Citations
All
Search in:AllTitleAbstractAuthor name
Publications
(5K+)
Patents
Grants
Pathways
Clinical trials
Publication
Journal: Journal of Immunology
September/26/2005
Abstract
Tumor-associated macrophages may influence tumor progression, angiogenesis and invasion. To investigate mechanisms by which macrophages interact with tumor cells, we developed an in vitro coculture model. Previously we reported that coculture enhanced invasiveness of the tumor cells in a TNF-alpha- and matrix metalloprotease-dependent manner. In this report, we studied intracellular signaling pathways and induction of inflammatory genes in malignant cells under the influence of macrophage coculture. We report that coculture of macrophages with ovarian or breast cancer cell lines led to TNF-alpha-dependent activation of JNK and NF-kappaB pathways in tumor cells, but not in benign immortalized epithelial cells. Tumor cells with increased JNK and NF-kappaB activity exhibited enhanced invasiveness. Inhibition of the NF-kappaB pathway by TNF-alpha neutralizing Abs, an NF-kappaB inhibitor, RNAi to RelA, or overexpression of IkappaB inhibited tumor cell invasiveness. Blockade of JNK also significantly reduced invasiveness, but blockade of p38 MAPK or p42 MAPK had no effect. Cocultured tumor cells were screened for the expression of 22 genes associated with inflammation and invasion that also contained an AP-1 and NF-kappaB binding site. EMMPRIN and MIF were up-regulated in cocultured tumor cells in a JNK- and NF-kappaB-dependent manner. Knocking down either MIF or EMMPRIN by RNAi in the tumor cells significantly reduced tumor cell invasiveness and matrix metalloprotease activity in the coculture supernatant. We conclude that TNF-alpha, via NF-kappaB, and JNK induces MIF and EMMPRIN in macrophage to tumor cell cocultures and this leads to increased invasive capacity of the tumor cells.
Publication
Journal: Clinical Cancer Research
October/21/2009
Abstract
OBJECTIVE
microRNAs (miRNA) are small RNAs that function as post-transcriptional regulators of gene expression. Recent evidence has shown that some miRNAs can act as oncogenes or tumor suppressors. This study was conducted to evaluate the potential association of miRNA expression with clinical outcome in patients with gastric cancer.
METHODS
Expression of 250 human mature miRNAs was measured by real-time PCR on paraffin-embedded tumor samples of 21 patients with gastric cancer stage III uniformly treated with surgical resection followed by chemoradiation. We identified the miRNAs correlated with disease-free and overall survival times, and the results were evaluated including 24 other patients. In vitro cell proliferation and radiosensitivity studies were done to support clinical data.
RESULTS
The results revealed that down-regulation of miR-451 was associated with worse prognosis. miR-451 was detected by in situ hybridization in epithelial cells and showed decreased expression in gastric and colorectal cancer versus nontumoral tissues. Overexpression of miR-451 in gastric and colorectal cancer cells reduced cell proliferation and increased sensitivity to radiotherapy. Microarray and bioinformatic analysis identified the novel oncogene macrophage migration inhibitory factor (MIF) as a potential target of miR-451. In fact, overexpression of miR-451 down-regulated mRNA and protein levels of MIF and decreased expression of reporter genes with MIF target sequences. Moreover, we found a significant inverse correlation between miR-451 and MIF expression in tumoral gastric biopsies.
CONCLUSIONS
These findings support the role of miR-451 as a regulator of cancer proliferation and open new perspectives for the development of effective therapies for chemoradioresistant cancers.
Publication
Journal: BMC Cancer
November/17/2008
Abstract
BACKGROUND
MicroRNAs (miRNAs), some of which function as oncogenes or tumor suppressor genes, are involved in carcinogenesis via regulating cell proliferation and/or cell death. MicroRNA miR-34 was recently found to be a direct target of p53, functioning downstream of the p53 pathway as a tumor suppressor. miR-34 targets Notch, HMGA2, and Bcl-2, genes involved in the self-renewal and survival of cancer stem cells. The role of miR-34 in gastric cancer has not been reported previously. In this study, we examined the effects of miR-34 restoration on p53-mutant human gastric cancer cells and potential target gene expression.
METHODS
Human gastric cancer cells were transfected with miR-34 mimics or infected with the lentiviral miR-34-MIF expression system, and validated by miR-34 reporter assay using Bcl-2 3'UTR reporter. Potential target gene expression was assessed by Western blot for proteins, and by quantitative real-time RT-PCR for mRNAs. The effects of miR-34 restoration were assessed by cell growth assay, cell cycle analysis, caspase-3 activation, and cytotoxicity assay, as well as by tumorsphere formation and growth.
