Citations
All
Search in:AllTitleAbstractAuthor name
Publications
(252)
Patents
Grants
Pathways
Clinical trials
Publication
Journal: Hematology/Oncology Clinics of North America
January/20/2011
Abstract
Genome-wide association studies (GWAS) have now been performed in nearly all common malignancies and have identified more than 100 common genetic risk variants that confer a modest increased risk of cancer. For most discovered germline risk variants, the per allele effect size is small (<1.5) and the biologic mechanism of the detected association remains unexplained. Exceptions are the risk variants identified in JAK2 in myeloproliferative neoplasm and in the KITLG gene in testicular cancer, which are each associated with nearly a 3-fold increased risk of disease. GWAS have provided an efficient approach to identifying common, low-penetrance risk variants, and have implicated several novel cancer susceptibility loci. However, the identified low-penetrance risk variants explain only a small fraction of the heritability of cancer and the clinical usefulness of using these variants for cancer-risk prediction is to date limited. Studies involving more heterogeneous populations, determination of the causal variants, and functional studies are now necessary to further elucidate the potential biologic and clinical significance of the observed associations.
Publication
Journal: Best practice & research. Clinical endocrinology & metabolism
January/9/2011
Abstract
This article defines familial testicular germ cell tumours (FTGCTs) as testicular germ cell tumours (TGCTs) diagnosed in at least two blood relatives, a situation which occurs in 1-2% of all cases of TGCT. Brothers and fathers of TGCT patients have an 8-10- and 4-6-fold increased risk of TGCT, respectively, and an even higher elevated risk of TGCT in twin brothers of men with TGCT has been observed, suggesting that genetic elements play an important role in these tumours. Nevertheless, previous linkage studies with multiple FTGCT families did not uncover any high-penetrance genes and it has been concluded that the combined effects of multiple common alleles, each conferring a modest risk, might underlie FTGCT. In agreement with this assumption, recent candidate gene-association analyses have identified the chromosome Y gr/gr deletion and mutations in the PDE11A gene as genetic modifiers of FTGCT risk. Moreover, two genome-wide association studies of predominantly sporadic but also familial cases of TGCT have identified three additional susceptibility loci, KITLG, SPRY4 and BAK1. Notably, all five loci are involved in the biology of primordial germ cells, representing the cell of origin of TGCT, suggesting that the tumours arise as a result of disturbed testicular development.
Publication
Journal: The Journal of investigative dermatology
July/18/2011
Abstract
Cutaneous pigmentation is regulated by a complex melanogenic network in which skin cells synthesize growth factors and cytokines. Mutations in genes encoding these regulators modify their expression and/or functionality, leading to altered signaling pathways and contributing to altered skin phenotypes. In this issue, Amyere et al. report a genome-wide analysis of seven families with familial progressive hyperpigmentation and hypopigmentation, identifying three new mutations in KITLG. The study underlines the relevance of investigating candidate genes implicated in the onset of pigmentary disorders. Furthermore, Amyere et al. suggest that different pigmentary diseases can result from the same mutation or different mutations in the same gene, and they offer hope for the development of new and efficacious treatment strategies.
Publication
Journal: Cold Spring Harbor perspectives in medicine
December/26/2016
Abstract
The tumor suppressor gene TP53 is the most frequently mutated gene in human cancer; this gene is subject to inactivation by mutation or deletion in >50% of sporadic cancers. Genes that encode proteins that regulate p53 function, such as MDM2, MDM4, and CDKN2A (p14(ARF)) are also frequently altered in tumors, and it is generally believed that the p53 pathway is likely to be inactivated by mutation in close to 100% of human tumors. Unlike most other cancer-relevant signaling pathways, some of the genes in the p53 pathway contain functionally significant single nucleotide polymorphisms (SNPs) that alter the amplitude of signaling by this protein. These variants, thus, have the potential to impact cancer risk, progression, and the efficacy of radiation and chemotherapy. In addition, the p53 pathway plays a role in other biological processes, including metabolism and reproductive fitness, so these variants have the potential to modify other diseases as well. Here we have chosen five polymorphisms in three genes in the p53 pathway for review, two in TP53, two in MDM2, and one in MDM4. These five variants were selected based on the quality and reproducibility of functional data associated with them, as well as the convincingness of epidemiological data in support of their association with disease. We also highlight two other polymorphisms that may affect p53 signaling, but for which functional or association data are still forthcoming (KITLG and ANRIL). Finally, we touch on three questions regarding genetic modifiers of the p53 pathway: Why did these variants arise? Were they under selection pressure? And, is there compelling evidence to support genotyping these variants to better predict disease risk and prognosis?
