed At<em>MYC</em>2) and AtMYB2, interact specifically with the <em>MYC</em> and MYB recognition sites, respectively, in vitro and activate the transcription of the beta-glucuronidase reporter gene driven by the <em>MYC</em> and MYB recognition sites in Arabidopsis leaf protoplasts. Here, we show that transgenic plants overexpressing At<em>MYC</em>2 and/or AtMYB2 cDNAs have higher sensitivity to ABA. The ABA-induced gene expression of rd22 and AtADH1 was enhanced in these transgenic plants. Microarray analysis of the transgenic plants overexpressing both At<em>MYC</em>2 and AtMYB2 cDNAs revealed that several ABA-inducible genes also are upregulated in the transgenic plants. By contrast, a Ds insertion mutant of the At<em>MYC</em>2 gene was less sensitive to ABA and showed significantly decreased ABA-induced gene expression of rd22 and AtADH1. These results indicate that both At<em>MYC</em>2 and AtMYB2 proteins function as transcriptional activators in ABA-inducible gene expression under drought stress in plants.
Publication
Journal: Cell
September/19/1983
Abstract
Transcriptional enhancers, originally discovered in viral genomes, are short, cis-acting, regulatory sequences that strongly stimulate transcription from promoters of nearby genes. We demonstrate the existence of an enhancer within a mouse immunoglobulin heavy chain gene. A DNA fragment located between the joining region and the switch recombination region in the intron upstream of the immunoglobulin mu constant region has been linked, in both orientations, to genes coding for rabbit beta-globin or SV40 T antigen. This element enhances the number of correct beta-globin gene transcripts by at least two orders of magnitude and also stimulates production of T antigen. It acts from several hundred to several thousand base pairs up or downstream of a promoter without amplifying template copy number. Of the various cell lines tested, the immunoglobulin gene enhancer functions only in lymphocyte-derived (myeloma) cells. We propose that this tissue-specific enhancer contributes to the activation of somatically rearranged immunoglobulin variable region genes and possibly to abnormal expression of other genes (e.g. c-myc) that become translocated to its domain of influence.
Publication
Journal: Nature
February/10/1999
Abstract
The bmi-1 gene was first isolated as an oncogene that cooperates with c-myc in the generation of mouse lymphomas. We subsequently identified Bmi-1 as a transcriptional repressor belonging to the mouse Polycomb group. The Polycomb group comprises an important, conserved set of proteins that are required to maintain stable repression of specific target genes, such as homeobox-cluster genes, during development. In mice, the absence of bmi-1 expression results in neurological defects and severe proliferative defects in lymphoid cells, whereas bmi-1 overexpression induces lymphomas. Here we show that bmi-1-deficient primary mouse embryonic fibroblasts are impaired in progression into the S phase of the cell cycle and undergo premature senescence. In these fibroblasts and in bmi-1-deficient lymphocytes, the expression of the tumour suppressors p16 and p19Arf, which are encoded by ink4a, is raised markedly. Conversely, overexpression of bmi-1 allows fibroblast immortalization, downregulates expression of p16 and p19Arf and, in combination with H-ras, leads to neoplastic transformation. Removal of ink4a dramatically reduces the lymphoid and neurological defects seen in bmi-1-deficient mice, indicating that ink4a is a critical in vivo target for Bmi-1. Our results connect transcriptional repression by Polycomb-group proteins with cell-cycle control and senescence.