RESULTS
Human gastric cancer Kato III cells with miR-34 restoration reduced the expression of target genes Bcl-2, Notch, and HMGA2. Bcl-2 3'UTR reporter assay showed that the transfected miR-34s were functional and confirmed that Bcl-2 is a direct target of miR-34. Restoration of miR-34 chemosensitized Kato III cells with a high level of Bcl-2, but not MKN-45 cells with a low level of Bcl-2. miR-34 impaired cell growth, accumulated the cells in G1 phase, increased caspase-3 activation, and, more significantly, inhibited tumorsphere formation and growth.
CONCLUSIONS
Our results demonstrate that in p53-deficient human gastric cancer cells, restoration of functional miR-34 inhibits cell growth and induces chemosensitization and apoptosis, indicating that miR-34 may restore p53 function. Restoration of miR-34 inhibits tumorsphere formation and growth, which is reported to be correlated to the self-renewal of cancer stem cells. The mechanism of miR-34-mediated suppression of self-renewal appears to be related to the direct modulation of downstream targets Bcl-2, Notch, and HMGA2, indicating that miR-34 may be involved in gastric cancer stem cell self-renewal/differentiation decision-making. Our study suggests that restoration of the tumor suppressor miR-34 may provide a novel molecular therapy for p53-mutant gastric cancer.
Publication
Journal: Journal of Experimental Medicine
July/5/1971
Abstract
Sensitized lymphocytes were incubated in vitro with the specific antigen Supernatants from these cultures were chromatographed on Sephadex G-100 columns. Supernatant fractions containing MIF, chemotactic factor, and lymphotoxin, but free of antigen and antibody, were incubated with normal peritoneal exudate macrophages. Macrophage adherence, phagocytosis, spreading, motility, and direct hexose monophosphate oxidation were enhanced, while protein synthesis was unaffected. Thus, antigen-stimulated lymphocytes secrete a factor or factors which enhance certain macrophage functions. Implications for models of cellular immunity and cellular hypersensitivity are discussed.
Publication
Journal: Kidney International
September/27/2004
Abstract
BACKGROUND
Macrophage-mediated renal injury has been implicated in progressive forms of glomerulonephritis; however, a role for macrophages in type 2 diabetic nephropathy, the major cause of end-stage renal failure, has not been established. Therefore, we examined whether macrophages may promote the progression of type 2 diabetic nephropathy in db/db mice.
METHODS
The incidence of renal injury was examined in db/db mice with varying blood sugar and lipid levels at 8 months of age. The association of renal injury with the accumulation of kidney macrophages was analyzed in normal db/+ and diabetic db/db mice at 2, 4, 6, and 8 months of age.
RESULTS
In db/db mice, albuminuria and increased plasma creatinine correlated with elevated blood glucose and hemoglobin A1c (HbA1c) levels but not with obesity or hyperlipidemia. Progressive diabetic nephropathy in db/db mice was associated with increased kidney macrophages. Macrophage accumulation and macrophage activation in db/db mice correlated with hyperglycemia, HbA1c levels, albuminuria, elevated plasma creatinine, glomerular and tubular damage, renal fibrosis, and kidney expression of macrophage chemokines [monocyte chemoattractant protein-1 (MCP-1), osteopontin, migration inhibitory factor (MIF), monocyte-colony-stimulating factor (M-CSF)]. The accrual and activation of glomerular macrophages also correlated with increased glomerular IgG and C3 deposition, which was itself dependent on hyperglycemia.
CONCLUSIONS
Kidney macrophage accumulation is associated with the progression of type 2 diabetic nephropathy in db/db mice. Macrophage accumulation and activation in diabetic db/db kidneys is associated with prolonged hyperglycemia, glomerular immune complex deposition, and increased kidney chemokine production, and raises the possibility of specific therapies for targeting macrophage-mediated injury in diabetic nephropathy.