Publication
Journal: Blood
March/2/2005
Abstract
Mantle cell lymphoma (MCL) is an aggressive, highly proliferative B-cell non-Hodgkin lymphoma, characterized by the specific t(11;14)(q13;q32) translocation. It is well established that this translocation alone is not sufficient to promote MCL development, but that additional genetic changes are essential for malignant transformation. We have identified such additional tumorigenic triggers in MCL tumors, by applying genome-wide array-based comparative genomic hybridization with an 800-kilobase (kb) resolution. This strategy, combined with a newly developed statistical approach, enabled us to confirm previously reported genomic alterations such as loss of 1p, 6q, 11q, 13q and gain of 3q and 8q, but it also facilitated the detection of novel recurrent genomic imbalances, such as gain of 4p12-13 and loss of 20p12.1-12.3, 20q12-13.2, 22q12.1-12.3, and 22q13.31-13.32. Genomic hotspot detection allowed for the identification of small genomic intervals that are frequently affected (57%-93%), resulting in interesting positional candidate genes such as KITLG, GPC5, and ING1. Finally, by assessing multiple biopsies from the same patient, we show that seemingly stable genomes do show subtle genomic changes over time. The follow-up of multiple biopsies of patients with MCL by high-resolution genomic profiling is expected to provide us with new clues regarding the relation between clinical outcome and in vivo cytogenetic evolution.
Publication
Journal: Molecular Cytogenetics
July/13/2011
Abstract
BACKGROUND
Recent genome-wide microarray-based research investigations have revealed a high frequency of submicroscopic copy number alterations (CNAs) in the myelodysplastic syndromes (MDS), suggesting microarray-based comparative genomic hybridization (aCGH) has the potential to detect new clinically relevant genomic markers in a diagnostic laboratory.
RESULTS
We performed an exploratory study on 30 cases of MDS, myeloproliferative neoplasia (MPN) or evolving acute myeloid leukemia (AML) (% bone marrow blasts ≤ 30%, range 0-30%, median, 8%) by aCGH, using a genome-wide bacterial artificial chromosome (BAC) microarray. The sample data were compared to corresponding cytogenetics, fluorescence in situ hybridization (FISH), and clinical-pathological findings. Previously unidentified imbalances, in particular those considered submicroscopic aberrations (< 10 Mb), were confirmed by FISH analysis. CNAs identified by aCGH were concordant with the cytogenetic/FISH results in 25/30 (83%) of the samples tested. aCGH revealed new CNAs in 14/30 (47%) patients, including 28 submicroscopic or hidden aberrations verified by FISH studies. Cryptic 344-kb RUNX1 deletions were found in three patients at time of AML transformation. Other hidden CNAs involved 3q26.2/EVI1, 5q22/APC, 5q32/TCERG1,12p13.1/EMP1, 12q21.3/KITLG, and 17q11.2/NF1. Gains of CCND2/12p13.32 were detected in two patients. aCGH failed to detect a balanced translocation (n = 1) and low-level clonality (n = 4) in five karyotypically aberrant samples, revealing clinically important assay limitations.
CONCLUSIONS
The detection of previously known and unknown genomic alterations suggests that aCGH has considerable promise for identification of both recurring microscopic and submicroscopic genomic imbalances that contribute to myeloid disease pathogenesis and progression. These findings suggest that development of higher-resolution microarray platforms could improve karyotyping in clinical practice.
Publication
Journal: BMC Cancer
August/30/2016
Abstract
BACKGROUND
Silence of the tumor suppressor miR-34c is implicated in the development of colorectal cancer (CRC). For the past few years, Resveratrol (Res) has been introduced to oncotherapies alone or with traditional chemotherapeutic drugs. However, the study of molecular mechanism involved in the anti-CRC effect of Res is still ongoing.
METHODS
The anti-CRC effect of Res alone or with Oxaliplatin (Oxa) was determined by cell viability assay, soft agar colony formation assay, flow cytometry and real-time cellular analyzer in HT-29 (p53+) and HCT-116 (p53-) CRC cell lines. Expressions of miR-34c and its targets were detected by qPCR and/or western blot. To evaluate the role of miR-34c in anti-CRC effect by Res alone or with Oxa, miR-34c was up or down-regulated by lentiviral mediation or specific inhibitor, respectively. To investigate how miR-34c was increased by Res, the methylation status of miR-34c promoter was detected by MSP. The tumor bearing mouse model was established by subcutaneous injection of HCT-116 cells to assess anti-CRC effect of Res alone or with Oxa in vivo. IL-6 and TNF-α in xenografts were detected by ELISA.
