Citations
All
Search in:AllTitleAbstractAuthor name
Publications
(105)
Patents
Grants
Pathways
Clinical trials
Publication
Journal: Nutrients
January/26/2021
Abstract
SARS-CoV-2 is a newly emerging virus that currently lacks curative treatments. Lactoferrin (LF) is a naturally occurring non-toxic glycoprotein with broad-spectrum antiviral, immunomodulatory and anti-inflammatory effects. In this study, we assessed the potential of LF in the prevention of SARS-CoV-2 infection in vitro. Antiviral immune response gene expression was analyzed by qRT-PCR in uninfected Caco-2 intestinal epithelial cells treated with LF. An infection assay for SARS-CoV-2 was performed in Caco-2 cells treated or not with LF. SARS-CoV-2 titer was determined by qRT-PCR, plaque assay and immunostaining. Inflammatory and anti-inflammatory cytokine production was determined by qRT-PCR. LF significantly induced the expression of IFNA1, IFNB1, TLR3, TLR7, IRF3, IRF7 and MAVS genes. Furthermore, LF partially inhibited SARS-CoV-2 infection and replication in Caco-2 intestinal epithelial cells. Our in vitro data support LF as an immune modulator of the antiviral immune response with moderate effects against SARS-CoV-2 infection.
Keywords: COVID-19; SARS-CoV-2; antiviral immunity; lactoferrin.
Publication
Journal: Human Immunology
July/26/2012
Abstract
The expression pattern of several genes associated with different processes in melanocytes, including melanogenesis, is changed in vitiligo patients. We evaluated possible changes in the expression of interleukin (IL)-10 family cytokines (IL26, IL-28A, IL28B, IL29), their receptor subunits (IL20RB, IL22RA2, IL28RA), and genes potentially related to functioning of melanocytes (MDM1, IFNA1, IFNB1, IFNG, and ICAM1) in the case of vitiligo. We observed mRNA expression in vitiligo patients' and controls' skin and peripheral blood mononuclear cells using quantitative real-time polymerase chain reaction. The mRNA expression pattern of IL20RB, IL22RA2, IL-28A, IL28B, IL28RA, MDM1, IFNA1, IFNB1, IFNG, and ICAM1 changed in vitiligo skin and/or peripheral blood mononuclear cells (PBMC) compared with controls. All of these genes may potentially be involved in vitiligo pathogenesis through controlling or participating in different pathways that regulate survival/apoptosis, development and migration of melanocytes, and melanogenesis. This study presents additional support for our previous findings about the importance of IL-10 family cytokines in vitiligo, in particular the possible involvement of IL-22. Further studies should be considered.
Publication
Journal: Genes and Immunity
May/4/2016
Abstract
IFNL4 is linked to hepatitis C virus treatment response and type III interferons (IFNs). We studied the functional associations among hepatic expressions of IFNs and IFN-stimulated genes (ISGs), and treatment response to peginterferon and ribavirin. Type I IFNs (IFNA1, IFNB1), type II (IFNG), type III (IFNL1, IFNL2/3), IFNL4 and ISG hepatic expressions were measured by qPCR from in 65 chronic hepatitis C (CHC) patients whose IFNL4-associated rs368234815 and IFNL3-associated rs12989760 genotype were determined. There was a robust correlation of hepatic expression within type I and type III IFNs and between type III IFNs and IFNL4 but no correlation between other IFN types. Expression of ISGs correlated with type III IFNs and IFNL4 but not with type I IFNs. Levels of ISGs and IFNL2/3 mRNAs were lower in IFNL3 rs12979860 CC patients compared with non-CC patients, and in treatment responders, compared with nonresponders. IFNL4-ΔG genotype was associated with high ISG levels and nonresponse. Hepatic levels of ISGs in CHC are associated with IFNL2/3 and IFNL4 expression, suggesting that IFNLs, not other types of IFNs, drive ISG expression. Hepatic IFNL2/3 expression is functionally linked to IFNL4 and IFNL3 polymorphisms, potentially explaining the tight association among ISG expression and treatment response.