Publication
Journal: Cancer Research
February/19/2007
Abstract
Constitutive expression of the inflammatory cytokine tumor necrosis factor-alpha (TNF-alpha) is characteristic of malignant ovarian surface epithelium. We investigated the hypothesis that this autocrine action of TNF-alpha generates and sustains a network of other mediators that promote peritoneal cancer growth and spread. When compared with two ovarian cancer cell lines that did not make TNF-alpha, constitutive production of TNF-alpha was associated with greater release of the chemokines CCL2 and CXCL12, the cytokines interleukin-6 (IL-6) and macrophage migration-inhibitory factor (MIF), and the angiogenic factor vascular endothelial growth factor (VEGF). TNF-alpha production was associated also with increased peritoneal dissemination when the ovarian cancer cells were xenografted. We next used RNA interference to generate stable knockdown of TNF-alpha in ovarian cancer cells. Production of CCL2, CXCL12, VEGF, IL-6, and MIF was decreased significantly in these cells compared with wild-type or mock-transfected cells, but in vitro growth rates were unaltered. Tumor growth and dissemination in vivo were significantly reduced when stable knockdown of TNF-alpha was achieved. Tumors derived from TNF-alpha knockdown cells were noninvasive and well circumscribed and showed high levels of apoptosis, even in the smallest deposits. This was reflected in reduced vascularization of TNF-alpha knockdown tumors. Furthermore, culture supernatants from such cells failed to stimulate endothelial cell growth in vitro. We conclude that autocrine production of TNF-alpha by ovarian cancer cells stimulates a constitutive network of other cytokines, angiogenic factors, and chemokines that may act in an autocrine/paracrine manner to promote colonization of the peritoneum and neovascularization of developing tumor deposits.
Publication
Journal: PLoS Neglected Tropical Diseases
January/23/2011
Abstract
BACKGROUND
Ebolavirus species Zaire (ZEBOV) causes highly lethal hemorrhagic fever, resulting in the death of 90% of patients within days. Most information on immune responses to ZEBOV comes from in vitro studies and animal models. The paucity of data on human immune responses to this virus is mainly due to the fact that most outbreaks occur in remote areas. Published studies in this setting, based on small numbers of samples and limited panels of immunological markers, have given somewhat different results.
RESULTS
Here, we studied a unique collection of 56 blood samples from 42 nonsurvivors and 14 survivors, obtained during the five outbreaks that occurred between 1996 and 2003 in Gabon and Republic of Congo. Using Luminex technology, we assayed 50 cytokines in all 56 samples and performed phenotypic analyses by flow cytometry. We found that fatal outcome was associated with hypersecretion of numerous proinflammatory cytokines (IL-1β, IL-1RA, IL-6, IL-8, IL-15 and IL-16), chemokines and growth factors (MIP-1α, MIP-1β, MCP-1, M-CSF, MIF, IP-10, GRO-α and eotaxin). Interestingly, no increase of IFNα2 was detected in patients. Furthermore, nonsurvivors were also characterized by very low levels of circulating cytokines produced by T lymphocytes (IL-2, IL-3, IL-4, IL-5, IL-9, IL-13) and by a significant drop of CD3+CD4+ and CD3+CD8+ peripheral cells as well as a high increase in CD95 expression on T lymphocytes.
CONCLUSIONS
This work, the largest study to be conducted to date in humans, showed that fatal outcome is associated with aberrant innate immune responses and with global suppression of adaptive immunity. The innate immune reaction was characterized by a "cytokine storm," with hypersecretion of numerous proinflammatory cytokines, chemokines and growth factors, and by the noteworthy absence of antiviral IFNα2. Immunosuppression was characterized by very low levels of circulating cytokines produced by T lymphocytes and by massive loss of peripheral CD4 and CD8 lymphocytes, probably through Fas/FasL-mediated apoptosis.
Publication
Journal: Journal of Biological Chemistry
July/14/1999
Abstract
Macrophage migration inhibitory factor (MIF) is an important pro-inflammatory mediator with the unique ability to counter-regulate the inhibitory effects of glucocorticoids on immune cell activation. MIF is released from cells in response to glucocorticoids, certain pro-inflammatory stimuli, and mitogens and acts to regulate glucocorticoid action on the ensuing inflammatory response. To gain insight into the molecular mechanism of MIF action, we have examined the role of MIF in the proliferation and intracellular signaling events of the well characterized, NIH/3T3 fibroblast cell line. Both endogenously secreted and exogenously added MIFs stimulate the proliferation of NIH/3T3 cells, and this response is associated with the activation of the p44/p42 extracellular signal-regulated (ERK) mitogen-activated protein kinases (MAP). The MIF-induced activation of these kinases was sustained for a period of at least 24 h and was dependent upon protein kinase A activity. We further show that MIF regulates cytosolic phospholipase A2 activity via a protein kinase A and ERK dependent pathway and that the glucocorticoid suppression of cytokine-induced cytoplasmic phospholipase A2 activity and arachidonic acid release can be reversed by the addition of recombinant MIF. These studies indicate that the sustained activation of p44/p42 MAP kinase and subsequent arachidonate release by cytoplasmic phospholipase A2 are important features of the immunoregulatory and intracellular signaling events initiated by MIF and provide the first insight into the mechanisms that underlie the pro-proliferative and inflammatory properties of this mediator.