Publication
Journal: Nature
August/18/2011
Abstract
Reactive oxygen species (ROS) are mutagenic and may thereby promote cancer. Normally, ROS levels are tightly controlled by an inducible antioxidant program that responds to cellular stressors and is predominantly regulated by the transcription factor Nrf2 (also known as Nfe2l2) and its repressor protein Keap1 (refs 2-5). In contrast to the acute physiological regulation of Nrf2, in neoplasia there is evidence for increased basal activation of Nrf2. Indeed, somatic mutations that disrupt the Nrf2-Keap1 interaction to stabilize Nrf2 and increase the constitutive transcription of Nrf2 target genes were recently identified, indicating that enhanced ROS detoxification and additional Nrf2 functions may in fact be pro-tumorigenic. Here, we investigated ROS metabolism in primary murine cells following the expression of endogenous oncogenic alleles of Kras, Braf and Myc, and found that ROS are actively suppressed by these oncogenes. K-Ras(G12D), B-Raf(V619E) and Myc(ERT2) each increased the transcription of Nrf2 to stably elevate the basal Nrf2 antioxidant program and thereby lower intracellular ROS and confer a more reduced intracellular environment. Oncogene-directed increased expression of Nrf2 is a new mechanism for the activation of the Nrf2 antioxidant program, and is evident in primary cells and tissues of mice expressing K-Ras(G12D) and B-Raf(V619E), and in human pancreatic cancer. Furthermore, genetic targeting of the Nrf2 pathway impairs K-Ras(G12D)-induced proliferation and tumorigenesis in vivo. Thus, the Nrf2 antioxidant and cellular detoxification program represents a previously unappreciated mediator of oncogenesis.
Publication
Journal: Nature
January/20/1986
Abstract
Transgenic mice bearing the cellular myc oncogene coupled to the immunoglobulin mu or kappa enhancer frequently develop a fatal lymphoma within a few months of birth. Since the tumours represent represent both immature and mature B lymphocytes, constitutive c-myc expression appears to be highly leukaemogenic at several stages of B-cell maturation. These myc mice should aid study of lymphoma development, B-cell ontogeny and immunoglobulin regulation.
Publication
Journal: Cell
September/7/1989
Abstract
A DNA binding and dimerization motif, with apparent amphipathic helices (the HLH motif), has recently been identified in various proteins, including two that bind to immunoglobulin enhancers (E12 and E47). We show here that various HLH proteins can bind as apparent heterodimers to a single DNA motif and also, albeit usually more weakly, as apparent homodimers. The HLH domain can mediate heterodimer formation between either daughterless, E12, or E47 (Class A) and achaete-scute T3 or MyoD (Class B) to form proteins with high affinity for the kappa E2 site in the immunoglobulin kappa chain enhancer. The achaete-scute T3 and MyoD proteins do not form kappa E2-binding heterodimers together, and no active complex with N-myc was evident. The formation of a heterodimer between the daughterless and achaete-scute T3 products may explain the similar phenotypes of mutants at these two loci and the genetic interactions between them. A role of E12 and E47 in mammalian development, analogous to that of daughterless in Drosophila, is likely.
Publication
Journal: Nature Genetics
January/17/2008
Abstract
The c-Myc oncogenic transcription factor (Myc) is pathologically activated in many human malignancies. Myc is known to directly upregulate a pro-tumorigenic group of microRNAs (miRNAs) known as the miR-17-92 cluster. Through the analysis of human and mouse models of B cell lymphoma, we show here that Myc regulates a much broader set of miRNAs than previously anticipated. Unexpectedly, the predominant consequence of activation of Myc is widespread repression of miRNA expression. Chromatin immunoprecipitation reveals that much of this repression is likely to be a direct result of Myc binding to miRNA promoters. We further show that enforced expression of repressed miRNAs diminishes the tumorigenic potential of lymphoma cells. These results demonstrate that extensive reprogramming of the miRNA transcriptome by Myc contributes to tumorigenesis.
Pulse
Views:
1
Posts:
No posts
Rating:
Not rated
Publication
Journal: Nature Reviews Cancer
December/30/2008
Abstract
Just over 25 years ago, MYC, the human homologue of a retroviral oncogene, was identified. Since that time, MYC research has been intense and the advances impressive. On reflection, it is astonishing how each incremental insight into MYC regulation and function has also had an impact on numerous biological disciplines, including our understanding of molecular oncogenesis in general. Here we chronicle the major advances in our understanding of MYC biology, and peer into the future of MYC research.
load more...