Publication
Journal: Virology
February/16/2015
Abstract
Several studies have shown that type 1 interferons (IFNs) exert multiple biological effects on both innate and adaptive immune responses. Here, we investigated the pathogenicity and immunogenicity of recombinant rabies virus (RABV) expressing canine interferon α1 (rHEP-CaIFNα1). It was shown that Kun Ming (KM) mice that received a single intramuscular immunization with rHEP-CaIFNα1 had an earlier increase and a higher level of virus-neutralizing antibody titers compared with immunization of the parent HEP-Flury. A challenge experiment further confirmed that more mice that were immunized with rHEP-CaIFNα1 survived compared with mice immunized with the parent virus. Quantitative real-time PCR indicated that rHEP-CaIFNα1 induced a stronger innate immune response, especially the type 1 IFN response. Flow cytometry was conducted to show that rHEP-CaIFNα1 recruited more activated B cells in lymph nodes and CD8 T cells in the peripheral blood, which is beneficial to achieve virus clearance in the early infective stage.
Publication
Journal: Scientific Reports
November/12/2018
Abstract
While TLR-activated pathways are key regulators of B cell responses in mammals, their impact on teleost B cells are scarcely addressed. Here, the potential of Atlantic salmon B cells to respond to TLR ligands was shown by demonstrating a constitutive expression of nucleic-acid sensing TLRs in magnetic sorted IgM+ cells. Of the two receptors recognizing CpG in teleosts, tlr9 was the dominating receptor with over ten-fold higher expression than tlr21. Upon CpG-stimulation, IgM secretion increased for head kidney (HK) and splenic IgM+ cells, while blood B cells were marginally affected. The results suggest that CpG directly affects salmon B cells to differentiate into antibody secreting cells (ASCs). IgM secretion was also detected in the non-treated controls, again with the highest levels in the HK derived population, signifying that persisting ASCs are present in this tissue. In all tissues, the IgM+ cells expressed high MHCII levels, suggesting antigen-presenting functions. Upon CpG-treatment the co-stimulatory molecules cd83 and cd40 were upregulated, while cd86 was down-regulated under the same conditions. Finally, ifna1 was upregulated upon CpG-stimulation in all tissues, while a restricted upregulation was evident for ifnb, proposing that salmon IgM+ B cells exhibit a type I IFN-response.
Publication
Journal: International Journal of Cancer
April/23/2007
Abstract
Interferon (IFN) alpha is a pleiotropic cytokine acting as an antiviral substance, cell growth inhibitor and immunomodulator. To evaluate the therapeutic efficacy and mechanisms of IFNalpha on hepatic metastasis of tumor cells, we hydrodynamically injected naked plasmid DNA encoding IFNalpha1 (pCMV-IFNa1) into Balb/cA mice having 2 days hepatic metastasis of CT-26 cells. Single injection of pCMV-IFNa1 efficiently enhanced the natural killer (NK) activity of hepatic mononuclear cells, induced production of IFNgamma in serum and led to complete rejection of tumors in the liver. Mice protected from hepatic metastasis by IFNalpha therapy displayed a tumor-specific cytotoxic T cell response and were resistant to subcutaneous challenge of CT-26 cells. NK cells were critically required for IFNalpha-mediated rejection of hepatic metastasis, because their depletion by injecting anti-asialo GM1 antibody completely abolished the antimetastatic effect. To find whether NK cells are directly activated by IFNalpha and are sufficient for the antimetastatic effect, the responses to IFNalpha were examined in SCID mice lacking T cells, B cells and NKT cells. IFNalpha completely rejected hepatic metastasis in SCID mice and efficiently activated SCID mononuclear cells, as evidenced by activation of STAT1 and a variety of genes, such as MHC class I, granzyme B, tumor necrosis factor-related apoptosis-inducing ligand and IFNgamma, and also enhanced Yac1 lytic ability. Study of IFNgamma knockout mice revealed that IFNgamma was not necessary for IFNalpha-mediated NK cell activation and metastasis protection. In conclusion, IFNalpha efficiently activates both innate and adaptive immune responses, but NK cells are critically required and sufficient for IFNalpha-mediated initial rejection of hepatic metastasis of microdisseminated tumors.
