Citations
All
Search in:AllTitleAbstractAuthor name
Publications
(4K+)
Patents
Grants
Pathways
Clinical trials
Publication
Journal: Cancer Research
May/20/2001
Abstract
CpG island hypermethylation is a mechanism of gene silencing that can be usurped by neoplastic cells to inactivate undesirable genes. In the colon, hypermethylation often starts in normal mucosa as a function of age and is markedly increased in cancer. To test the hypothesis that subjects at increased risk of colon cancer have higher levels of methylation in their nonneoplastic mucosa, we studied methylation patterns of five genes in the normal and dysplastic mucosa of patients with ulcerative colitis (UC), a condition associated with a marked increased risk of colon cancer. One gene (Mlh1) was unmethylated in all tissues examined. All four remaining genes had low but detectable levels of methylation in the epithelium of UC patients without evidence of dysplasia, and this methylation was not different from non-UC controls. By contrast, all four genes were highly methylated in dysplastic epithelium from high-grade dysplasia (HGD)/cancer patients with UC; methylation in HGD versus controls averaged 40.0% versus 7.4% (P = 0.00003) for ER, 44.0% versus 3.0% (P < 0.00003) for MYOD, 9.4% versus 2.4% (P = 0.03) for p16 exon 1, and 57.5% versus 30.6% (P = 0.01) for CSPG2. Importantly, three of the four genes were also highly methylated in the normal appearing (nondysplastic) epithelium from these same HGD/cancer patients, indicating that methylation precedes dysplasia and is widespread in these patients. Compared with controls, methylation averaged 20.1% versus 7.2% (P = 0.07) for ER, 18.4% versus 3.0% (P < 0.008) for MYOD, and 7.9% versus 2.4% (P = 0.007) for p16 exon 1. These results are consistent with the hypothesis that age-related methylation marks (and may lead to) the field defect that reflects acquired predisposition to colorectal neoplasia. Furthermore, the data suggest that chronic inflammation is associated with high levels of methylation, perhaps as a result of increased cell turnover, and that UC can be viewed as resulting in premature aging of colorectal epithelial cells.
Publication
Journal: Journal of Medical Genetics
June/25/2007
Abstract
Lynch syndrome (hereditary non-polyposis colorectal cancer) is characterised by the development of colorectal cancer, endometrial cancer and various other cancers, and is caused by a mutation in one of the mismatch repair genes: MLH1, MSH2, MSH6 or PMS2. The discovery of these genes, 15 years ago, has led to the identification of large numbers of affected families. In April 2006, a workshop was organised by a group of European experts in hereditary gastrointestinal cancer (the Mallorca-group), aiming to establish guidelines for the clinical management of Lynch syndrome. 21 experts from nine European countries participated in this workshop. Prior to the meeting, various participants prepared the key management issues of debate according to the latest publications. A systematic literature search using Pubmed and the Cochrane Database of Systematic Reviews reference lists of retrieved articles and manual searches of relevant articles was performed. During the workshop, all recommendations were discussed in detail. Because most of the studies that form the basis for the recommendations were descriptive and/or retrospective in nature, many of them were based on expert opinion. The guidelines described in this manuscript may be helpful for the appropriate management of families with Lynch syndrome. Prospective controlled studies should be undertaken to improve further the care of these families.
Publication
Journal: Gastroenterology
October/22/1997
Abstract
OBJECTIVE
Germline mutations in four DNA mismatch repair genes are known to cause susceptibility to hereditary nonpolyposis colorectal cancer (HNPCC). The rapidly increasing information about these mutations needs to be collected and appropriately stored to facilitate further studies on the biological and clinical significance of the findings.
METHODS
The International Collaborative Group on HNPCC has established a database of DNA mismatch repair gene mutations and polymorphisms. In this report, 126 predisposing mutations were analyzed.
RESULTS
A majority of the mutations affected either the Mut L homologue (MLH) 1 (n = 75) or the Mut S homologue (MSH) 2 (n = 48) and were quite evenly distributed, with some clustering in MSH2 exon 12 and MLH1 exon 16. Most MSH2 mutations consisted of frameshift (60%) or nonsense changes (23%), whereas MLH1 was mainly affected by frameshift (40%) or missense alterations (31%). Although most mutations were unique, a few common recurring mutations were identified. Of the families studied (n = 202), 82% met the Amsterdam criteria and 15% did not; the general mutation profile was similar in both groups.
CONCLUSIONS
The construction of mutation profiles will facilitate the development of diagnostic strategies in HNPCC.
