Citations
All
Search in:AllTitleAbstractAuthor name
Publications
(536)
Patents
Grants
Pathways
Clinical trials
Publication
Journal: Blood
February/25/2008
Abstract
The transcription factor Runx1/AML1 is an important regulator of hematopoiesis and is critically required for the generation of the first definitive hematopoietic stem cells (HSCs) in the major vasculature of the mouse embryo. As a pivotal factor in HSC ontogeny, its transcriptional regulation is of high interest but is largely undefined. In this study, we used a combination of comparative genomics and chromatin analysis to identify a highly conserved 531-bp enhancer located at position + 23.5 in the first intron of the 224-kb mouse Runx1 gene. We show that this enhancer contributes to the early hematopoietic expression of Runx1. Transcription factor binding in vivo and analysis of the mutated enhancer in transient transgenic mouse embryos implicate Gata2 and Ets proteins as critical factors for its function. We also show that the SCL/Lmo2/Ldb-1 complex is recruited to the enhancer in vivo. Importantly, transplantation experiments demonstrate that the intronic Runx1 enhancer targets all definitive HSCs in the mouse embryo, suggesting that it functions as a crucial cis-regulatory element that integrates the Gata, Ets, and SCL transcriptional networks to initiate HSC generation.
Publication
Journal: Proceedings of the National Academy of Sciences of the United States of America
July/7/2005
Abstract
We have created a stable transgenic rag2-EGFP-mMyc zebrafish line that develops GFP-labeled T cell acute lymphoblastic leukemia (T-ALL), allowing visualization of the onset and spread of this disease. Here, we show that leukemias from this transgenic line are highly penetrant and render animals moribund by 80.7 +/- 17.6 days of life (+/-1 SD, range = 50-158 days). These T cell leukemias are clonally aneuploid, can be transplanted into irradiated recipient fish, and express the zebrafish orthologues of the human T-ALL oncogenes tal1/scl and lmo2, thus providing an animal model for the most prevalent molecular subgroup of human T-ALL. Because T-ALL develops very rapidly in rag2-EGFP-mMyc transgenic fish (in which "mMyc" represents mouse c-Myc), this line can only be maintained by in vitro fertilization. Thus, we have created a conditional transgene in which the EGFP-mMyc oncogene is preceded by a loxed dsRED2 gene and have generated stable rag2-loxP-dsRED2-loxP-EGFP-mMyc transgenic zebrafish lines, which have red fluorescent thymocytes and do not develop leukemia. Transgenic progeny from one of these lines can be induced to develop T-ALL by injecting Cre RNA into one-cell-stage embryos, demonstrating the utility of the Cre/lox system in the zebrafish and providing an essential step in preparing this model for chemical and genetic screens designed to identify modifiers of Myc-induced T-ALL.
Publication
Journal: New England Journal of Medicine
October/21/2014
Abstract
BACKGROUND
In previous clinical trials involving children with X-linked severe combined immunodeficiency (SCID-X1), a Moloney murine leukemia virus-based γ-retrovirus vector expressing interleukin-2 receptor γ-chain (γc) complementary DNA successfully restored immunity in most patients but resulted in vector-induced leukemia through enhancer-mediated mutagenesis in 25% of patients. We assessed the efficacy and safety of a self-inactivating retrovirus for the treatment of SCID-X1.
METHODS
We enrolled nine boys with SCID-X1 in parallel trials in Europe and the United States to evaluate treatment with a self-inactivating (SIN) γ-retrovirus vector containing deletions in viral enhancer sequences expressing γc (SIN-γc).
RESULTS
All patients received bone marrow-derived CD34+ cells transduced with the SIN-γc vector, without preparative conditioning. After 12.1 to 38.7 months of follow-up, eight of the nine children were still alive. One patient died from an overwhelming adenoviral infection before reconstitution with genetically modified T cells. Of the remaining eight patients, seven had recovery of peripheral-blood T cells that were functional and led to resolution of infections. The patients remained healthy thereafter. The kinetics of CD3+ T-cell recovery was not significantly different from that observed in previous trials. Assessment of insertion sites in peripheral blood from patients in the current trial as compared with those in previous trials revealed significantly less clustering of insertion sites within LMO2, MECOM, and other lymphoid proto-oncogenes in our patients.