Publication
Journal: Vaccine
October/24/2012
Abstract
CpG oligonucleotides and polyinosinic:polycytidylic acid (poly I:C) are toll-like receptor (TLR) agonists that mimic the immunostimulatory properties of bacterial DNA and double-stranded viral RNA respectively, and which have exhibited potential to serve as vaccine adjuvants in previous experiments. Here, a combination of CpGs and poly I:C together with water- or oil-formulated Salmonid Alphavirus (SAV) antigen preparations has been used for a vaccine in Atlantic salmon and tested for protection in SAV challenge trial. The results demonstrate that vaccination with a high dose of the SAV antigen induced protection against challenge with SAV which correlated with production of neutralizing antibodies (NAbs). As the high antigen dose alone induced full protection, no beneficial effect from the addition of CpG and poly I:C could be observed. Nevertheless, these TLR ligands significantly enhanced the levels of NAbs in serum of vaccinated fish. Interestingly, gene expression analysis demonstrated that while addition of oil suppressed the CpG/poly I:C-induced expression of IFN-γ, the upregulation of IFNa1 was substantially enhanced. A low dose of the SAV antigen combined with oil did not induce any detectable levels of NAbs either with or without TLR ligands present, however the addition of CpG and poly I:C to the low SAV antigen dose formulation significantly enhanced the protection against SAV suggesting that CpG/poly I:C may have enhanced a cytotoxic response - a process which is dependent on the up-regulation of type I IFN. These results highlight the immunostimulatory properties of the tested TLR ligands and will serve as a ground for further, more detailed studies aimed to investigate their capacity to serve as adjuvants in vaccine formulations for Atlantic salmon.
Publication
Journal: Vaccine
January/18/2016
Abstract
There is a need for more efficient vaccines to combat viral diseases of Atlantic salmon and other farmed fish. DNA vaccines are highly effective against salmonid rhabdoviruses, but have shown less effect against other viruses. In the present work we have studied if type I IFNs might be used as adjuvants in fish DNA vaccines. For this purpose we chose a DNA vaccine model based on the hemagglutinin-esterase (HE) gene of infectious salmon anemia virus (ISAV) as antigen. Salmon presmolts were injected with a plasmid encoding HE alone or together with a plasmid encoding Atlantic salmon type I IFN (IFNa1, IFNb or IFNc). Sera were harvested after 7-10 weeks for measurements of antibody against ISAV and the fish were challenged with ISAV to measure protective effects of the vaccines. The results showed that all three IFN plasmids delivered together with HE plasmid potently enhanced protection of salmon against ISAV mediated mortality and stimulated an increase in IgM antibodies against the virus. In contrast, HE plasmid alone gave low antibody titers and a minor protection against ISAV. This demonstrates that type I IFNs stimulate adaptive immune responses in fish, which may be a benefit also in other fish DNA vaccines. Quantitative RT-PCR studies showed that the salmon IFNs caused an increased influx of B-cells and cytotoxic T-cells at the muscle injection site, which may in part explain the adjuvant effect of the IFNs.
Publication
Journal: Molecular Immunology
July/11/2010
Abstract
Transcription factors of the interferon regulatory factor (IRF) family are major regulators of the early immune responses against viral infections. In particular, IRF1, IRF2, IRF3 and IRF7 of mammals are known to regulate the expression of type I interferons (IFNs), which constitute the obligate cytokines for antiviral defense. We therefore cloned the coding sequence of Atlantic salmon (As) IRF1, IRF2, IRF3 and IRF7B. Expression profiles were studied in Atlantic salmon TO cells after poly I:C (dsRNA) transfection, treatment with recombinant salmon IFNa1 and infection with infectious salmon anemia virus (ISAV). The main findings were that AsIRF1 was earliest up-regulated by all stimuli, while AsIRF3 and AsIRF7 had a similar activation profile induced at a slightly later time point. The ability to induce the Atlantic salmon IFNa1 promoter was measured in a luciferase reporter assay. The results showed that AsIRF1, AsIRF3 and AsIRF7B were able to induce the promoter in a dose-dependent manner. AsIRF2 repressed the promoter, while AsIRF7A and a splicing variant (AsIRF3D) lacking the interaction domain had almost no effect. Combination of AsIRF1 and AsIRF3 had a synergistic stimulatory effect on the promoter compared to each of the two IRFs alone. Overall, our findings suggest that AsIRF3 is the main regulator of salmon IFNa1 production along with AsIRF1, which is less potent. This confirms a similar role for salmon IRF3 as mammalian IRF3 to be one of the main IRFs eliciting salmon IFNa1 production. Surprisingly, AsIRF7A and AsIRF7B seemed to have a lesser role in salmon IFNa1 induction, which may indicate that these factors have a larger role in activating other IFN genes or interferon stimulatory genes of Atlantic salmon.