Publication
Journal: Cancer Research
May/9/2001
Abstract
Esophageal adenocarcinoma (EAC) arises after normal squamous mucosa undergoes metaplasia to specialized columnar epithelium (intestinal metaplasia or Barrett's esophagus), which can then ultimately progress to dysplasia and subsequent malignancy. Epigenetic studies of this model have thus far been limited to the DNA methylation analysis of a few genes. In this study, we analyzed a panel of 20 genes using a quantitative, high-throughput methylation assay, METHYLIGHT: We used this broader approach to gain insight into concordant methylation behavior between genes and to generate epigenomic fingerprints for the different histological stages of EAC. Our study included a total of 104 tissue specimens from 51 patients with different stages of Barrett's esophagus and/or associated adenocarcinoma. We screened 84 of these samples with the full panel of 20 genes and found distinct classes of methylation patterns in the different types of tissue. The most informative genes were those with an intermediate frequency of significant hypermethylation [ranging from 15% (CDKN2A) to 60% (MGMT) of the samples]. This group could be further subdivided into three classes, according to the absence (CDKN2A, ESR1, and MYOD1) or presence (CALCA, MGMT, and TIMP3) of methylation in normal esophageal mucosa and stomach, or the infrequent methylation of normal esophageal mucosa accompanied by methylation in all normal stomach samples (APC). The other genes were less informative, because the frequency of hypermethylation was below 5% (ARF, CDH1, CDKN2B, GSTP1, MLH1, PTGS2, and THBS1), completely absent (CTNNB1, RB1, TGFBR2, and TYMS1), or ubiquitous (HIC1 and MTHFR), regardless of tissue type. Each class undergoes unique epigenetic changes at different steps of disease progression of EAC, suggesting a step-wise loss of multiple protective barriers against CpG island hypermethylation. The aberrant hypermethylation occurs at many different loci in the same tissues, suggestive of an overall deregulation of methylation control in EAC tumorigenesis. However, we did not find evidence for a distinct group of tumors with a CpG island methylator phenotype. Finally, we found that normal and metaplastic tissues from patients with evidence of associated dysplasia or cancer had a significantly higher incidence of hypermethylation than similar tissues from patients with no further progression of their disease. The fact that the samples from these two groups of patients were histologically indistinguishable, yet molecularly distinct, suggests that the occurrence of such hypermethylation may provide a clinical tool to identify patients with premalignant Barrett's who are at risk for further progression.
Publication
Journal: Genetics
May/11/1999
Abstract
We have used immunofluorescent localization to examine the distribution of MLH1 (MutL homolog) foci on synaptonemal complexes (SCs) from juvenile male mice. MLH1 is a mismatch repair protein necessary for meiotic recombination in mice, and MLH1 foci have been proposed to mark crossover sites. We present evidence that the number and distribution of MLH1 foci on SCs closely correspond to the number and distribution of chiasmata on diplotene-metaphase I chromosomes. MLH1 foci were typically excluded from SC in centromeric heterochromatin. For SCs with one MLH1 focus, most foci were located near the middle of long SCs, but near the distal end of short SCs. For SCs with two MLH1 foci, the distribution of foci was bimodal regardless of SC length, with most foci located near the proximal and distal ends. The distribution of MLH1 foci indicated interference between foci. We observed a consistent relative distance (percent of SC length in euchromatin) between two foci on SCs of different lengths, suggesting that positive interference between MLH1 foci is a function of relative SC length. The extended length of pachytene SCs, as compared to more condensed diplotene-metaphase I bivalents, makes mapping crossover events and interference distances using MLH1 foci more accurate than using chiasmata.
Publication
Journal: Journal of Molecular Diagnostics
September/18/2007
Abstract
The CpG island methylator phenotype (CIMP or CIMP-high) with extensive promoter methylation is a distinct phenotype in colorectal cancer. However, a choice of markers for CIMP has been controversial. A recent extensive investigation has selected five methylation markers (CACNA1G, IGF2, NEUROG1, RUNX3, and SOCS1) as surrogate markers for epigenomic aberrations in tumor. The use of these markers as a CIMP-specific panel needs to be validated by an independent, large dataset. Using MethyLight assays on 920 colorectal cancers from two large prospective cohort studies, we quantified DNA methylation in eight CIMP-specific markers [the above five plus CDKN2A (p16), CRABP1, and MLH1]. A CIMP-high cutoff was set at>> or = 6/8 or>> or = 5/8 methylated promoters, based on tumor distribution and BRAF/KRAS mutation frequencies. All but two very specific markers [MLH1 (98% specific) and SOCS1 (93% specific)] demonstrated>> or = 85% sensitivity and>> or = 80% specificity, indicating overall good concordance in methylation patterns and good performance of these markers. Based on sensitivity, specificity, and false positives and negatives, the eight markers were ranked in order as: RUNX3, CACNA1G, IGF2, MLH1, NEUROG1, CRABP1, SOCS1, and CDKN2A. In conclusion, a panel of markers including at least RUNX3, CACNA1G, IGF2, and MLH1 can serve as a sensitive and specific marker panel for CIMP-high.