CONCLUSIONS
This modified γ-retrovirus vector was found to retain efficacy in the treatment of SCID-X1. The long-term effect of this therapy on leukemogenesis remains unknown. (Funded by the National Institutes of Health and others; ClinicalTrials.gov numbers, NCT01410019, NCT01175239, and NCT01129544.).
Publication
Journal: Blood
March/5/2012
Abstract
The clustered homeobox proteins play crucial roles in development, hematopoiesis, and leukemia, yet the targets they regulate and their mechanisms of action are poorly understood. Here, we identified the binding sites for Hoxa9 and the Hox cofactor Meis1 on a genome-wide level and profiled their associated epigenetic modifications and transcriptional targets. Hoxa9 and the Hox cofactor Meis1 cobind at hundreds of highly evolutionarily conserved sites, most of which are distant from transcription start sites. These sites show high levels of histone H3K4 monomethylation and CBP/P300 binding characteristic of enhancers. Furthermore, a subset of these sites shows enhancer activity in transient transfection assays. Many Hoxa9 and Meis1 binding sites are also bound by PU.1 and other lineage-restricted transcription factors previously implicated in establishment of myeloid enhancers. Conditional Hoxa9 activation is associated with CBP/P300 recruitment, histone acetylation, and transcriptional activation of a network of proto-oncogenes, including Erg, Flt3, Lmo2, Myb, and Sox4. Collectively, this work suggests that Hoxa9 regulates transcription by interacting with enhancers of genes important for hematopoiesis and leukemia.
Publication
Journal: Blood
October/29/2008
Abstract
Leukemia caused by retroviral insertional mutagenesis after stem cell gene transfer has been reported in several experimental animals and in patients treated for X-linked severe combined immunodeficiency. Here, we analyzed whether gene transfer into mature T cells bears the same genotoxic risk. To address this issue in an experimental "worst case scenario," we transduced mature T cells and hematopoietic progenitor cells from C57BL/6 (Ly5.1) donor mice with high copy numbers of gamma retroviral vectors encoding the potent T-cell oncogenes LMO2, TCL1, or DeltaTrkA, a constitutively active mutant of TrkA. After transplantation into RAG-1-deficient recipients (Ly5.2), animals that received stem cell transplants developed T-cell lymphoma/leukemia for all investigated oncogenes with a characteristic phenotype and after characteristic latency periods. Ligation-mediated polymerase chain reaction analysis revealed monoclonality or oligoclonality of the malignancies. In striking contrast, none of the mice that received T-cell transplants transduced with the same vectors developed leukemia/lymphoma despite persistence of gene-modified cells. Thus, our data provide direct evidence that mature T cells are less prone to transformation than hematopoietic progenitor cells.
Publication
Journal: Blood
July/4/2011
Abstract
Diffuse large B-cell lymphomas (DLBCLs) can be divided into germinal-center B cell-like (GCB) and activated-B cell-like (ABC) subtypes by gene-expression profiling (GEP), with the latter showing a poorer outcome. Although this classification can be mimicked by different immunostaining algorithms, their reliability is the object of controversy. We constructed tissue microarrays with samples of 157 DLBCL patients homogeneously treated with immunochemotherapy to apply the following algorithms: Colomo (MUM1/IRF4, CD10, and BCL6 antigens), Hans (CD10, BCL6, and MUM1/IRF4), Muris (CD10 and MUM1/IRF4 plus BCL2), Choi (GCET1, MUM1/IRF4, CD10, FOXP1, and BCL6), and Tally (CD10, GCET1, MUM1/IRF4, FOXP1, and LMO2). GEP information was available in 62 cases. The proportion of misclassified cases by immunohistochemistry compared with GEP was higher when defining the GCB subset: 41%, 48%, 30%, 60%, and 40% for Colomo, Hans, Muris, Choi, and Tally, respectively. Whereas the GEP groups showed significantly different 5-year progression-free survival (76% vs 31% for GCB and activated DLBCL) and overall survival (80% vs 45%), none of the immunostaining algorithms was able to retain the prognostic impact of the groups (GCB vs non-GCB). In conclusion, stratification based on immunostaining algorithms should be used with caution in guiding therapy, even in clinical trials.