RESULTS
Res inhibited cell viability, proliferation, migration and invasion as well as promoted apoptosis both in HT-29 and HCT-116 CRC cells. The anti-CRC effect of Res was partially but specifically through up-regulating miR-34c which further knocked down its target KITLG; and the effect was enhanced in the presence of p53 probably through inactivating PI3K/Akt pathway. Besides, Res sensitized CRC cells to Oxa in a miR-34c dependent manner. The xenograft experiments showed that exposure to Res or Oxa suppressed tumor growth; and the efficacy was evidently augmented by the co-treatment of Res and Oxa. Likewise, miR-34c level was elevated in xenografts of Res-treated mice while the KITLG was decreased. Finally, Res clearly reduced IL-6 in xenografts.
CONCLUSIONS
Res suppressed CRC by specifically activating miR-34c-KITLG in vitro and in vivo; and the effect was strengthened in the presence of p53. Besides, Res exerted a synergistic effect with Oxa in a miR-34c dependent manner. We also suggested that Res-increased miR-34c could interfere IL-6-triggered CRC progression.
Publication
Journal: Haematologica
September/27/2018
Abstract
Mutations in genes of the RAS-BRAF-MAPK-ERK pathway have not been fully explored in chronic lymphocytic leukemia patients. To provide a better comprehension, we analyzed the clinical and biological characteristics of patients with mutations in this pathway and investigated the in vitro response of primary cells to BRAF and ERK inhibitors. Putative damaging mutations were found in 25 of 452 patients (5.5%). Of those, BRAF was mutated in 9 patients (2.0%), genes upstream of BRAF (KITLG, KIT, PTPN11, GNB1, KRAS and NRAS) were mutated in 12 patients (2.6%), and genes downstream of BRAF (MAPK2K1, MAPK2K2, and MAPK1) were mutated in 5 patients (1.1%). The most frequent mutations were missense, subclonal and mutually exclusive. Patients with these mutations had more frequently increased lactate dehydrogenase, high expression of ZAP-70, CD49d, CD38, trisomy 12 and unmutated immunoglobulin heavy-chain variable region gene and had a worse 5-year time to first treatment (hazard ratio 1.8, p=0.025). Gene expression analysis showed upregulation of genes of the MAPK pathway in the group carrying RAS-BRAF-MAPK-ERK mutations. BRAF inhibitors vemurafenib and dabrafenib were not able to inhibit ERK phosphorylation, the downstream effector of the pathway, in primary cells. In contrast, ulixertinib, a pan-ERK inhibitor, decreased phospho-ERK levels. In conclusion, although larger series of patients are needed to corroborate these findings, our results suggest that RAS-BRAF-MAPK-ERK pathway is one of the core cellular processes affected by novel mutations in chronic lymphocytic leukemia, it is associated with adverse clinical features and it could be pharmacologically inhibited.
Publication
Journal: Nature Genetics
July/16/2009
Abstract
Two genome-wide association studies for testicular cancer report associations at three new loci, including two candidate genes previously implicated in testicular development, KITLG (ligand for the receptor tyrosine kinase) and SPRY4 (sprouty 4). These studies are notable for the high effect sizes detected and the biological plausibility of the candidate genes.
Publication
Journal: BMC Medical Genomics
December/13/2009
Abstract
BACKGROUND
Subcortical white matter hyperintensity on magnetic resonance imaging (MRI) of the brain, referred to as leukoaraiosis, is associated with increased risk of stroke and dementia. Hypertension may contribute to leukoaraiosis by accelerating the process of arteriosclerosis involving penetrating small arteries and arterioles in the brain. Leukoaraiosis volume is highly heritable but shows significant inter-individual variability that is not predicted well by any clinical covariates (except for age) or by single SNPs.
METHODS
As part of the Genetics of Microangiopathic Brain Injury (GMBI) Study, 777 individuals (74% hypertensive) underwent brain MRI and were genotyped for 1649 SNPs from genes known or hypothesized to be involved in arteriosclerosis and related pathways. We examined SNP main effects, epistatic (gene-gene) interactions, and context-dependent (gene-environment) interactions between these SNPs and covariates (including conventional and novel risk factors for arteriosclerosis) for association with leukoaraiosis volume. Three methods were used to reduce the chance of false positive associations: 1) false discovery rate (FDR) adjustment for multiple testing, 2) an internal replication design, and 3) a ten-iteration four-fold cross-validation scheme.