Publication
Journal: Tumor Biology
June/8/2014
Abstract
D-glucuronyl C5-epimerase (GLCE) is involved in breast and lung carcinogenesis as a potential tumor suppressor gene, acting through inhibition of tumor angiogenesis and invasion/metastasis pathways. However, in prostate tumors, increased GLCE expression is associated with advanced disease, suggesting versatile effects of GLCE in different cancers. To investigate further the potential cancer-promoting effect of GLCE in prostate cancer, GLCE was ectopically re-expressed in morphologically different LNCaP and PC3 prostate cancer cells. Transcriptional profiles of normal PNT2 prostate cells, LNCaP, PC3 and DU145 prostate cancer cells, and GLCE-expressing LNCaP and PC3 cells were determined. Comparative analysis revealed the genes whose expression was changed in prostate cancer cells compared with normal PNT2 cells, and those differently expressed between the cancer cell lines (ACTA2, IL6, SERPINE1, TAGLN, SEMA3A, and CDH2). GLCE re-expression influenced mainly angiogenesis-involved genes (ANGPT1, SERPINE1, IGF1, PDGFB, TNF, IL8, TEK, IFNA1, and IFNB1) but in a cell type-specific manner (from basic deregulation of angiogenesis in LNCaP cells to significant activation in PC3 cells). Invasion/metastasis pathway was also affected (MMP1, MMP2, MMP9, S100A4, ITGA1, ITGB3, ERBB2, and FAS). The obtained results suggest activation of angiogenesis as a main molecular mechanism of pro-oncogenic effect of GLCE in prostate cancer. GLCE up-regulation plus expression pattern of a panel of six genes, discriminating morphologically different prostate cancer cell sub-types, is suggested as a potential marker of aggressive prostate cancer.
Publication
Journal: European Spine Journal
November/12/2018
Abstract
To investigate and compare the occurrence of inflammatory processes in the sites of disc degeneration in the lumbar and cervical spine by a gene array and subsequent qPCR and to investigate the mechanistic involvement of transient receptor potential channels TRPC6 and TRPV4.
The gene expression of inflammatory cytokines and TRP channels was measured in human disc samples obtained from patients undergoing discectomy at the cervical (n = 24) or lumbar (n = 27) spine for degenerative disc disease (DDD) and disc herniation (DH) and analyzed for differences with regard to spinal level, IVD degeneration grade, Modic grade, age, sex, disc region and surgical extent.
Aside from genes with known implication in DDD and DH, four previously unreported genes from the interferon and TRP families (IFNA1, IFNA8, IFNB1, TRPC6) could be detected. A correlation between gene expression and age (IL-15) and IVD degeneration grade (IFNA1, IL-6, IL-15, TRPC6), but not Modic grade, was identified. Significant differences were detected between cervical and lumbar discs (IL-15), nucleus and annulus (IL-6, TNF-α, TRPC6), single-level and multi-level surgery (IL-6, IL-8) as well as DDD and DH (IL-8), while sex had no effect. Multiple gene-gene pair correlations, either between different cytokines or between cytokines and TRP channels, exist in the disc.
This study supports the relevance of IL-6 and IL-8 in disc diseases, but furthermore points toward a possible pathological role of IL-15 and type I interferons, as well as a mechanistic role of TRPC6. With limited differences in the inflammatory profile of cervical and lumbar discs, novel anti-inflammatory or TRP-modulatory strategies for the treatment of disc pathologies may be applicable independent of the spinal region.