Publication
Journal: Nature Reviews Gastroenterology and Hepatology
August/28/2019
Abstract
Globally, colorectal cancer (CRC) is the third most commonly diagnosed malignancy and the second leading cause of cancer death. Arising through three major pathways, including adenoma-carcinoma sequence, serrated pathway and inflammatory pathway, CRC represents an aetiologically heterogeneous disease according to subtyping by tumour anatomical location or global molecular alterations. Genetic factors such as germline MLH1 and APC mutations have an aetiologic role, predisposing individuals to CRC. Yet, the majority of CRC is sporadic and largely attributable to the constellation of modifiable environmental risk factors characterizing westernization (for example, obesity, physical inactivity, poor diets, alcohol drinking and smoking). As such, the burden of CRC is shifting towards low-income and middle-income countries as they become westernized. Furthermore, the rising incidence of CRC at younger ages (before age 50 years) is an emerging trend. This Review provides a comprehensive summary of CRC epidemiology, with emphasis on modifiable lifestyle and nutritional factors, chemoprevention and screening. Overall, the optimal reduction of CRC incidence and mortality will require concerted efforts to reduce modifiable risk factors, to leverage chemoprevention research and to promote population-wide and targeted screening.
Publication
Journal: Disease Markers
May/4/2005
Abstract
In 1994, the International Collaborative Group on Hereditary Nonpolyposis Colorectal Cancer (ICG-HNPCC) established an international database of mutations identified in families with Lynch (HNPCC) syndrome. The data are publicly available at http://www.nfdht.nl. The information stored in the database was systematically analyzed in 1997, and at that time, 126 different predisposing mutations were reported affecting the DNA mismatch repair genes MSH2 and MLH1 and occurring in 202 families. In 2003, the ICG-HNPCC and the Leeds Castle Polyposis Group (LCPG) merged into a new group, INSiGHT (International Society for Gastrointestinal Hereditary Tumors). The present update of the database of DNA mismatch repair gene mutations of INSiGHT includes 448 mutations that primarily involve MLH1 (50%), MSH2 (39%), and MSH6 (7%) and occur in 748 families from different parts of the world.
Publication
Journal: Journal of Molecular Diagnostics
January/11/2007
Abstract
The CpG island methylator phenotype (CIMP or CIMP-high) with extensive promoter methylation seems to be a distinct epigenotype of colorectal cancer. However, no study has comprehensively examined features of colorectal cancer with less extensive promoter methylation (designated as "CIMP-low"). Using real-time polymerase chain reaction (MethyLight), we quantified DNA methylation in five CIMP-specific gene promoters [CACNA1G, CDKN2A (p16), CRABP1, MLH1, and NEUROG1] in 840 relatively unbiased, population-based colorectal cancer samples, obtained from two large prospective cohort studies. CIMP-low (defined as 1/5 to 3/5 methylated promoters) colorectal cancers were significantly more common among men (38 versus 30% in women, P = 0.01) and among KRAS-mutated tumors (44 versus 30% in KRAS/BRAF wild-type tumors, P = 0.0003; 19% in BRAF-mutated tumors, P < 0.0001). In addition, KRAS mutations were significantly more common in CIMP-low tumors (47%) than in CIMP-high tumors (with>> or =4/5 methylated promoters, 12%, P < 0.0001) and CIMP-0 tumors (with 0/5 methylated promoters, 37%, P = 0.007). The associations of CIMP-low tumors with male sex and KRAS mutations still existed after tumors were stratified by microsatellite instability status. In conclusion, CIMP-low colorectal cancer is associated with male sex and KRAS mutations. The hypothesis that CIMP-low tumors are different from CIMP-high and CIMP-0 tumors needs to be tested further.
Publication
Journal: Genes and Development
September/25/2005
Abstract
In meiotic prophase, synaptonemal complexes (SCs) closely appose homologous chromosomes (homologs) along their length. SCs are assembled from two axial elements (AEs), one along each homolog, which are connected by numerous transverse filaments (TFs). We disrupted the mouse gene encoding TF protein Sycp1 to analyze the role of TFs in meiotic chromosome behavior and recombination. Sycp1(-/-) mice are infertile, but otherwise healthy. Sycp1(-/-) spermatocytes form normal AEs, which align homologously, but do not synapse. Most Sycp1(-/-) spermatocytes arrest in pachynema, whereas a small proportion reaches diplonema, or, exceptionally, metaphase I. In leptotene Sycp1(-/-) spermatocytes, gammaH2AX (indicative of DNA damage, including double-strand breaks) appears normal. In pachynema, Sycp1(-/-) spermatocytes display a number of discrete gammaH2AX domains along each chromosome, whereas gammaH2AX disappears from autosomes in wild-type spermatocytes. RAD51/DMC1, RPA, and MSH4 foci (which mark early and intermediate steps in pairing/recombination) appear in similar numbers as in wild type, but do not all disappear, and MLH1 and MLH3 foci (which mark late steps in crossing over) are not formed. Crossovers were rare in metaphase I of Sycp1(-/-) mice. We propose that SYCP1 has a coordinating role, and ensures formation of crossovers. Unexpectedly, Sycp1(-/-) spermatocytes did not form XY bodies.