RESULTS
Four SNP main effects (in F3, KITLG, CAPN10, and MMP2), 12 SNP-covariate interactions (including interactions between KITLG and homocysteine, and between TGFB3 and both physical activity and C-reactive protein), and 173 SNP-SNP interactions were significant, replicated, and cross-validated. While a model containing the top single SNPs with main effects predicted only 3.72% of variation in leukoaraiosis in independent test samples, a multiple variable model that included the four most highly predictive SNP-SNP and SNP-covariate interactions predicted 11.83%.
CONCLUSIONS
These results indicate that the genetic architecture of leukoaraiosis is complex, yet predictive, when the contributions of SNP main effects are considered in combination with effects of SNP interactions with other genes and covariates.
Publication
Journal: American Journal of Human Genetics
June/8/2009
Abstract
Familial progressive hyperpigmentation (FPH) is an autosomal-dominantly inherited disorder characterized by hyperpigmented patches in the skin, present in early infancy and increasing in size and number with age. The genetic basis for FPH remains unknown. In this study, a six-generation Chinese family with FPH was subjected to a genome-wide scan for linkage analysis. Two-point linkage analysis mapped the locus for FPH at chromosome 12q21.31-q23.1, with a maximum two-point LOD score of 4.35 (Ø = 0.00) at D12S81. Haplotype analysis confined the locus within an interval of 9.09 cM, flanked by the markers D12S1667 and D12S2081. Mutation profiling of positional candidate genes detected a heterozygous transversion (c. 107A->>G) in exon 2 of the KIT ligand (KITLG) gene, predicted to result in the substitution of a serine residue for an asparagine residue at codon 36 (p.N->>S). This mutant "G" allele cosegregated perfectly with affected, but not with unaffected, members of the FPH family. Function analysis of the soluble form of sKITLG revealed that mutant sKITLGN36S increased the content of the melanin by 109% compared with the wild-type sKITLG in human A375 melanoma cells. Consistent with this result, the tyrosinase activity was significantly increased by mutant sKITLGN36S compared to wild-type control. To our knowledge, these data provided the first genetic evidence that the FPH disease is caused by the KITLGN36S mutation, which has a gain-of-function effect on the melanin synthesis and opens a new avenue for exploration of the genetic mechanism of FPH.
Publication
Journal: Genes Chromosomes and Cancer
September/3/2012
Abstract
Recent genome wide association studies have identified susceptibility loci for adult testicular germ cell tumors (GCT) near KITLG, SPRY4, BAK1, and DMRT1. We evaluated variants in these four genes to determine whether these are also susceptibility loci for pediatric GCTs. DNA was isolated from 52 pediatric GCTs (ages 0-21 years) obtained from the Cooperative Human Tissue Network. Control DNA was isolated from de-identified dried blood spots from 141 white newborns. Genotyping was conducted using TaqMan assays (rs4474514) or by PCR and sequencing (rs4324715, rs210138, and rs755383). Associations between variants and GCT were evaluated using logistic regression with adjustment for sex. We also evaluated whether the associations differed by age at GCT diagnosis (0-9 years, 10-21 years), sex, and tumor location (gonadal, non-gonadal). We observed a significant association for rs210138 (BAK1) and pediatric GCT overall (odds ratio (OR) = 1.80, 95% confidence interval (CI) 1.10-2.95, P = 0.02) with non-significant associations similar in magnitude in both the pediatric (P = 0.09) and adolescent (P = 0.06) age groups. The KITLG (rs4474514) and SPRY4 (rs4324715) variants were significantly associated with GCT only in the adolescent age group (rs4474514: OR = 2.28, 95% CI 1.09-4.79, P = 0.03 and rs4324715: OR = 2.40, 95% CI 1.19-4.83, P = 0.01). Associations were mostly similar when stratified by sex. This is the first study to suggest that these loci may also be important in susceptibility to GCTs in the adolescent (KITLG, SPRY4, and BAK1) and pediatric (BAK1) age groups.
Publication
Journal: BMC Genomics
February/24/2016
Abstract
BACKGROUND
Many recent studies using ChIP-seq approaches cross-referenced to trascriptome data and also to potentially unbiased in vitro DNA binding selection experiments are detailing with increasing precision the p53-directed gene regulatory network that, nevertheless, is still expanding. However, most experiments have been conducted in established cell lines subjected to specific p53-inducing stimuli, both factors potentially biasing the results.