Publication
Journal: Critical reviews in oral biology and medicine : an official publication of the American Association of Oral Biologists
November/17/2002
Abstract
Both antigen-specific and non-specific mechanisms may be involved in the pathogenesis of oral lichen planus (OLP). Antigen-specific mechanisms in OLP include antigen presentation by basal keratinocytes and antigen-specific keratinocyte killing by CD8(+) cytotoxic T-cells. Non-specific mechanisms include mast cell degranulation and matrix metalloproteinase (MMP) activation in OLP lesions. These mechanisms may combine to cause T-cell accumulation in the superficial lamina propria, basement membrane disruption, intra-epithelial T-cell migration, and keratinocyte apoptosis in OLP. OLP chronicity may be due, in part, to deficient antigen-specific TGF-beta1-mediated immunosuppression. The normal oral mucosa may be an immune privileged site (similar to the eye, testis, and placenta), and breakdown of immune privilege could result in OLP and possibly other autoimmune oral mucosal diseases. Recent findings in mucocutaneous graft-versus-host disease, a clinical and histological correlate of lichen planus, suggest the involvement of TNF-alpha, CD40, Fas, MMPs, and mast cell degranulation in disease pathogenesis. Potential roles for oral Langerhans cells and the regional lymphatics in OLP lesion formation and chronicity are discussed. Carcinogenesis in OLP may be regulated by the integrated signal from various tumor inhibitors (TGF-beta 1, TNF-alpha, IFN-gamma, IL-12) and promoters (MIF, MMP-9). We present our recent data implicating antigen-specific and non-specific mechanisms in the pathogenesis of OLP and propose a unifying hypothesis suggesting that both may be involved in lesion development. The initial event in OLP lesion formation and the factors that determine OLP susceptibility are unknown.
Publication
Journal: Biochemistry
December/27/1994
Abstract
The cytokine macrophage migration inhibitory factor (MIF) has been identified to be secreted by the pituitary gland and the monocyte/macrophage and to play an important role in endotoxic shock. Despite the recent molecular cloning of a human T-cell MIF, characterization of the biochemical and biological properties of this protein has remained incomplete because substantial quantities of purified, recombinant, or native MIF have not been available. We describe the cloning of mouse MIF from anterior pituitary cells (AtT-20) and the purification of native MIF from mouse liver by sequential ion exchange and reverse-phase chromatography. For comparison purposes, human MIF was cloned from the Jurkat T-cell line and also characterized. Mouse and human MIF were highly homologous (90% identity over 115 amino acids). Recombinant mouse and human MIF were expressed in Escherichia coli and purified in milligram quantities by a simple two-step procedure. The molecular weight of native mouse MIF (12.5 kDa monomer) was identical with that of recombinant mouse MIF as assessed by gel electrophoresis and mass spectroscopy. No significant post-translational modifications were detected despite the presence of two potential N-linked glycosylation sites. Recombinant MIF inhibited monocyte migration in a dose-dependent fashion, and both recombinant and native MIF-exhibited comparable biological activities. MIF induced the secretion of tumor necrosis factor-alpha and stimulated nitric oxide production by macrophages primed with interferon-gamma. Circular dichroism spectroscopy revealed that bioactive mouse and human MIF exhibit a highly ordered, three-dimensional structure with a significant percentage of beta-sheet and alpha-helix conformation. Guanidine hydrochloride-induced unfolding experiments demonstrated that MIF is of low to moderate thermodynamic stability. These studies establish the biochemical identity of native and recombinant MIF and provide a first insight into the three-dimensional structural properties of this critical inflammatory mediator.
Publication
Journal: Accounts of Chemical Research
August/26/2009
Abstract
During the 1980s, advances in the abilities to perform computer simulations of chemical and biomolecular systems and to calculate free energy changes led to the expectation that such methodology would soon show great utility for guiding molecular design. Important potential applications included design of selective receptors, catalysts, and regulators of biological function including enzyme inhibitors. This time also saw the rise of high-throughput screening and combinatorial chemistry along with complementary computational methods for de novo design and virtual screening including docking. These technologies appeared poised to deliver diverse lead compounds for any biological target. As with many technological advances, realization of the expectations required significant additional effort and time. However, as summarized here, striking success has now been achieved for computer-aided drug lead generation and optimization. De novo design using both molecular growing and docking are illustrated for lead generation, and lead optimization features free energy perturbation calculations in conjunction with Monte Carlo statistical mechanics simulations for protein-inhibitor complexes in aqueous solution. The specific applications are to the discovery of non-nucleoside inhibitors of HIV reverse transcriptase (HIV-RT) and inhibitors of the binding of the proinflammatory cytokine MIF to its receptor CD74. A standard protocol is presented that includes scans for possible additions of small substituents to a molecular core, interchange of heterocycles, and focused optimization of substituents at one site. Initial leads with activities at low-micromolar concentrations have been advanced rapidly to low-nanomolar inhibitors.