Publication
Journal: International Journal of Cancer
June/12/2008
Abstract
Persons with the Lynch syndrome (LS) are at high risk for cancer, including cancers of the small bowel, stomach, upper urologic tract (renal pelvis and ureter), ovary, biliary tract and brain tumors, in addition to the more commonly observed colorectal and endometrial cancers. Cancer prevention strategies for these less common cancers require accurate, age-specific risk estimation. We pooled data from 4 LS research centers in a retrospective cohort study, to produce absolute incidence estimates for these cancer types, and to evaluate several potential risk modifiers. After elimination of 135 persons missing crucial information, cohort included 6,041 members of 261 families with LS-associated MLH1 or MSH2 mutations. All were either mutation carriers by test, probable mutation carriers (endometrial/colorectal cancer-affected), or first-degree relatives of these. Among mutation carriers and probable carriers, urologic tract cancer (N = 98) had an overall lifetime risk (to age 70) of 8.4% (95% CI: 6.6-10.8); risks were higher in males (p < 0.02) and members of MSH2 families (p < 0.0001). Ovarian cancer (N = 72) had an lifetime risk of 6.7% (95% CI: 5.3-9.1); risks were higher in women born after the median year of birth (p < 0.008) and in members of MSH2 families (p < 0.006). Brain tumors and cancers of the small bowel, stomach, breast and biliary tract were less common. Urologic tract cancer and ovarian cancer occur frequently enough in some LS subgroups to justify trials to evaluate promising prevention interventions. Other cancer types studied occur too infrequently to justify strenuous cancer control interventions.
Publication
Journal: Cancer Research
September/27/2006
Abstract
Endometrial cancer is the most common cancer in women with Lynch syndrome. The identification of individuals with Lynch syndrome is desirable because they can benefit from increased cancer surveillance. The purpose of this study was to determine the feasibility and desirability of molecular screening for Lynch syndrome in all endometrial cancer patients. Unselected endometrial cancer patients (N = 543) were studied. All tumors underwent microsatellite instability (MSI) testing. Patients with MSI-positive tumors underwent testing for germ line mutations in MLH1, MSH2, MSH6, and PMS2. Of 543 tumors studied, 118 (21.7%) were MSI positive (98 of 118 MSI high and 20 of 118 MSI low). All 118 patients with MSI-positive tumors had mutation testing, and nine of them had deleterious germ line mutations (one MLH1, three MSH2, and five MSH6). In addition, one case with an MSI-negative tumor had abnormal MSH6 immunohistochemical staining and was subsequently found to have a mutation in MSH6. Immunohistochemical staining was consistent with the mutation result in all seven truncating mutation-positive cases but was not consistent in two of the three missense mutation cases. We conclude that in central Ohio, at least 1.8% (95% confidence interval, 0.9-3.5%) of newly diagnosed endometrial cancer patients had Lynch syndrome. Seven of the 10 Lynch syndrome patients did not meet any published criteria for hereditary nonpolyposis colorectal cancer, and six of them were diagnosed at age >50. Studying all endometrial cancer patients for Lynch syndrome using a combination of MSI and immunohistochemistry for molecular prescreening followed by gene sequencing and deletion analysis is feasible and may be desirable.
Publication
Journal: Journal of Cell Science
January/6/2003
Abstract
During mouse meiosis, the early prophase RAD51/DMC1 recombination protein sites, which are associated with the chromosome cores and which serve as markers for ongoing DNA-DNA interactions, are in ten-fold excess of the eventual reciprocal recombinant events. Most, if not all, of these early interactions are eliminated as prophase progresses. The manner in which these sites are eliminated is the focus of this investigation. We report that these sites acquire replication protein A, RPA and the Escherichia coli MUTS homologue, MSH4p, and somewhat later the Bloom helicase, BLM, while simultaneously losing the RAD51/DMC1 component. Eventually the RPA component is also lost and BLM sites remain. At that time, the MUTL homologue, MLH1p, which is essential for reciprocal recombination in the mouse, appears in numbers and locations that correspond to the distribution of reciprocal recombination events. However, the MLH1 foci do not appear to coincide with the remaining BLM sites. The MLH1p is specifically localized to electron-microscope-defined recombination nodules. We consider the possibility that the homology-search RAD51/DMC1 complexes are involved in homologous chromosome synapsis but that most of these early DNA-DNA interactions are later resolved by the anti-recombination RPA/MSH4/BLM-topoisomerase complex, thereby preventing the formation of superfluous reciprocal recombinant events.