Publication
Journal: Nature Immunology
May/16/2001
Abstract
Cooperation between the stem cell leukemia (SCL) transcription factor and its nuclear partners LMO1 or LMO2 induces aggressive T cell acute lymphoblastic leukemia when inappropriately expressed in T cells. This study examined the cellular and molecular targets of the SCL-LMO complex at the preleukemic stage. We show that SCL and its partners are coexpressed in the most primitive thymocytes. Maturation to the pre-T cell stage is associated with a down-regulation of SCL and LMO1 and LMO2, and a concomitant up-regulation of E2A and HEB expression. Moreover, enforced expression of SCL-LMO1 inhibits T cell differentiation and recapitulates a loss of HEB function, causing a deregulation of the transition checkpoint from the CD4-CD8- to CD4+CD8+ stages. Finally, we identify the gene encoding pT alpha as a downstream target of HEB that is specifically repressed by the SCL-LMO complex.
Publication
Journal: Blood
November/27/2005
Abstract
Recent reports linking insertional activation of LMO2 following gene therapy for X-linked severe combined immunodeficiency (X-SCID) have led to a re-evaluation of risks following gene therapy with retroviral vectors. In our analysis of 702 integration sites in rhesus macaques that underwent transplantation up to 7 years earlier with autologous CD34+ cells transduced with amphotropic murine leukemia virus (MLV)-derived retroviral vectors containing marker genes, we detected insertion into one locus, the Mds1/Evi1 region, a total of 14 times in 9 animals. Mds1/Evi1 integrations were observed stably long term, primarily in myeloid cells. We hypothesize that this over-representation likely results from an impact on the self-renewal and engraftment potential of CD34+ progenitor cells via insertional mutagenesis at this specific locus. There is no evidence of ongoing in vivo clonal expansion of the Mds1/Evi1 populations, and all animals are hematologically normal without evidence for leukemia. Characterization of integration sites in this relevant preclinical model provides critical information for gene therapy risk assessment as well as identification of genes controlling hematopoiesis.
Publication
Journal: Current Biology
October/27/2008
Abstract
Blood and endothelium arise in close association during development, possibly from a common precursor, the hemangioblast [1-4]. Genes essential for blood and endothelial development contain functional ETS binding sites, and binding and expression data implicate the transcription factor, friend leukaemia integration 1 (Fli1) [5-10]. However, loss-of-function phenotypes in mice, although suffering both blood and endothelial defects, have thus far precluded the conclusion that Fli1 is essential for these two lineages [11, 12]. By using Xenopus and zebrafish embryos, we show that loss of Fli1 function results in a substantial reduction or absence of hemangioblasts, revealing an absolute requirement. TUNEL assays show that the cells are eventually lost by apoptosis, but only after the regulatory circuit has been disrupted by loss of Fli1. In addition, a constitutively active form of Fli1 is sufficient to induce expression of key hemangioblast genes, such as Scl/Tal1, Lmo2, Gata2, Etsrp, and Flk1. Epistasis assays show that Fli1 expression is induced by Bmp signaling or Cloche, depending on the hemangioblast population, and in both cases Fli1 acts upstream of Gata2, Scl, Lmo2, and Etsrp. Taken together, these results place Fli1 at the top of the transcriptional regulatory hierarchy for hemangioblast specification in vertebrate embryos.