Pulse
Views:
1
Posts:
No posts
Rating:
Not rated
Publication
Journal: Pflugers Archiv European Journal of Physiology
June/29/2008
Abstract
The effect of hypoxia, induced by incubation under low (1%) oxygen tension or by exposure to CoCl(2), on the expression and secretion of inflammation-related adipokines was examined in human adipocytes. Hypoxia led to a rapid and substantial increase (greater than sevenfold by 4 h of exposure to 1% O(2)) in the hypoxia-sensitive transcription factor, HIF-1alpha, in human adipocytes. This was accompanied by a major increase (up to 14-fold) in GLUT1 transporter mRNA level. Hypoxia (1% O(2) or CoCl(2)) led to a reduction (up to threefold over 24 h) in adiponectin and haptoglobin mRNA levels; adiponectin secretion also decreased. No changes were observed in TNFalpha expression. In contrast, hypoxia resulted in substantial increases in FIAF/angiopoietin-like protein 4, IL-6, leptin, MIF, PAI-1 and vascular endothelial growth factor (VEGF) mRNA levels. The largest increases were with FIAF (maximum 210-fold), leptin (maximum 29-fold) and VEGF (maximum 23-fold); these were reversed on return to normoxia. The secretion of IL-6, leptin, MIF and VEGF from the adipocytes was also stimulated by exposure to 1% O(2). These results demonstrate that hypoxia induces extensive changes in human adipocytes in the expression and release of inflammation-related adipokines. Hypoxia may underlie the development of the inflammatory response in adipocytes, leading to obesity-associated diseases.
Pulse
Views:
1
Posts:
No posts
Rating:
Not rated
Publication
Journal: Arteriosclerosis, Thrombosis, and Vascular Biology
November/5/2008
Abstract
The fundamental importance of chemokines for atherogenesis, progression, and destabilization of atherosclerotic plaques is now widely appreciated, but the degree of complexity, specificity, and cooperativity harnessed by these signal molecules to govern atherogenic cell recruitment and homeostasis is still being refined. Since the role of chemokines in atherosclerotic vascular disease has been reviewed in this journal, significant progress has been accomplished in defining the regulation of chemokine expression and function in atherosclerosis. In this update, we will highlight these recent developments, in particular the identification of components regulating the transcriptional machinery of the proatherogenic chemokine CCL5, distinct roles of its receptors CCR1 and CCR5 in plaque formation and immunobalance, and differential site- and stage-specific effects of T cell-activating chemokines and their receptors, eg, CXCL10 and CXCR3. The contribution of the transmembrane chemokines CX(3)CL1 and CXCL16 with their respective receptors CX(3)CR1 and CXCR6 in the recruitment of T cell and monocyte subsets and shear-mediated plaque modulation will be discussed. Finally, the role of CXCR2 and CXCR4, their respective ligands CXCL1 and CXCL12, and the noncanonical dual agonist MIF in atheroprogression will be dissected. The considerable leap in insight over recent years leads us to anticipate further advances in comprehending the role of chemokines in atherosclerosis, allowing targeted interventions for its prevention and therapy.
Publication
Journal: Oncogene
September/23/2007
Abstract
The phosphoinositide-3-kinase (PI3K)/Akt signaling pathway plays an important role in cell survival and the development of cancer. Macrophage migration inhibitory factor (MIF) is a critical inflammatory cytokine that was recently associated with tumorigenesis and that potently inhibits apoptosis. This may involve inhibition of p53-dependent genes, but the initiating molecular mechanism of how MIF controls survival/apoptosis is unknown. Here, we show that MIF prevents apoptosis and promotes tumor cell survival by directly activating the Akt pathway. MIF enhanced Akt activity in primary and immortalized fibroblasts (MEF and NIH/3T3), HeLa cervix carcinoma cells and various breast cancer cell lines. Activation was abolished by kinase inhibitors Ly294002 and PP2 and in Src/Yes/Fyn(SYF)(-/-) and CD74(-/-)(MEFs), while being enhanced in CD74-overexpressing MEFs, demonstrating that the MIF-induced Akt pathway encompasses signaling through the MIF receptor CD74 and the upstream kinases Src and PI3K. Akt was activated by exogenous rMIF and autocrine MIF action, as revealed by experiments in MIF(-/-)MEFs and antibody blockade. siRNA knockdown of CSN5/JAB1, a tumor marker and MIF-binding protein, showed that JAB1 controls autocrine MIF-mediated Akt signaling by inhibition of MIF secretion. Akt activation by MIF led to phosphorylation of the proapoptotic proteins BAD and Foxo3a. Apoptosis inhibition by MIF was functionally associated with Akt activation as it was abolished by overexpression of the Akt pathway inhibitor PTEN and occurred independently of p53. This was shown by studying DNA damage-induced apoptosis in fibroblasts, the Fas death pathway in HeLa cells that do not express functional p53, and etoposide-induced apoptosis in breast carcinoma cells expressing mutant p53. Importantly, dependence of breast cancer cell survival on MIF correlated with Akt activation and the PTEN status of these cells. Thus, MIF can directly promote cell survival through activation of the PI3K/Akt pathway and this effect is critical for tumor cell survival.