Publication
Journal: FEBS Open Bio
November/6/2014
Abstract
Mammalian IRF9 and STAT2, together with STAT1, form the ISGF3 transcription factor complex, which is critical for type I interferon (IFN)-induced signaling, while IFNγ stimulation is mediated by homodimeric STAT1 protein. Teleost fish are known to possess most JAK and STAT family members, however, description of their functional activity in lower vertebrates is still scarce. In the present study we have identified two different STAT2 homologs and one IRF9 homolog from Atlantic salmon (Salmo salar). Both proteins have domain-like structures with functional motifs that are similar to higher vertebrates, suggesting that they are orthologs to mammalian STAT2 and IRF9. The two identified salmon STAT2s, named STAT2a and STAT2b, showed high sequence identity but were divergent in their transactivation domain (TAD). Like STAT1, ectopically expressed STAT2a and b were shown to be tyrosine phosphorylated by type I IFNs and, interestingly, also by IFNγ. Microscopy analyses demonstrated that STAT2 co-localized with STAT1a in the cytoplasm of unstimulated cells, while IFNa1 and IFNγ stimulation seemed to favor their nuclear localization. Overexpression of STAT2a or STAT2b together with STAT1a activated a GAS-containing reporter gene construct in IFNγ-stimulated cells. The highest induction of GAS promoter activation was found in IFNγ-stimulated cells transfected with IRF9 alone. Taken together, these data suggest that salmon STAT2 and IRF9 may have a role in IFNγ-induced signaling and promote the expression of GAS-driven genes in bony fish. Since mammalian STAT2 is primarily an ISGF3 component and not involved in IFNγ signaling, our finding features a novel role for STAT2 in fish.
Publication
Journal: Cancer Research
August/15/2018
Abstract
Human papilloma viruses (HPV) are linked to an epidemic increase in oropharyngeal head and neck squamous cell carcinomas (HNSCC), which display viral inactivation of tumor suppressors TP53 and RB1 and rapid regional spread. However, the role of genomic alterations in enabling the modulation of pathways that promote the aggressive phenotype of these cancers is unclear. Recently, a subset of HPV+ HNSCC has been shown to harbor novel genetic defects or decreased expression of TNF receptor-associated factor 3 (TRAF3). TRAF3 has been implicated as a negative regulator of alternative NF-κB pathway activation and activator of antiviral type I IFN response to other DNA viruses. How TRAF3 alterations affect pathogenesis of HPV+ HNSCC has not been extensively investigated. Here, we report that TRAF3-deficient HPV+ tumors and cell lines exhibit increased expression of alternative NF-κB pathway components and transcription factors NF-κB2/RELB. Overexpression of TRAF3 in HPV+ cell lines with decreased endogenous TRAF3 inhibited NF-κB2/RELB expression, nuclear localization, and NF-κB reporter activity, while increasing the expression of IFNA1 mRNA and protein and sensitizing cells to its growth inhibition. Overexpression of TRAF3 also enhanced TP53 and RB tumor suppressor proteins and decreased HPV E6 oncoprotein in HPV+ cells. Correspondingly, TRAF3 inhibited cell growth, colony formation, migration, and resistance to TNFα and cisplatin-induced cell death. Conversely, TRAF3 knockout enhanced colony formation and proliferation of an HPV+ HNSCC line expressing higher TRAF3 levels. Together, these findings support a functional role of TRAF3 as a tumor suppressor modulating established cancer hallmarks in HPV+ HNSCC.Significance: These findings report the functional role of TRAF3 as a tumor suppressor that modulates the malignant phenotype of HPV+ head and neck cancers. Cancer Res; 78(16); 4613-26. ©2018 AACR.
Publication
Journal: Viruses
July/9/2012
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) can subvert early innate immunity, which leads to ineffective antimicrobial responses. Overcoming immune subversion is critical for developing vaccines and other measures to control this devastating swine virus. The overall goal of this work was to enhance innate and adaptive immunity following vaccination through the expression of interferon (IFN) genes by the PRRSV genome. We have constructed a series of recombinant PRRS viruses using an infectious PRRSV cDNA clone (pCMV-P129). Coding regions of exogenous genes, which included Renilla luciferase (Rluc), green and red fluorescent proteins (GFP and DsRed, respectively) and several interferons (IFNs), were constructed and expressed through a unique subgenomic mRNA placed between ORF1b and ORF2 of the PRRSV infectious clone. The constructs, which expressed Rluc, GFP, DsRed, efficiently produced progeny viruses and mimicked the parental virus in both MARC-145 cells and porcine macrophages. In contrast, replication of IFN-expressing viruses was attenuated, similar to the level of replication observed after the addition of exogenous IFN. Furthermore, the IFN expressing viruses inhibited the replication of a second PRRS virus co-transfected or co-infected. Inhibition by the different IFN subtypes corresponded to their anti-PRRSV activity, i.e., IFNω5 ° IFNα1>> IFN-β>> IFNδ3. In summary, the indicator-expressing viruses provided an efficient means for real-time monitoring of viral replication thus allowing high‑throughput elucidation of the role of host factors in PRRSV infection. This was shown when they were used to clearly demonstrate the involvement of tumor susceptibility gene 101 (TSG101) in the early stage of PRRSV infection. In addition, replication‑competent IFN-expressing viruses may be good candidates for development of modified live virus (MLV) vaccines, which are capable of reversing subverted innate immune responses and may induce more effective adaptive immunity against PRRSV infection.