RESULTS
We developed p53retriever, a pattern search algorithm that maps p53 response elements (REs) and ranks them according to predicted transactivation potentials in five classes. Besides canonical, full site REs, we developed specific pattern searches for non-canonical half sites and 3/4 sites and show that they can mediate p53-dependent responsiveness of associated coding sequences. Using ENCODE data, we also mapped p53 REs in about 44,000 distant enhancers and identified a 16-fold enrichment for high activity REs within those sites in the comparison with genomic regions near transcriptional start sites (TSS). Predictions from our pattern search were cross-referenced to ChIP-seq, ChIP-exo, expression, and various literature data sources. Based on the mapping of predicted functional REs near TSS, we examined expression changes of thirteen genes as a function of different p53-inducing conditions, providing further evidence for PDE2A, GAS6, E2F7, APOBEC3H, KCTD1, TRIM32, DICER, HRAS, KITLG and TGFA p53-dependent regulation, while MAP2K3, DNAJA1 and potentially YAP1 were identified as new direct p53 target genes.
CONCLUSIONS
We provide a comprehensive annotation of canonical and non-canonical p53 REs in the human genome, ranked on predicted transactivation potential. We also establish or corroborate direct p53 transcriptional control of thirteen genes. The entire list of identified and functionally classified p53 REs near all UCSC-annotated genes and within ENCODE mapped enhancer elements is provided. Our approach is distinct from, and complementary to, existing methods designed to identify p53 response elements. p53retriever is available as an R package at: http://tomateba.github.io/p53retriever .
Publication
Journal: Reproductive BioMedicine Online
May/16/2013
Abstract
Protamine genes play important roles in DNA packaging within the sperm nucleus. In order to evaluate the association of PRM1, PRM2, KIT and KITLG variants with susceptibility to severely defective spermatogenesis, 309 male infertility patients (199 cases with non-obstructive azoospermia and 110 cases with severe oligozoospermia) and 377 controls were recruited in the Chinese Han population. This study genotyped 38 single-nucleotide polymorphisms (SNP) in PRM1, PRM2, KIT and KITLG using Sequenom iplex. The results showed that PRM1 variant rs35576928 (p.R34S) was significantly associated with severe oligozoospermia and played a protective role against the disease (P=0.0079, Bonferroni correction, OR 0.426). The dominant model (variant-containing genotypes) of the SNP was confirmed to protect against the occurrence of oligozoospermia (P=0.0078, Bonferroni correction, OR 0.387). Haplotype analysis of PRM1 and PRM2 in combination exhibited that haplotype TACCGGC exhibited a significant protective effect against the occurrence of oligozoospermia when compared with controls (P=0.002, Bonferroni correction, OR 0.602). Haplotype TACCTGC was strongly associated with risk of the clinical phenotype severe oligozoospermia (P=0.002, Bonferroni correction, OR 2.716). The findings indicated that PRM1 variant rs35576928 (p.R34S) was associated with severely defective spermatogenesis in the Chinese Han population. Male spermatogenic failure may be associated with gene variants. We demonstrated whether such genetic variation of PRM1 and PRM2 affected clinicopathological characteristics and conferred susceptibility to this entity. In this study, we found that PRM1 variant rs35576928 (Arg>Ser) played a protective role against severe oligozoospermia. The dominant model analysis (variant-containing genotypes) confirmed that the SNP was a risk factor of a spermatogenesis defect. Haplotype analysis of PRM1 and PRM2 showed that TACCGGC was a common factor protecting against severe oligozoospermia, while the haplotype TACCTGC was strongly associated with the risk of the severe oligozoospmeria. Our findings indicate that the PRM1 variant rs35576928 (Arg>Ser) is associated with spermatogenesis defect in the Chinese Han population.
Publication
Journal: Journal of Cellular and Molecular Medicine
April/12/2015
Abstract
MiR-34c is considered a potent tumour suppressor because of its negative regulation of multiple target mRNAs that are critically associated with tumorigenesis and metastasis. In the present study, we demonstrated a novel target of miR-34c, KITLG, which has been implicated in colorectal cancer (CRC). First, we found a significant negative relationship between miR-34c and KITLG mRNA expression levels in CRC cell lines, including HT-29, HCT-116, SW480 and SW620 CRC cell lines. In silico analysis predicted putative binding sites for miR-34c in the 3' untranslated region (3'UTR) of KITLG mRNA. A dual-luciferase reporter assay further confirmed that KITLG is a direct target of miR-34c. Then, the cell lines were infected with lentiviruses expressing miR-34c or a miR-34c specific inhibitor. Restoration of miR-34c dramatically reduced the expression of KITLG mRNA and protein, while silencing of endogenous miR-34c increased the expression of KITLG protein. The miR-34c-mediated down-regulation of KITLG was associated with the suppression on proliferation, cellular transformation, migration and invasion of CRC cells, as well as the promotion on apoptosis. Knockdown of KITLG by its specific siRNA confirmed a critical role of KITLG down-regulation for the tumour-suppressive effects of miR-34c in CRC cells. In conclusion, our results demonstrated that miR-34c might interfere with KITLG-related CRC and could be a novel molecular target for CRC patients.