Publication
Journal: Nature Immunology
February/28/2013
Abstract
Coordinated navigation within tissues is essential for cells of the innate immune system to reach the sites of inflammatory processes, but the signals involved are incompletely understood. Here we demonstrate that NG2(+) pericytes controlled the pattern and efficacy of the interstitial migration of leukocytes in vivo. In response to inflammatory mediators, pericytes upregulated expression of the adhesion molecule ICAM-1 and released the chemoattractant MIF. Arteriolar and capillary pericytes attracted and interacted with myeloid leukocytes after extravasating from postcapillary venules, 'instructing' them with pattern-recognition and motility programs. Inhibition of MIF neutralized the migratory cues provided to myeloid leukocytes by NG2(+) pericytes. Hence, our results identify a previously unknown role for NG2(+) pericytes as an active component of innate immune responses, which supports the immunosurveillance and effector function of extravasated neutrophils and macrophages.
Publication
Journal: Proceedings of the National Academy of Sciences of the United States of America
October/2/2003
Abstract
Macrophage migration inhibitory factor (MIF) is a mediator of host immunity and functions as a high, upstream activator of cells within the innate and the adaptive immunological systems. Recent studies have suggested a potentially broader role for MIF in growth regulation because of its ability to antagonize p53-mediated gene activation and apoptosis. To better understand MIF's activity in growth control, we generated and characterized a strain of MIF-knockout (MIF-KO) mice in the inbred, C57BL/6 background. Embryonic fibroblasts from MIF-KO mice exhibit p53-dependent growth alterations, increased p53 transcriptional activity, and resistance to ras-mediated transformation. Concurrent deletion of the p53 gene in vivo reversed the observed phenotype of cells deficient in MIF. In vivo studies showed that fibrosarcomas induced by the carcinogen benzo[alpha]pyrene are smaller in size and have a lower mitotic index in MIF-KO mice relative to their WT counterparts. The data provide direct genetic evidence for a functional link between MIF and the p53 tumor suppressor and indicate an important and previously unappreciated role for MIF in carcinogenesis.
Publication
Journal: Nature Reviews Drug Discovery
July/17/2006
Abstract
Macrophage migration inhibitory factor (MIF) is well established as a key cytokine in immuno-inflammatory diseases such as rheumatoid arthritis. Inflammation is now also recognized as having a crucial role in atherosclerosis, and recent evidence indicates that MIF could also be important in this disease. Here, we review the role of MIF in rheumatoid arthritis and atherosclerosis, discuss the ways in which MIF and its relationship with glucocorticoids could link these diseases, and consider the potential of MIF as a new therapeutic target for small-molecule and antibody-based anti-cytokine drugs.
Publication
Journal: Molecular and Biochemical Parasitology
July/9/2008
Abstract
The secretome of a parasite in its definitive host can be considered to be its genome in trans, to the extent that secreted products encoded by the parasite fulfill their function in the host milieu. The 'extended phenotype' of the filarial parasite, Brugia malayi, is of particular interest because of the evidence that infection results in potent down-modulation of the host immune response. We collected B. malayi 'excretory-secretory' (BES) proteins from adult parasites and using a combination of shotgun LC-MS/MS and 2D gel electrophoresis, identified 80 B. malayi and two host proteins in BES, of which 31 (38%) were detectable in whole worm extract (BmA). Products which were enriched in BES relative to BmA included phosphatidylethanolamine-binding protein (PEB), leucyl aminopeptidase (LAP, homologue of ES-62 from the related filaria Acanthocheilonema viteae), N-acetylglucosaminyltransferase (GlcNAcT) and galectin-1, in addition to the previously described major surface glycoprotein, glutathione peroxidase (gp29, GPX-1) and the cytokine homologue macrophage migration inhibitory factor (MIF-1). One of the most abundant released proteins was triose phosphate isomerase (TPI), yet many other glycolytic enzymes (such as aldolase and GAPDH) were found only in the somatic extract. Among the more prominent novel products identified in BES were a set of 11 small transthyretin-like proteins, and three glutamine-rich-repeat mucin-like proteins. Notably, no evidence was found of any secreted protein corresponding to the genome of the Wolbachia endosymbiont present in B. malayi. Western blotting with anti-phosphorylcholine (PC) monoclonal antibody identified that GlcNAcT, and not the ES-62 homologue, is the major PC-bearing protein in BES, while probing with human filariasis sera showed preferential reactivity to galectin-1 and to processed forms of myotactin. Overall, this analysis demonstrates selective release of a suite of newly identified proteins not previously suspected to be involved at the host-parasite interface, and provides important new perspectives on the biology of the filarial parasite.