Publication
Journal: Cancer Research
March/22/2009
Abstract
Use of tamoxifen is associated with a 50% reduction in breast cancer incidence and an increase in endometrial cancer incidence. Here, we documented tamoxifen-induced gene expression changes in cultured normal human mammary epithelial cells (strains 5, 16, and 40), established from tissue taken at reduction mammoplasty from three individuals. Cells exposed to 0, 10, or 50 micromol/L of tamoxifen for 48 hours were evaluated for (E)-alpha-(deoxyguanosine-N(2)-yl)-tamoxifen (dG-N(2)-TAM) adduct formation using TAM-DNA (DNA modified with dG-N(2)-TAM) chemiluminescence immunoassay, gene expression changes using National Cancer Institute DNA-oligonucleotide microarray, and real-time PCR. At 48 hours, cells exposed to 10 and 50 micromol/L of tamoxifen were 85.6% and 48.4% viable, respectively, and there were no measurable dG-N(2)-TAM adducts. For microarrays, cells were exposed to 10 micromol/L of tamoxifen and genes with expression changes of >3-fold were as follows: 13 genes up-regulated and 1 down-regulated for strain 16; 17 genes up-regulated for strain 5, and 11 genes up-regulated for strain 40. Interferon-inducible genes (IFITM1, IFIT1, MXI, and GIP3), and a potassium ion channel (KCNJ1) were up-regulated in all three strains. No significant expression changes were found for genes related to estrogen or xenobiotic metabolism. Real-time PCR revealed the up-regulation of IFNA1 and confirmed the tamoxifen-induced up-regulation of the five other genes identified by microarray, with the exception of GIP3 and MX1, which were not up-regulated in strain 40. Induction of IFN-related genes in the three normal human mammary epithelial cell strains suggests that, in addition to hormonal effects, tamoxifen exposure may enhance immune response in normal breast tissue.
Publication
Journal: American Journal of Human Genetics
September/24/1996
Abstract
A pronounced genetic polymorphism of the interferon type I gene family has been assumed on the basis of RFLP analysis of the genomic region as well as the large number of sequences published compared to the number of loci. However, IFNA2 is the only locus that has been carefully analyzed concerning gene frequency, and only naturally occurring rare alleles have been found. We have extended the studies on a variation of expressed sequences by studying the <em>IFNA1</em>, IFNA2, <em>IFNA1</em>0, <em>IFNA1</em>3, <em>IFNA1</em>4, and <em>IFNA1</em>7 genes. Genomic white-blood-cell DNA from a population sample of blood donors and from a family material were screened by single-nucleotide primer extension (allele-specific primer extension) of PCR fragments. Because of sequence similarities, in some cases "nested" PCR was used, and, when applicable, restriction analysis or control sequencing was performed. All individuals carried the interferon-alpha 1 and interferon-alpha 13 variants but not the LeIF D variant. At the IFNA2 and <em>IFNA1</em>4 loci only one sequence variant was found, while in the <em>IFNA1</em>0 and <em>IFNA1</em>7 groups two alleles were detected in each group. The <em>IFNA1</em>0 and <em>IFNA1</em>7 alleles segregated in families and showed a close fit to the Hardy-Weinberg equilibrium. There was a significant linkage disequilibrium between <em>IFNA1</em>0 and <em>IFNA1</em>7 alleles. The fact that the extent of genetic polymorphism was lower than expected suggests that a majority of the previously described gene sequences represent nonpolymorphic rare mutants that may have arisen in tumor cell lines.