Pulse
Views:
1
Posts:
No posts
Rating:
Not rated
Publication
Journal: Current Opinion in Genetics and Development
September/26/2010
Abstract
For some time, it has been known that there is a substantial genetic component to testicular germ cell tumour susceptibility, supported by several pieces of evidence, including the significantly increased familial risk and differential risk among races. However, despite extensive linkage searches on available families, no high penetrance genes have been identified. Recently genome-wide association studies have revealed three candidate loci, which confer up to a four-fold risk of developing TGCT. The genome-wide association studies for this cancer are noteworthy, because of the high effect sizes demonstrated at each loci and the biological plausibility of the genes at or near the associated SNPs, particularly KITLG.
Publication
Journal: Nature Reviews Urology
February/19/2017
Abstract
The genomic landscape of testicular germ cell tumour (TGCT) can be summarized using four overarching hypotheses. Firstly, TGCT risk is dominated by inherited genetic factors, which determine nearly half of all disease risk and are highly polygenic in nature. Secondly KIT-KITLG signalling is currently the major pathway that is implicated in TGCT formation, both as a predisposition risk factor and a somatic driver event. Results from genome-wide association studies have also consistently suggested that other closely related pathways involved in male germ cell development and sex determination are associated with TGCT risk. Thirdly, the method of disease formation is unique, with tumours universally stemming from a noninvasive precursor lesion, probably of fetal origin, which lies dormant through childhood into adolescence and then eventually begins malignant growth in early adulthood. Formation of a 12p isochromosome, a hallmark of TGCT observed in nearly all tumours, is likely to be a key triggering event for malignant transformation. Finally, TGCT have been shown to have a distinctive somatic mutational profile, with a low rate of point mutations contrasted with frequent large-scale chromosomal gains. These four hypotheses by no means constitute a complete model that explains TGCT tumorigenesis, but advances in genomic technologies have enabled considerable progress in describing and understanding the disease. Further advancing our understanding of the genomic basis of TGCT offers a clear opportunity for clinical benefit in terms of preventing invasive cancer arising in young men, decreasing the burden of chemotherapy-related survivorship issues and reducing mortality in the minority of patients who have treatment-refractory disease.
Pulse
Views:
1
Posts:
No posts
Rating:
Not rated
Publication
Journal: Theoretical Population Biology
August/23/2015
Abstract
Recent positive selection can increase the frequency of an advantageous mutant rapidly enough that a relatively long ancestral haplotype will be remained intact around it. We present a hidden Markov model (HMM) to identify such haplotype structures. With HMM identified haplotype structures, a population genetic model for the extent of ancestral haplotypes is then adopted for parameter inference of the selection intensity and the allele age. Simulations show that this method can detect selection under a wide range of conditions and has higher power than the existing frequency spectrum-based method. In addition, it provides good estimate of the selection coefficients and allele ages for strong selection. The method analyzes large data sets in a reasonable amount of running time. This method is applied to HapMap III data for a genome scan, and identifies a list of candidate regions putatively under recent positive selection. It is also applied to several genes known to be under recent positive selection, including the LCT, KITLG and TYRP1 genes in Northern Europeans, and OCA2 in East Asians, to estimate their allele ages and selection coefficients.