Publication
Journal: New England Journal of Medicine
March/2/2004
Publication
Journal: Molecular and Cellular Biology
December/3/2003
Abstract
The TAL1 (or SCL) gene, originally identified from its involvement by a recurrent chromosomal translocation, encodes a basic helix-loop-helix transcription factor essential for erythropoiesis. Although presumed to regulate transcription, its target genes are largely unknown. We show here that a nuclear complex containing TAL1, its DNA-binding partner E47, zinc finger transcription factor GATA-1, LIM domain protein LMO2, and LIM domain-binding protein Ldb1 transactivates the protein 4.2 (P4.2) gene through two E box GATA elements in its proximal promoter. Binding of this complex to DNA was dependent on the integrity of both E box and GATA sites and was demonstrated to occur on the P4.2 promoter in cells. Maximal transcription in transiently transfected cells required both E box GATA elements and expression of all five components of the complex. This complex was shown, in addition, to be capable of linking in solution double-stranded oligonucleotides corresponding to the two P4.2 E box GATA elements. This DNA-linking activity required Ldb1 and increased with dimethyl sulfoxide-induced differentiation of murine erythroleukemia (MEL) cells. In contrast, enforced expression in MEL cells of dimerization-defective mutant Ldb1, as well as wild-type Ldb1, significantly decreased E box GATA DNA-binding activities, P4.2 promoter activity, and accumulation of P4.2 and beta-globin mRNAs. These studies define a physiologic target for a TAL1- and GATA-1-containing ternary complex and reveal a positive role for Ldb1 in erythroid gene expression and differentiation.
Publication
Journal: Molecular and Cellular Biology
March/11/2004
Abstract
SCL/TAL1 is a hematopoietic-specific transcription factor of the basic helix-loop-helix (bHLH) family that is essential for erythropoiesis. Here we identify the erythroid cell-specific glycophorin A gene (GPA) as a target of SCL in primary hematopoietic cells and show that SCL occupies the GPA locus in vivo. GPA promoter activation is dependent on the assembly of a multifactorial complex containing SCL as well as ubiquitous (E47, Sp1, and Ldb1) and tissue-specific (LMO2 and GATA-1) transcription factors. In addition, our observations suggest functional specialization within this complex, as SCL provides its HLH protein interaction motif, GATA-1 exerts a DNA-tethering function through its binding to a critical GATA element in the GPA promoter, and E47 requires its N-terminal moiety (most likely entailing a transactivation function). Finally, endogenous GPA expression is disrupted in hematopoietic cells through the dominant-inhibitory effect of a truncated form of E47 (E47-bHLH) on E-protein activity or of FOG (Friend of GATA) on GATA activity or when LMO2 or Ldb-1 protein levels are decreased. Together, these observations reveal the functional complementarities of transcription factors within the SCL complex and the essential role of SCL as a nucleation factor within a higher-order complex required to activate gene GPA expression.
Publication
Journal: EMBO Journal
May/16/1996
Abstract
The LMO2 and TAL1 genes were first identified via chromosomal translocations and later found to encode proteins that interact during normal erythroid development. Some T cell leukaemia patients have chromosomal abnormalities involving both genes, implying that LMO2 and TAL1 act synergistically to promote tumorigenesis after their inappropriate co-expression. To test this hypothesis, transgenic mice were made which co-express Lmo2 and Tal1 genes in T cells. Dimers of Lmo2 and Tal1 proteins were formed in thymocytes of double but not single transgenic mice. Furthermore, thymuses of double transgenic mice were almost completely populated by immature T cells from birth, and these mice develop T cell tumours approximately 3 months earlier than those with only the Lmo2 transgene. Thus interaction between these two proteins can alter T cell development and potentiate tumorigenesis. The data also provide formal proof that TAL1 is an oncogene, apparently acting as a tumour promoter in this system.