Publication
Journal: JAMA - Journal of the American Medical Association
April/28/2005
Abstract
BACKGROUND
The selection of individuals for hereditary nonpolyposis colorectal cancer (HNPCC) genetic testing is challenging. Recently, the National Cancer Institute outlined a new set of recommendations, the revised Bethesda guidelines, for the identification of individuals with HNPCC who should be tested for microsatellite instability.
OBJECTIVE
To establish the most effective and efficient strategy for the detection of MSH2/MLH1 gene carriers.
METHODS
A prospective, multicenter, nationwide study (the EPICOLON study) in 20 hospitals in the general community in Spain of 1222 patients with newly diagnosed colorectal cancer between November 1, 2000, and October 31, 2001.
METHODS
Microsatellite instability testing and MSH2/MLH1 immunostaining in all patients regardless of age, personal or family history, and tumor characteristics. Patients whose tumors exhibited microsatellite instability and/or lack of protein expression underwent MSH2/MLH1 germline testing.
METHODS
Effectiveness and efficiency of both microsatellite instability testing and immunostaining, either directly or previous selection of patients according to the revised Bethesda guidelines, were evaluated with respect to the presence of MSH2/MLH1 germline mutations.
RESULTS
Two hundred eighty-seven patients (23.5%) fulfilled the revised Bethesda guidelines. Ninety-one patients (7.4%) had a mismatch repair deficiency, with tumors exhibiting either microsatellite instability (n = 83) or loss of protein expression (n = 81). Germline testing identified 11 mutations (0.9%) in either MSH2 (7 cases) or MLH1 (4 cases) genes. Strategies based on either microsatellite instability testing or immunostaining previous selection of patients according to the revised Bethesda guidelines were the most effective (sensitivity, 81.8% and 81.8%; specificity, 98.0% and 98.2%; positive predictive value, 27.3% and 29.0%, respectively) to identify MSH2/MLH1 gene carriers. Logistic regression analysis confirmed the revised Bethesda guidelines as the most discriminating set of clinical parameters (odds ratio, 33.3; 95% confidence interval, 4.3-250; P = .001).
CONCLUSIONS
The revised Bethesda guidelines constitute a useful approach to identify patients at risk for HNPCC. In patients fulfilling these criteria, both microsatellite instability testing and immunostaining are equivalent and highly effective strategies to further select those patients who should be tested for MSH2/MLH1 germline mutations.
Publication
Journal: Proceedings of the National Academy of Sciences of the United States of America
September/16/1997
Abstract
When gene conversion is initiated by a double-strand break (DSB), any nonhomologous DNA that may be present at the ends must be removed before new DNA synthesis can be initiated. In Saccharomyces cerevisiae, removal of nonhomologous ends depends not only on the nucleotide excision repair endonuclease Rad1/Rad10 but also on Msh2 and Msh3, two proteins that are required to correct mismatched bp. These proteins have no effect when DSB ends are homologous to the donor, either in the kinetics of recombination or in the proportion of gene conversions associated with crossing-over. A second DSB repair pathway, single-strand annealing also requires Rad1/Rad10 and Msh2/Msh3, but reveals a difference in their roles. When the flanking homologous regions that anneal are 205 bp, the requirement for Msh2/Msh3 is as great as for Rad1/Rad10; but when the annealing partners are 1,170 bp, Msh2/Msh3 have little effect, while Rad1/Rad10 are still required. Mismatch repair proteins Msh6, Pms1, and Mlh1 are not required. We suggest Msh2 and Msh3 recognize not only heteroduplex loops and mismatched bp, but also branched DNA structures with a free 3' tail.
Publication
Journal: Gut
July/1/2013
Abstract
Lynch syndrome (LS) is characterised by the development of colorectal cancer, endometrial cancer and various other cancers, and is caused by a mutation in one of the mismatch repair genes: MLH1, MSH2, MSH6 or PMS2. In 2007, a group of European experts (the Mallorca group) published guidelines for the clinical management of LS. Since then substantial new information has become available necessitating an update of the guidelines. In 2011 and 2012 workshops were organised in Palma de Mallorca. A total of 35 specialists from 13 countries participated in the meetings. The first step was to formulate important clinical questions. Then a systematic literature search was performed using the Pubmed database and manual searches of relevant articles. During the workshops the outcome of the literature search was discussed in detail. The guidelines described in this paper may be helpful for the appropriate management of families with LS. Prospective controlled studies should be undertaken to improve further the care of these families.