Publication
Journal: PLoS ONE
December/2/2013
Abstract
The type I interferon (IFN) family comprises 15 cytokines (in human 13α, 1β, 1ω), which exert several cellular functions through binding to a common receptor. Despite initial activation of the same Jak/Stat signalling pathway, the cellular response may differ depending on type I IFN subtype. We investigated the activity of six type I IFN subtypes - IFNα1, α2, α8, α21, ω and β- to promote the differentiation of dendritic cells (DC). Transcriptome analyses identified two distinct groups, the IFNα/ω-DC and the IFNβ-DC. In addition, the expression level of seven chemokines and several cell surface markers characteristic of DC distinguished IFNα-DC and IFNβ-DC. These differences are unlikely to impact the efficacy of T cell functional response since IFNα2-DC and IFNβ-DC were equipotent in inducing the proliferation and the polarization of allogenic naïve CD4 T cells into Th1 cells and in stimulating autologous antigen specific CD4 or CD8 T cells. Of the functional parameters analysed, the only one that showed a modest differential was the phagocytic uptake of dead cells which was higher for IFNα2-DC.
Publication
Journal: Virus Research
May/4/2014
Abstract
Infectious salmon anemia virus (ISAV) is a piscine orthomyxovirus, which causes multisystemic disease in farmed Atlantic salmon that may result in large losses. Previous work has suggested that ISAV is able to resist the antiviral state induced in cells by type I interferon (IFN). These studies were, however, mainly based on cytopathic effect (CPE) reduction assays. Here we have investigated the antiviral activity of Atlantic salmon IFNa1, IFNb and IFNc against ISAV using quantitative PCR (qPCR) of segment 6, Western blot analysis of ISAV proteins and viral yield reduction assays, in addition to CPE reduction assays. Antiviral effects of IFNs were tested against the high virulent strain ISAV4 and the low virulent strain ISAV7 both at the optimum growth temperature 15°C and at 20°C. As expected, IFNa1 showed little protection against CPE development in cells after infection with both strains at 15°C. However, the qPCR and Western blot analysis clearly showed strong inhibition of replication of the virus strains by IFNa1 between 24 and 72h after infection. The inhibitory effect declined four to five days post-infection, which explains the low protection against CPE development 7-10 days later. At 20°C, IFNa1 showed strong protection against CPE development, probably due to slower virus growth. IFNc showed similar antiviral activity as IFNa1 against ISAV4 while IFNb showed lower activity. There were observed differences between ISAV4 and ISAV7 both with respect inhibition by IFNa1 and ability to induce the two IFN-inducible antiviral effector proteins, Mx and ISG15, which may be related to differences in virulence properties and/or adaption to growth in cell culture.
Publication
Journal: Veterinary Microbiology
June/19/2014
Abstract
Activations of endosomal TLRs include TLR3, TLR7/8, and TLR9 stimulates the production of cytokines, such as type I interferons (IFNs), and therefore involves in virus-host interactions. In the present study, two equine anemia virus (EIAV) strains EIAVFDDV13 and EIAVFDDV3-8, which showed different induction on protective immunity, were compared regarding their ability to regulate the expression of endosomal TLRs, as well as type I IFNs, after infection of equine monocyte-derived macrophages (eMDMs). Our results showed that EIAVFDDV13 dramatically up-regulated the expression of TLR3 and IFNβ and less robustly up-regulated the expression of TRL9 and IFNα1, whereas EIAVFDDV3-8 induced significantly lower expression of type I IFN mRNA and protein and more strongly down-regulated the expression of TLR7 and TLR8. In addition, no significant differences in cell apoptosis were observed between these two strains. Given that the genomic variation of EIAVFDDV13 is considerably higher than that of molecular clone EIAVFDDV3-8, our results suggest that stronger TLR3 activation and increased INFβ production induced by the multi-species strain are associated with an effective vaccine-elicited protective immune response.
Publication
Journal: International Journal of Immunogenetics
June/30/2014
Abstract
In this study, the association between the risk of chronic hepatitis B virus infection and the polymorphisms within promoter regions of IFN-α1 and five genes was explored. This association study was performed on 180 Thai patients with chronic HBV infection [hepatocellular carcinoma (HCC) = 65 and non-HCC = 115], 173 individuals with self-limited HBV infection and 140 healthy controls. Our results showed that the A allele of -1823G/A SNP within IFNA1 gene was significantly associated with an increased risk of chronic HBV infection as compared to healthy individuals and self-limited HBV group [OR (95% CI) = 2.20 (1.51-3.19), P = 0.000014 and OR (95% CI) = 1.61 (1.12-2.33), P = 0.0073, respectively]. The effect of A allele was similar to autosomal recessive in which the presence of AA genotype when compared to GG and GA conferred the OR of 2.79 (95% CI = 1.72-4.52, P = 0.0000085). By multifactor dimensionality reduction analysis, we found the interaction between IFNA5 (-2529) and IFNA1 (-1823) genes that gave the risk to chronic HBV infection, with the OR (95% CI) of the high-risk to low-risk group was 2.79 (1.77-4.40), P < 0.0001. However, further study in functional significance is required.