Publication
Journal: PLoS ONE
September/16/2012
Abstract
Pigmentation patterns allow for the differentiation of cattle breeds. A dominantly inherited white head is characteristic for animals of the Fleckvieh (FV) breed. However, a minority of the FV animals exhibits peculiar pigmentation surrounding the eyes (ambilateral circumocular pigmentation, ACOP). In areas where animals are exposed to increased solar ultraviolet radiation, ACOP is associated with a reduced susceptibility to bovine ocular squamous cell carcinoma (BOSCC, eye cancer). Eye cancer is the most prevalent malignant tumour affecting cattle. Selection for animals with ACOP rapidly reduces the incidence of BOSCC. To identify quantitative trait loci (QTL) underlying ACOP, we performed a genome-wide association study using 658,385 single nucleotide polymorphisms (SNPs). The study population consisted of 3579 bulls of the FV breed with a total of 320,186 progeny with phenotypes for ACOP. The proportion of progeny with ACOP was used as a quantitative trait with high heritability (h(2) = 0.79). A variance component based approach to account for population stratification uncovered twelve QTL regions on seven chromosomes. The identified QTL point to MCM6, PAX3, ERBB3, KITLG, LEF1, DKK2, KIT, CRIM1, ATRN, GSDMC, MITF and NBEAL2 as underlying genes for eye area pigmentation in cattle. The twelve QTL regions explain 44.96% of the phenotypic variance of the proportion of daughters with ACOP. The chromosomes harbouring significantly associated SNPs account for 54.13% of the phenotypic variance, while another 19.51% of the phenotypic variance is attributable to chromosomes without identified QTL. Thus, the missing heritability amounts to 7% only. Our results support a polygenic inheritance pattern of ACOP in cattle and provide the basis for efficient genomic selection of animals that are less susceptible to serious eye diseases.
Publication
Journal: International journal of andrology
January/18/2012
Abstract
Three genome-wide association studies of testicular cancer have uncovered predisposition alleles in or near KITLG, BAK1, SPRY4, TERT, ATF7IP and DMRT1. We investigated whether testicular cancer-risk alleles can be utilized in the clinical setting. We employed the receiver operating characteristic curves for genetic risk models to measure the discriminatory power of a risk variant-based risk model, and found that the newly discovered variants provided a discriminatory power of 69.2%. This suggested that about 69.2% of the time, a randomly selected patient with testicular cancer had a higher estimated risk than the risk for a randomly selected control subject. Using a multiplicative model, we estimated that white men in the top 1% of genetic risk as defined by eight risk variants had a relative risk that was 10.5-fold greater than that for the general white male population. This risk differential does not appear to be clinically useful, given the relative rarity and highly curable nature of testicular germ cell tumour (TGCT). In the authors' view, a stratified genetic risk assessment strategy might be useful, theoretically, for men who also have independent clinical risk factors for testicular cancer. Several established TGCT risk factors, such as cryptorchidism (RR=4.8) and male infertility (SIR=2.8) might prove useful in that context, but we currently do not know whether these testicular cancer-risk loci are associated with, or independent of, such clinical risk factors. More research is required before we can utilize testicular cancer-risk loci for clinically meaningful risk prediction.
Publication
Journal: Asian Journal of Andrology
February/10/2016
Abstract
Malignant testicular germ cell tumors (TGCT) are the most frequent cancers in Caucasian males (20-40 years) with an 70% increasing incidence the last 20 years, probably due to combined action of (epi)genetic and (micro)environmental factors. It is expected that TGCT have carcinoma in situ(CIS) as their common precursor, originating from an embryonic germ cell blocked in its maturation process. The overall cure rate of TGCT is more than 90%, however, men surviving TGCT can present long-term side effects of systemic cancer treatment. In contrast, men diagnosed and treated for CIS only continue to live without these long-term side effects. Therefore, early detection of CIS has great health benefits, which will require an informative screening method. This review described the etiology and early pathogenesis of TGCT, as well as the possibilities of early detection and future potential of screening men at risk for TGCT. For screening, a well-defined risk profile based on both genetic and environmental risk factors is needed. Since 2009, several genome wide association studies (GWAS) have been published, reporting on single-nucleotide polymorphisms (SNPs) with significant associations in or near the genes KITLG, SPRY4, BAK1, DMRT1, TERT, ATF7IP, HPGDS, MAD1L1, RFWD3, TEX14, and PPM1E, likely to be related to TGCT development. Prenatal, perinatal, and postnatal environmental factors also influence the onset of CIS. A noninvasive early detection method for CIS would be highly beneficial in a clinical setting, for which specific miRNA detection in semen seems to be very promising. Further research is needed to develop a well-defined TGCT risk profile, based on gene-environment interactions, combined with noninvasive detection method for CIS.
Publication
Journal: BMC Genetics
February/23/2010
Abstract
BACKGROUND
Eye and hair colour is highly variable in the European population, and is largely genetically determined. Both linkage and association studies have previously been used to identify candidate genes underlying this variation. Many of the genes found were previously known as underlying mutant mouse phenotypes or human genetic disease, but others, previously unsuspected as pigmentation genes, have also been discovered.