Publication
Journal: Cell
August/13/1996
Abstract
Germ line mutations in DNA mismatch repair genes including MLH1 cause hereditary nonpolyposis colon cancer. To understand the role of MLH1 in normal growth and development, we generated mice that have a null mutation of this gene. Mice homozygous for this mutation show a replication error phenotype, and extracts of these cells are deficient in mismatch repair activity. Homozygous mutant males show normal mating behavior but have no detectable mature sperm. Examination of meiosis in these males reveals that the cells enter meiotic prophase and arrest at pachytene. Homozygous mutant females have normal estrous cycles and reproductive and mating behavior but are infertile. The phenotypes of the mlh1 mutant mice are distinct from those deficient in msh2 and pms2. The different phenotypes of the three types of mutant mice suggest that these three genes may have independent functions in mammalian meiosis.
Publication
Journal: Clinical Cancer Research
January/10/2010
Abstract
OBJECTIVE
Host immune response to tumor may be an important prognostic factor for colon cancer patients. However, little is known on prognostic significance of histopathologic lymphoid reaction to tumor, independent of the number of lymph nodes examined and tumoral molecular alterations, including microsatellite instability (MSI) and the CpG island methylator phenotype (CIMP), both of which are associated with lymphocytic reaction and clinical outcome.
METHODS
Using 843 colorectal cancer patients in two independent prospective cohorts, we examined patient prognosis in relation to four components of lymphocytic reaction (i.e., Crohn's-like reaction, peritumoral reaction, intratumoral periglandular reaction, and tumor-infiltrating lymphocytes) and overall lymphocytic score (0-12). CIMP was determined using eight markers including CACNA1G, CDKN2A (p16), CRABP1, IGF2, MLH1, NEUROG1, RUNX3, and SOCS1. Cox proportional hazard models computed hazard ratio for mortality, adjusted for covariates including tumor stage, body mass index, lymph node count, KRAS, BRAF, p53, cyclooxygenase-2 (PTGS2), MSI, CIMP, and LINE-1 methylation.
RESULTS
Increasing overall lymphocytic reaction score including tumor-infiltrating lymphocytes was associated with a significant improvement in colorectal cancer-specific and overall survival (log-rank P < 0.003). These findings remained significant (adjusted hazard ratio estimates, 0.49-0.71; P(trend) < 0.009) in multivariate models that adjusted for covariates, including body mass index, MSI, CIMP, LINE-1 hypomethylation, and cyclooxygenase-2. The beneficial effect of tumoral lymphocytic reaction was consistent across strata of clinical, pathologic, and molecular characteristics.
CONCLUSIONS
Lymphocytic reactions to tumor were associated with improved prognosis among colorectal cancer patients, independent of lymph node count and other clinical, pathologic, and molecular characteristics.
Publication
Journal: Journal of Clinical Oncology
May/6/2009
Abstract
OBJECTIVE
Colon cancers exhibiting DNA mismatch repair (MMR) defects demonstrate distinct clinical and pathologic features, including better prognosis and reduced response to fluorouracil (FU) -based chemotherapy. This prospective study investigated adjuvant chemotherapy containing FU and irinotecan in patients with MMR deficient (MMR-D) colon cancers.
METHODS
Cancer and Leukemia Group B 89803 randomly assigned 1,264 patients with stage III colon cancer to postoperative weekly bolus FU/leucovorin (LV) or weekly bolus irinotecan, FU, and LV (IFL). The primary end point was overall survival; disease-free survival (DFS) was a secondary end point. Tumor expression of the MMR proteins, MLH1 and MSH2, was determined by immunohistochemistry (IHC). DNA microsatellite instability was also assessed using a panel of mono- and dinucleotide markers. Tumors with MMR defects were those demonstrating loss of MMR protein expression (MMR-D) and/or microsatellite instability high (MSI-H) genotype.
RESULTS
Of 723 tumor cases examined by genotyping and IHC, 96 (13.3%) were MMR-D/MSI-H. Genotyping results were consistent with IHC in 702 cases (97.1%). IFL-treated patients with MMR-D/MSI-H tumors showed improved 5-year DFS as compared with those with mismatch repair intact tumors (0.76; 95% CI, 0.64 to 0.88 v 0.59; 95% CI, 0.53 to 0.64; P = .03). This relationship was not observed among patients treated with FU/LV. A trend toward longer DFS was observed in IFL-treated patients with MMR-D/MSI-H tumors as compared with those receiving FU/LV (0.57; 95% CI, 0.42 to 0.71 v 0.76; 95% CI, 0.64 to 0.88; P = .07; hazard ratio interaction between tumor status and treatment, 0.51; likelihood ratio P = .117).