Publication
Journal: PLoS Neglected Tropical Diseases
February/16/2010
Abstract
Relatively little is known about the filarial proteins that interact with the human host. Although the filarial genome has recently been completed, protein profiles have been limited to only a few recombinants or purified proteins of interest. Here, we describe a large-scale proteomic analysis using microcapillary reverse-phase liquid chromatography-tandem-mass spectrometry to identify the excretory-secretory (ES) products of the L3, L3 to L4 molting ES, adult male, adult female, and microfilarial stages of the filarial parasite Brugia malayi. The analysis of the ES products from adult male, adult female, microfilariae (Mf), L3, and molting L3 larvae identified 852 proteins. Annotation suggests that the functional and component distribution was very similar across each of the stages studied; however, the Mf contributed a higher proportion to the total number of identified proteins than the other stages. Of the 852 proteins identified in the ES, only 229 had previous confirmatory expressed sequence tags (ESTs) in the available databases. Moreover, this analysis was able to confirm the presence of 274 "hypothetical" proteins inferred from gene prediction algorithms applied to the B. malayi (Bm) genome. Not surprisingly, the majority (160/274) of these "hypothetical" proteins were predicted to be secreted by Signal IP and/or SecretomeP 2.0 analysis. Of major interest is the abundance of previously characterized immunomodulatory proteins such as ES-62 (leucyl aminopeptidase), MIF-1, SERPIN, glutathione peroxidase, and galectin in the ES of microfilariae (and Mf-containing adult females) compared to the adult males. In addition, searching the ES protein spectra against the Wolbachia database resulted in the identification of 90 Wolbachia-specific proteins, most of which were metabolic enzymes that have not been shown to be immunogenic. This proteomic analysis extends our knowledge of the ES and provides insight into the host-parasite interaction.
Publication
Journal: Nature
August/4/2009
Abstract
Jawless vertebrates use variable lymphocyte receptors (VLR) comprised of leucine-rich-repeat (LRR) segments as counterparts of the immunoglobulin-based receptors that jawed vertebrates use for antigen recognition. Highly diverse VLR genes are somatically assembled by the insertion of variable LRR sequences into incomplete germline VLRA and VLRB genes. Here we show that in sea lampreys (Petromyzon marinus) VLRA and VLRB anticipatory receptors are expressed by separate lymphocyte populations by monoallelic VLRA or VLRB assembly, together with expression of cytosine deaminase 1 (CDA1) or 2 (CDA2), respectively. Distinctive gene expression profiles for VLRA(+) and VLRB(+) lymphocytes resemble those of mammalian T and B cells. Although both the VLRA and the VLRB cells proliferate in response to antigenic stimulation, only the VLRB lymphocytes bind native antigens and differentiate into VLR antibody-secreting cells. Conversely, VLRA lymphocytes respond preferentially to a classical T-cell mitogen and upregulate the expression of the pro-inflammatory cytokine genes interleukin-17 (IL-17) and macrophage migration inhibitory factor (MIF). The finding of T-like and B-like lymphocytes in lampreys offers new insight into the evolution of adaptive immunity.
Publication
Journal: Genes and Immunity
January/27/2003
Abstract
The macrophage migration inhibitory factor (MIF) is a potent pro-inflammatory cytokine and regulates the anti-inflammator effects of glucocorticoids. An important role for MIF within the cytokine cascade is to act in concert with endogenous glucocorticoids to control the set-point and magnitude of the inflammatory response. Elevated expression of MIF in the circulation and in the synovial joint has been documented in rheumatoid arthritis. MIF also has been linked to the development of joint damage and disease pathology in experimental animal models. We describe herein a novel CATT-tetranucleotide repeat polymorphism at position -794 of the human Mif gene and show that it functionally affects the activity of the MIF promoter in gene reporter assays. We describe four genotypes which comprise 5, 6, 7, or 8-CATT repeat units and show that the 5-CATT allele has the lowest level of basal and stimulated MIF promoter activity in vitro. The presence of the low expressing, 5-CATT repeat allele correlated with low disease severity in a cohort of rheumatoid arthritis patients.