Publication
Journal: Blood
March/19/2007
Abstract
We previously developed a multivariate model based on the RNA expression of 6 genes (LMO2, BCL6, FN1, CCND2, SCYA3, and BCL2) that predicts survival in diffuse large B-cell lymphoma (DLBCL) patients. Since LMO2 emerged as the strongest predictor of superior outcome, we generated a monoclonal anti-LMO2 antibody in order to study its tissue expression pattern. Immunohistologic analysis of over 1200 normal and neoplastic tissue and cell lines showed that LMO2 protein is expressed as a nuclear marker in normal germinal-center (GC) B cells and GC-derived B-cell lines and in a subset of GC-derived B-cell lymphomas. LMO2 was also expressed in erythroid and myeloid precursors and in megakaryocytes and also in lymphoblastic and acute myeloid leukemias. It was rarely expressed in mature T, natural killer (NK), and plasma cell neoplasms and was absent from nonhematolymphoid tissues except for endothelial cells. Hierarchical cluster analysis of immunohistologic data in DLBCL demonstrated that the expression profile of the LMO2 protein was similar to that of other GC-associated proteins (HGAL, BCL6, and CD10) but different from that of non-GC proteins (MUM1/IRF4 and BCL2). Our results warrant inclusion of LMO2 in multivariate analyses to construct a clinically applicable immunohistologic algorithm for predicting survival in patients with DLBCL.
Publication
Journal: Development (Cambridge)
January/29/2004
Abstract
The LIM domain protein Lmo2 and the basic helix-loop-helix transcription factor Scl/Tal1 are expressed in early haematopoietic and endothelial progenitors and interact with each other in haematopoietic cells. While loss-of-function studies have shown that Lmo2 and Scl/Tal1 are essential for haematopoiesis and angiogenic remodelling of the vasculature, gain-of-function studies have suggested an earlier role for Scl/Tal1 in the specification of haemangioblasts, putative bipotential precursors of blood and endothelium. In zebrafish embryos, Scl/Tal1 can induce these progenitors from early mesoderm mainly at the expense of the somitic paraxial mesoderm. We show that this restriction to the somitic paraxial mesoderm correlates well with the ability of Scl/Tal1 to induce ectopic expression of its interaction partner Lmo2. Co-injection of lmo2 mRNA with scl/tal1 dramatically extends its effect to head, heart, pronephros and pronephric duct mesoderm inducing early blood and endothelial genes all along the anteroposterior axis. Erythroid development, however, is expanded only into pronephric mesoderm, remaining excluded from head, heart and somitic paraxial mesoderm territories. This restriction correlates well with activation of gata1 transcription and co-injection of gata1 mRNA along with scl/tal1 and lmo2 induces erythropoiesis more broadly without ventralising or posteriorising the embryo. While no ectopic myeloid development from the Scl/Tal1-Lmo2-induced haemangioblasts was observed, a dramatic increase in the number of endothelial cells was found. These results suggest that, in the absence of inducers of erythroid or myeloid haematopoiesis, Scl/Tal1-Lmo2-induced haemangioblasts differentiate into endothelial cells.
Publication
Journal: Developmental Biology
September/18/2006
Abstract
Erythroid cell production results from passage through cellular hierarchies dependent on differential gene expression under the control of transcription factors responsive to changing niches. We have constructed Genetic Regulatory Networks (GRNs) describing this process, based predominantly on mouse data. Regulatory network motifs identified in E. coli and yeast GRNs are found in combination in these GRNs. Feed-forward motifs with autoregulation generate forward momentum and also control its rate, which is at its lowest in hematopoietic stem cells (HSCs). The simultaneous requirement for multiple regulators in multi-input motifs (MIMs) provides tight control over expression of target genes. Combinations of MIMs, exemplified by the SCL/LMO2 complexes, which have variable content and binding sites, explain how individual regulators can have different targets in HSCs and erythroid cells and possibly also how HSCs maintain stem cell functions while expressing lineage-affiliated genes at low level, so-called multi-lineage priming. MIMs combined with cross-antagonism describe the relationship between PU.1 and GATA-1 and between two of their target genes, Fli-1 and EKLF, with victory for GATA-1 and EKLF leading to erythroid lineage specification. These GRNs are useful repositories for current regulatory information, are accessible in interactive form via the internet, enable the consequences of perturbation to be predicted, and can act as seed networks to organize the rapidly accumulating microarray data.