CONCLUSIONS
Loss of tumor MMR function may predict improved outcome in patients treated with the IFL regimen as compared with those receiving FU/LV.
Publication
Journal: PLoS ONE
December/11/2008
Abstract
BACKGROUND
The CpG island methylator phenotype (CIMP) is a distinct phenotype associated with microsatellite instability (MSI) and BRAF mutation in colon cancer. Recent investigations have selected 5 promoters (CACNA1G, IGF2, NEUROG1, RUNX3 and SOCS1) as surrogate markers for CIMP-high. However, no study has comprehensively evaluated an expanded set of methylation markers (including these 5 markers) using a large number of tumors, or deciphered the complex clinical and molecular associations with CIMP-high determined by the validated marker panel. METHOLODOLOGY/PRINCIPAL FINDINGS: DNA methylation at 16 CpG islands [the above 5 plus CDKN2A (p16), CHFR, CRABP1, HIC1, IGFBP3, MGMT, MINT1, MINT31, MLH1, p14 (CDKN2A/ARF) and WRN] was quantified in 904 colorectal cancers by real-time PCR (MethyLight). In unsupervised hierarchical clustering analysis, the 5 markers (CACNA1G, IGF2, NEUROG1, RUNX3 and SOCS1), CDKN2A, CRABP1, MINT31, MLH1, p14 and WRN were generally clustered with each other and with MSI and BRAF mutation. KRAS mutation was not clustered with any methylation marker, suggesting its association with a random methylation pattern in CIMP-low tumors. Utilizing the validated CIMP marker panel (including the 5 markers), multivariate logistic regression demonstrated that CIMP-high was independently associated with older age, proximal location, poor differentiation, MSI-high, BRAF mutation, and inversely with LINE-1 hypomethylation and beta-catenin (CTNNB1) activation. Mucinous feature, signet ring cells, and p53-negativity were associated with CIMP-high in only univariate analysis. In stratified analyses, the relations of CIMP-high with poor differentiation, KRAS mutation and LINE-1 hypomethylation significantly differed according to MSI status.
CONCLUSIONS
Our study provides valuable data for standardization of the use of CIMP-high-specific methylation markers. CIMP-high is independently associated with clinical and key molecular features in colorectal cancer. Our data also suggest that KRAS mutation is related with a random CpG island methylation pattern which may lead to CIMP-low tumors.
Publication
Journal: Gut
July/19/2006
Abstract
BACKGROUND
The concept of CpG island methylator phenotype (CIMP) is not universally accepted. Even if specific clinicopathological features have been associated with CIMP, investigators often failed to demonstrate a bimodal distribution of the number of methylated markers, which would suggest CIMP as a distinct subtype of colorectal cancer. Previous studies primarily used methylation specific polymerase chain reaction which might detect biologically insignificant low levels of methylation.
OBJECTIVE
To demonstrate a distinct genetic profile of CIMP colorectal cancer using quantitative DNA methylation analysis that can distinguish high from low levels of DNA methylation.
METHODS
We developed quantitative real time polymerase chain reaction (MethyLight) assays and measured DNA methylation (percentage of methylated reference) of five carefully selected loci (promoters of CACNA1G, CDKN2A (p16), CRABP1, MLH1, and NEUROG1) in 460 colorectal cancers from large prospective cohorts.
RESULTS
There was a clear bimodal distribution of 80 microsatellite instability-high (MSI-H) tumours according to the number of methylated promoters, with no tumours showing 3/5 methylated loci. Thus we defined CIMP as having>>or=4/5 methylated loci, and 17% (78) of the 460 tumours were classified as CIMP. CIMP was significantly associated with female sex, MSI, BRAF mutations, and wild-type KRAS. Both CIMP MSI-H tumours and CIMP microsatellite stable (MSS) tumours showed much higher frequencies of BRAF mutations (63% and 54%) than non-CIMP counterparts (non-CIMP MSI-H (0%, p<10(-5)) and non-CIMP MSS tumours (6.6%, p<10(-4)), respectively).
CONCLUSIONS
CIMP is best characterised by quantitative DNA methylation analysis. CIMP is a distinct epigenotype of colorectal cancer and may be less frequent than previously reported.
Publication
Journal: Journal of Clinical Oncology
July/5/2000
Abstract
OBJECTIVE
Cancer morbidity and mortality can be dramatically reduced by colonoscopic screening of individuals with the hereditary nonpolyposis colorectal cancer (HNPCC) syndrome, creating a need to identify HNPCC. We studied how HNPCC identification should be carried out on a large scale in a sensitive and efficient manner.