Publication
Journal: Plant Cell
March/21/2005
Abstract
Transgenic Arabidopsis thaliana plants overproducing the E2Fa-DPa transcription factor have two distinct cell-specific phenotypes: some cells divide ectopically and others are stimulated to endocycle. The decision of cells to undergo extra mitotic divisions has been postulated to depend on the presence of a mitosis-inducing factor (MIF). Plants possess a unique class of cyclin-dependent kinases (CDKs; B-type) for which no ortholog is found in other kingdoms. The peak of CDKB1;1 activity around the G2-M boundary suggested that it might be part of the MIF. Plants that overexpressed a dominant negative allele of CDKB1;1 underwent enhanced endoreduplication, demonstrating that CDKB1;1 activity was required to inhibit the endocycle. Moreover, when the mutant CDKB1;1 allele was overexpressed in an E2Fa-DPa-overproducing background, it enhanced the endoreduplication phenotype, whereas the extra mitotic cell divisions normally induced by E2Fa-DPa were repressed. Surprisingly, CDKB1;1 transcription was controlled by the E2F pathway, as shown by its upregulation in E2Fa-DPa-overproducing plants and mutational analysis of the E2F binding site in the CDKB1;1 promoter. These findings illustrate a cross talking mechanism between the G1-S and G2-M transition points.
Publication
Journal: Neuropsychopharmacology : official publication of the American College of Neuropsychopharmacology
October/16/2013
Abstract
To improve the 'personalized-medicine' approach to the treatment of depression, we need to identify biomarkers that, assessed before starting treatment, predict future response to antidepressants ('predictors'), as well as biomarkers that are targeted by antidepressants and change longitudinally during the treatment ('targets'). In this study, we tested the leukocyte mRNA expression levels of genes belonging to glucocorticoid receptor (GR) function (FKBP-4, FKBP-5, and GR), inflammation (interleukin (IL)-1α, IL-1β, IL-4, IL-6, IL-7, IL-8, IL-10, macrophage inhibiting factor (MIF), and tumor necrosis factor (TNF)-α), and neuroplasticity (brain-derived neurotrophic factor (BDNF), p11 and VGF), in healthy controls (n=34) and depressed patients (n=74), before and after 8 weeks of treatment with escitalopram or nortriptyline, as part of the Genome-based Therapeutic Drugs for Depression study. Non-responders had higher baseline mRNA levels of IL-1β (+33%), MIF (+48%), and TNF-α (+39%). Antidepressants reduced the levels of IL-1β (-6%) and MIF (-24%), and increased the levels of GR (+5%) and p11 (+8%), but these changes were not associated with treatment response. In contrast, successful antidepressant response was associated with a reduction in the levels of IL-6 (-9%) and of FKBP5 (-11%), and with an increase in the levels of BDNF (+48%) and VGF (+20%)-that is, response was associated with changes in genes that did not predict, at the baseline, the response. Our findings indicate a dissociation between 'predictors' and 'targets' of antidepressant responders. Indeed, while higher levels of proinflammatory cytokines predict lack of future response to antidepressants, changes in inflammation associated with antidepressant response are not reflected by all cytokines at the same time. In contrast, modulation of the GR complex and of neuroplasticity is needed to observe a therapeutic antidepressant effect.
Publication
Journal: Journal of Biological Chemistry
December/27/2005
Abstract
MIF is a proinflammatory cytokine that has been implicated in the pathogenesis of sepsis, arthritis, and other inflammatory diseases. Antibodies against MIF are effective in experimental models of inflammation, and there is interest in strategies to inhibit its deleterious cytokine activities. Here we identify a mechanism of inhibiting MIF pro-inflammatory activities by targeting MIF tautomerase activity. We designed small molecules to inhibit this tautomerase activity; a lead molecule, "ISO-1 ((S,R)-3-(4-hydroxyphenyl)-4,5-dihydro-5-isoxazole acetic acid methyl ester)," significantly inhibits the cytokine activity in vitro. Moreover, ISO-1 inhibits tumor necrosis factor release from macrophages isolated from LPStreated wild type mice but has no effect on cytokine release from MIFdeficient macrophages. The therapeutic importance of the MIF inhibition by ISO-1 is demonstrated by the significant protection from sepsis, induced by cecal ligation and puncture in a clinically relevant time frame. These results identify ISO-1 as the first small molecule inhibitor of MIF proinflammatory activities with therapeutic implications and indicate the potential of the MIF active site as a novel target for therapeutic interventions in human sepsis.
load more...