RESULTS
We assayed the hair of a population of individuals of Scottish origin using tristimulus colorimetry, in order to produce a quantitative measure of hair colour. Cluster analysis of this data defined two groups, with overlapping borders, which corresponded to visually assessed dark versus red/light hair colour. The Danish population was assigned into categorical hair colour groups. Both cohorts were also assessed for eye colour. DNA from the Scottish group was genotyped at SNPs in 33 candidate genes, using 384 SNPs identified by HapMap as representatives of each gene. Associations found between SNPs and colorimetric hair data and eye colour categories were replicated in a cohort of the Danish population. The Danish population was also genotyped with SNPs in 4 previously described pigmentation genes. We found replicable associations of hair colour with the KITLG and OCA2 genes. MC1R variation correlated, as expected, with the red dimension of colorimetric hair colour in Scots. The Danish analysis excluded those with red hair, and no associations were found with MC1R in this group, emphasising that MC1R regulates the colour rather than the intensity of pigmentation. A previously unreported association with the HPS3 gene was seen in the Scottish population. However, although this replicated in the smaller cohort of the Danish population, no association was seen when the whole study population was analysed.
CONCLUSIONS
We have found novel associations with SNPs in known pigmentation genes and colorimetrically assessed hair colour in a Scottish and a Danish population.
Publication
Journal: International Journal of Molecular Epidemiology and Genetics
October/10/2012
Abstract
Recent genomic studies have identified risk SNPs in or near eight genes associated with testicular germ cell tumors (TGCT). Mouse models suggest a role for Dnd1 epigenetics in TGCT susceptibility, and we have recently reported that transgenerational inheritance of epigenetic events may be associated with familial TGCT risk. We now investigate whether aberrant promoter methylation of selected candidate genes is associated with familial TGCT risk. Pyrosequencing assays were designed to evaluate CpG methylation in the promoters of selected genes in peripheral blood DNA from 153 TGCT affecteds and 116 healthy male relatives from 101 multiple-case families. Wilcoxon rank-sum tests and logistic regression models were used to investigate associations between promoter methylation and TGCT. We also quantified gene product expression of these genes, using quantitative PCR. We observed increased PDE11A, SPRY4 and BAK1 promoter methylation, and decreased KITLG promoter methylation, in familial TGCT cases versus healthy male family controls. A significant upward risk trend was observed for PDE11A when comparing the middle and highest tertiles of methylation to the lowest [odds ratio (OR) =1.55, 95% confidence intervals (CI) 0.82-2.93, and 1.94, 95% CI 1.03-3.66], respectively; P(trend)=0.042). A significant inverse association was observed for KITLG when comparing the middle and lowest tertiles to the highest (OR=2.15, 95% CI 1.12-4.11, and 2.15, 95% CI 1.12-4.14, respectively; P(trend)=0.031). There was a weak inverse correlation between promoter methylation and KITLG expression. Our results suggest that familial TGCT susceptibility may be associated with promoter methylation of previously-identified TGCT risk-modifying genes. Larger studies are warranted.
Publication
Journal: Endocrine-Related Cancer
June/13/2012
Abstract
Epidemiological data suggest an association and a common pathogenetic link between male infertility and testicular germ cell tumor (TGCT) development. Genome-wide studies identified that TGCT susceptibility is associated with KITLG (c-KIT ligand), which regulates the formation of primordial germ cells, from which TGCT is believed to arise and spermatogenesis develops. In this study, we analyzed the link between KITLG, TGCT, and spermatogenic disruption by performing an association study between the KITLG markers rs995030 and rs4471514 and 426 TGCT cases and 614 controls with normal and abnormal sperm count. We found that TGCT risk was increased more than twofold per copy of the major G allele and A allele in KITLG rs995030 and rs4471514 (odds ratio (OR)=2.38, 95% confidence interval (95% CI)=1.81-3.12; OR=2.43, 95% CI=1.86-3.17 respectively), and homozygotes for the risk allele had a sevenfold increased risk of TGCT. KITLG markers were strongly associated with seminoma subtype (per allele risk increased more than threefold, homozygote risk increased by 13- to 16-fold) and weakly with nonseminoma. KITLG markers were not associated with sperm production, as no difference was observed in men with normozoospermia and azoo-oligozoospermia, both in controls and in TGCT cases. In conclusion, this study provides evidence that KITLG variants are involved in TGCT development and they represent an independent and strong specific risk factor for TGCT independently from spermatogenic function. A shared genetic cause and a common pathogenetic link between TGCT development and impairment of spermatogenesis are not evident from this study.
load more...