METHODS
Colorectal cancer specimens from consecutive newly diagnosed patients were studied for microsatellite instability (MSI). Germline mutations in the MLH1 and MSH2 genes were searched for in MSI(+) individuals.
RESULTS
Among 535 colorectal cancer patients, 66 (12%) were MSI(+). Among these, 18 (3.4% of the total) had disease-causing germline mutations in MLH1 or MSH2. Among these 18 patients, five were less than 50 years old, seven had a previous or synchronous colorectal or endometrial cancer, and 15 had at least one first-degree relative with colorectal or endometrial cancer. Notably, 17 (94%) of 18 patients had at least one of these three features, which were present in 22% of all 535 patients. Combining these data with a previous study of 509 patients, mutation-positive HNPCC accounts for 28 (2.7%) of 1,044 cases of colorectal cancer, predicting a greater than one in 740 incidence of mutation-positive individuals in this population.
CONCLUSIONS
Large-scale molecular screening for HNPCC can be done by the described two-stage procedure of MSI determination followed by mutation analysis. Efficiency can be greatly improved by using three high-risk features to select 22% of all patients for MSI analysis, whereby only 6% need to have mutation analysis. Sensitivity is only slightly impaired by this procedure.
Publication
Journal: International Journal of Cancer
August/5/2008
Abstract
The CpG island methylator phenotype (CIMP) with widespread promoter CpG island methylation is a phenotype in colorectal cancer, associated with microsatellite instability (MSI) and BRAF mutation. Genome-wide hypomethylation may also play an important role in genomic instability. However, the relation between global DNA methylation level and methylation in individual CpG islands remains uncertain. Utilizing 869 population-based colorectal cancers, we measured long interspersed nucleotide element-1 (LINE-1) methylation level by Pyrosequencing, which correlates with global DNA methylation level. We quantified DNA methylation in 8 CIMP-specific promoters (CACNA1G, CDKN2A (p16), CRABP1, IGF2, MLH1, NEUROG1, RUNX3 and SOCS1) by real-time PCR (MethyLight technology). LINE-1 methylation levels in tumors were approximately normally distributed (mean, 61.4%; median, 62.3%; standard deviation, 9.6%). Among the 869 tumors, 128 (15%) were classified as CIMP-high >>or=6/8 methylated promoters). The mean LINE-1 methylation level was higher in CIMP-high tumors (65.1%, p < 0.0001) than non-CIMP-high tumors (60.7%), and higher in MSI-high tumors (64.7%, p < 0.0001) than non-MSI-high tumors (60.7%). When tumors were stratified by MSI/CIMP status, compared to non-MSI-high non-CIMP-high tumors (mean LINE-1 methylation level, 60.4%), the mean LINE-1 methylation level was higher in MSI-high CIMP-high (64.8%, p < 0.0001), MSI-high non-CIMP-high (64.6%, p = 0.03) and non-MSI-high CIMP-high tumors (66.1%, p = 0.0003). In addition, 18q loss of heterozygosity in non-MSI-high tumors was correlated with LINE-1 hypomethylation (p = 0.004). In conclusion, both CIMP-high and MSI-high are inversely associated with LINE-1 hypomethylation, suggesting that CIMP/MSI and genomic hypomethylation may represent different pathways to colorectal cancer. Our data also support a possible link between global hypomethylation and chromosomal instability.
Publication
Journal: Journal of the National Cancer Institute
September/29/2013
Abstract
BRAF mutation in colorectal cancer is associated with microsatellite instability (MSI) through its relationship with high-level CpG island methylator phenotype (CIMP) and MLH1 promoter methylation. MSI and BRAF mutation analyses are routinely used for familial cancer risk assessment. To clarify clinical outcome associations of combined MSI/BRAF subgroups, we investigated survival in 1253 rectal and colon cancer patients within the Nurses' Health Study and Health Professionals Follow-up Study with available data on clinical and other molecular features, including CIMP, LINE-1 hypomethylation, and KRAS and PIK3CA mutations. Compared with the majority subtype of microsatellite stable (MSS)/BRAF-wild-type, MSS/BRAF-mutant, MSI-high/BRAF-mutant, and MSI-high/BRAF-wild-type subtypes showed multivariable colorectal cancer-specific mortality hazard ratios of 1.60 (95% confidence interval [CI] =1.12 to 2.28; P = .009), 0.48 (95% CI = 0.27 to 0.87; P = .02), and 0.25 (95% CI = 0.12 to 0.52; P < .001), respectively. No evidence existed for a differential prognostic role of BRAF mutation by MSI status (P(interaction)>> .50). Combined BRAF/MSI status in colorectal cancer is a tumor molecular biomarker for prognosic risk stratification.
load more...