Publication
Journal: EMBO Journal
May/23/2006
Abstract
The passage from proliferation to terminal differentiation is critical for normal development and is often perturbed in malignancies. To define the molecular mechanisms that govern this process during erythropoiesis, we have used tagging/proteomics approaches and characterized protein complexes nucleated by TAL-1/SCL, a basic helix-loop-helix transcription factor that specifies the erythrocytic lineage. In addition to known TAL-1 partners, GATA-1, E2A, HEB, LMO2 and Ldb1, we identify the ETO2 repressor as a novel component recruited to TAL-1 complexes through interaction with E2A/HEB. Ectopic expression and siRNA knockdown experiments in hematopoietic progenitor cells show that ETO2 actively represses erythroid TAL-1 target genes and governs the expansion of erythroid progenitors. At the onset of erythroid differentiation, a change in the stoichiometry of ETO2 within the TAL-1 complex activates the expression of known erythroid-specific TAL-1 target genes and of Gfi-1b and p21(Cip), encoding two essential regulators of erythroid cell proliferation. These results suggest that the dynamics of ETO2 recruitment within nuclear complexes couple cell proliferation to cell differentiation and determine the onset of terminal erythroid maturation.
Publication
Journal: Development (Cambridge)
June/10/2008
Abstract
The differentiation of embryonic stem (ES) cells offers a powerful approach to study mechanisms implicated in cell fate decision. A major hurdle, however, is to promote the directed and efficient differentiation of ES cells toward a specific lineage. Here, we define in serum-free media the minimal factor requirement controlling each step of the differentiation process, resulting in the production of highly enriched hematopoietic progenitors. Four factors - Bmp4, activin A, bFGF (Fgf2) and VEGF (VegfA) - are sufficient to drive the selective and efficient differentiation of mouse ES cells to hematopoiesis. Each of these factors appears to regulate a step of the process: Bmp4 promotes the very efficient formation of mesoderm; bFGF and activin A induce the differentiation of these mesodermal precursors to the hemangioblast fate; and VEGF is required for the production of fully committed hematopoietic progenitors. The stimulation of mesodermal precursors by bFGF and activin A switches on very rapidly the hematopoietic program, allowing us to dissect the molecular events leading to the formation of the hemangioblast. Runx1, Scl (Tal1) and Hhex expression is upregulated within 3 hours of stimulation, whereas upregulation of Lmo2 and Fli1 is observed later. Interestingly, increased expression levels of genes such as cMyb, Pu.1 (Sfpi1), Gata1 and Gata2 are not observed at the onset of hemangioblast commitment. This stepwise control of differentiation is extremely efficient, giving rise to a very high frequency of hematopoietic precursors, and provides an optimal system for understanding the molecular machineries involved in blood progenitor commitment.
Publication
Journal: International Immunology
May/19/2003
Abstract
Despite playing a critical role in the development of naive T cells, the thymus is involuted with age. Whether a single age-associated defect or multiple aberrations contribute to thymic involution remains controversial. Here, we determined molecular aberrations in the thymocyte and epithelium compartments of the aging thymus. We demonstrated that total thymocyte numbers declined with a stepwise kinetics; clear demarcations occurred at 1.5, 3, 12 and 22 months of age. By quantitative PCR, a 2.4-fold reduction in the copies of signal joint TCR-excised circle (sjTREC)/10(5) thymocytes was first detected at 3 months; no further reduction observed thereafter. Nevertheless, the combined reductions in thymocyte numbers and sjTREC/10(5) cells caused a 7-fold decrease in sjTREC/thymus by 3 months, 21-fold by 18 months and 72-fold by 22 months as compared to 1 month. We showed aberration in expression of E2A, a transcription regulator critical for TCR beta rearrangement. While E2A expression declined 3-fold by 3 months and 18-fold by 7 months, expression of LMO2, a negative regulator of E2A activities, increased 5-fold by 18 months. Interestingly, expression of pre-T alpha and its transcriptional regulator HEB were not reduced with age. Furthermore, keratin-8 expression, specific for cortical thymic epithelium, declined 3-fold by 7 months and remained stable thereafter. In contrast, Foxn1 expression was reduced 3-fold by 3 months, 16-fold by 12 months and 37-fold by 18 months. IL-7 expression was not reduced until 7 months and reached 15-fold reduction by 22 months. Thus, the data demonstrate that thymic involution results not from a single defect, but culminates from an array of molecular aberrations in both the developing thymocytes and thymic epithelials.
Publication
Journal: Proceedings of the National Academy of Sciences of the United States of America
February/9/2000
Abstract
The LMO2 gene is activated by chromosomal translocations in human T cell acute leukemias, but in mouse embryogenesis, Lmo2 is essential for initiation of yolk sac and definitive hematopoiesis. The LMO2 protein comprises two LIM-zinc-finger-like protein interaction modules and functions by interaction with specific partners in DNA-binding transcription complexes. We have now investigated the role of Lmo2-associated transcription complexes in the formation of the vascular system by following the fate of Lmo2-null embryonic stem (ES) cells in mouse chimeras. Lmo2 is expressed in vascular endothelium, and Lmo2-null ES cells contributed to the capillary network normally until around embryonic day 9. However, after this time, marked disorganization of the vascular system was observed in those chimeric mice that have a high contribution of Lmo2-null ES cells. Moreover, Lmo2-null ES cells do not contribute to endothelial cells of large vessel walls of surviving chimeric mice after embryonic day 10. These results show that Lmo2 is not needed for de novo capillary formation from mesoderm but is necessary for angiogenic remodeling of the existing capillary network into mature vasculature. Thus, Lmo2-mediated transcription complexes not only regulate distinct phases of hematopoiesis but also angiogenesis, presumably by Lmo2 interacting with distinct partners in the different settings.
Publication
Journal: Development (Cambridge)
February/15/2007
Abstract
Ldb1, a ubiquitously expressed LIM domain binding protein, is essential in a number of tissues during development. It interacts with Gata1, Tal1, E2A and Lmo2 to form a transcription factor complex regulating late erythroid genes. We identify a number of novel Ldb1 interacting proteins in erythroleukaemic cells, in particular the repressor protein Eto-2 (and its family member Mtgr1), the cyclin-dependent kinase Cdk9, and the bridging factor Lmo4. MO-mediated knockdowns in zebrafish show these factors to be essential for definitive haematopoiesis. In accordance with the zebrafish results these factors are coexpressed in prehaematopoietic cells of the early mouse embryo, although we originally identified the complex in late erythroid cells. Based on the change in subcellullar localisation of Eto-2 we postulate that it plays a central role in the transition from the migration and expansion phase of the prehaematopoietic cells to the establishment of definitive haematopoietic stem cells.
Publication
Journal: Journal of Clinical Oncology
February/13/2008
Abstract
OBJECTIVE
The heterogeneity of diffuse large B-cell lymphoma (DLBCL) has prompted the search for new markers that can accurately separate prognostic risk groups. We previously showed in a multivariate model that LMO2 mRNA was a strong predictor of superior outcome in DLBCL patients. Here, we tested the prognostic impact of LMO2 protein expression in DLBCL patients treated with anthracycline-based chemotherapy with or without rituximab.
METHODS
DLBCL patients treated with anthracycline-based chemotherapy alone (263 patients) or with the addition of rituximab (80 patients) were studied using immunohistochemistry for LMO2 on tissue microarrays of original biopsies. Staining results were correlated with outcome.
RESULTS
In anthracycline-treated patients, LMO2 protein expression was significantly correlated with improved overall survival (OS) and progression-free survival (PFS) in univariate analyses (OS, P = .018; PFS, P = .010) and was a significant predictor independent of the clinical International Prognostic Index (IPI) in multivariate analysis. Similarly, in patients treated with the combination of anthracycline-containing regimens and rituximab, LMO2 protein expression was also significantly correlated with improved OS and PFS (OS, P = .005; PFS, P = .009) and was a significant predictor independent of the IPI in multivariate analysis.
CONCLUSIONS
We conclude that LMO2 protein expression is a prognostic marker in DLBCL patients treated with anthracycline-based regimens alone or in combination with rituximab. After further validation, immunohistologic analysis of LMO2 protein expression may become a practical assay for newly diagnosed DLBCL patients to optimize their clinical management.
Publication
Journal: Blood
December/4/2002
Abstract
The combinatorial interaction among transcription factors is believed to determine hematopoietic cell fate. Stem cell leukemia (SCL, also known as TAL1 [T-cell acute lymphoblastic leukemia 1]) is a tissue-specific basic helix-loop-helix (bHLH) factor that plays a central function in hematopoietic development; however, its target genes and molecular mode of action remain to be elucidated. Here we show that SCL and the c-Kit receptor are coexpressed in hematopoietic progenitors at the single-cell level and that SCL induces c-kit in chromatin, as ectopic SCL expression in transgenic mice sustains c-kit transcription in developing B lymphocytes, in which both genes are normally down-regulated. Through transient transfection assays and coimmunoprecipitation of endogenous proteins, we define the role of SCL as a nucleation factor for a multifactorial complex (SCL complex) that specifically enhances c-kit promoter activity without affecting the activity of myelomonocytic promoters. This complex, containing hematopoietic-specific (SCL, Lim-only 2 (LMO2), GATA-1/GATA-2) and ubiquitous (E2A, LIM- domain binding protein 1 [Ldb-1]) factors, is tethered to DNA via a specificity protein 1 (Sp1) motif, through direct interactions between elements of the SCL complex and the Sp1 zinc finger protein. Furthermore, we demonstrate by chromatin immunoprecipitation that SCL, E2A, and Sp1 specifically co-occupy the c-kit promoter in vivo. We therefore conclude that c-kit is a direct target of the SCL complex. Proper activation of the c-kit promoter depends on the combinatorial interaction of all members of the complex. Since SCL is down-regulated in maturing cells while its partners remain expressed, our observations suggest that loss of SCL inactivates the SCL complex, which may be an important event in the differentiation of pluripotent hematopoietic cells.
Publication
Journal: Current Opinion in Hematology
August/19/2002
Abstract
Commitment of hematopoietic cells to the erythroid lineage involves the actions of several transcription factors, including TAL1, LMO2, and GATA-2. The differentiation of committed erythroid progenitor cells involves other transcription factors, including NF-E2 and EKLF. Upon binding erythropoietin, the principal regulator of erythropoiesis, cell surface erythropoietin receptors dimerize and activate specific intracellular kinases, including Janus family tyrosine protein kinase 2, phosphoinositol-3 kinase, and mitogen-activated protein kinase. Important substrates of these kinases are tyrosines in the erythropoietin receptors themselves and the signal transducer and transcription activator proteins. Erythropoietin prevents erythroid cell apoptosis. Some of the apoptotic tendency of erythroid cells can be attributed to proapoptotic molecules produced by hematopoietic cells, macrophages, and stromal cells. Cell divisions accompanying terminal erythroid differentiation are finely controlled by cell cycle regulators, and disruption of these terminal divisions causes erythroid cell apoptosis. In reticulocyte maturation, regulated degradation of internal organelles involves a lipoxygenase, whereas survival requires the antiapoptotic protein Bcl-x.
load more...