Publication
Journal: Developmental and Comparative Immunology
November/8/2009
Abstract
Two new interferon stimulated gene 15 (ISG15) family members were identified in a subtractive cDNA library constructed from a mixture of head kidney and spleen of Atlantic cod (Gadus morhua) stimulated with polyinosinic:polycytidylic acid (poly I:C). Two full-length Atlantic cod (Ac) ISG15-2 and AcISG15-3 cDNAs were cloned with rapid amplification of cDNA ends (RACE). The cDNA sequence of AcISG15-2 encodes a 16.9kDa protein and AcISG15-3 encodes a 18.4kDa protein, both of which possess the characteristic structural features of two tandem ubiquitin-like domains and the LRGG motif necessary for conjugation. Furthermore, the AcISG15-3 protein is expressed with a C-terminal extension in common with the human ISG15 protein. Gene expression analysis using quantitative reverse transcriptase PCR (RT-qPCR) showed that AcISG15-1, AcISG15-2, and AcISG15-3 transcripts were up-regulated in head kidney after poly I:C stimulation, suggesting that these proteins may be involved in the cod immune response. However, transient expression of myc-tagged AcISG15 proteins revealed differences in their abilities to form conjugates in vitro. We show that AcISG15-2 forms covalent conjugates to a range of cellular protein as a response to poly I:C, recombinant Atlantic salmon IFNa1 (rSasaIFNa1) and infectious pancreatic necrosis virus (IPNV), whereas conjugation was absent for AcISG15-1 and AcISG15-3. Thus, these results suggest there are three ISG15 homologues in Atlantic cod and that the three proteins may play different roles in innate immunity.
Publication
Journal: Tissue antigens
August/23/2009
Abstract
In this study, the association between the systemic lupus erythematosus (SLE) susceptibility and the new candidate genes, IFNA1, IFNA2 and IFNA5 genes, major interferon-alpha subtypes, in responses to viral infection was investigated. Allele and genotype frequencies of each marker were compared between 150 SLE patients and 150 healthy control subjects. This study indicated that the A/A genotype of IFNA5 (-2529) and the G/G genotype of IFNA1 (-1823) were associated with the protection of SLE disease in a recessive model [P(c) = 0.03, P = 0.01, odds ratio (OR) = 0.4, 95% confidence interval (CI) = 0.2-0.8 and P(c) = 0.09, P = 0.03, OR = 0.5, 95% CI = 0.2-0.9, respectively). Multifactor dimensionality reduction analysis showed a marginal interaction between IFNA5 (-2529) and IFNA1 (-1823) gene, with a cross-validation consistency of 10 of 10 and a prediction error of 46% (permutation P-value = 0.05). This is the first report of positive association of IFNA gene in SLE, especially the role of specific subtypes IFNA1 and IFNA5.
Publication
Journal: Developmental and Comparative Immunology
March/11/2009
Abstract
Type I interferons (IFNs) play a crucial role in innate immune responses against virus infections in vertebrates. Two IFNs (IFNa1 and IFNa2) have previously been cloned from Atlantic salmon. In the present work a polyclonal antiserum, which was generated against salmon IFNa1 was used to study its production in cells by immunoblot detection and neutralization of antiviral activity. The antiserum was first confirmed to detect and neutralize the antiviral activity of recombinant salmon IFNa1 produced in HEK293 cells. The antiserum also detected IFNa1 and neutralized 95-98% of the antiviral activity in supernatants of poly I:C stimulated salmon TO cells. This suggests that IFNa1/IFNa2 are the major IFNs produced by poly I:C stimulated TO cells. The antiserum neutralized most of the IFN activity in poly I:C stimulated head kidney leucocytes from three of five individuals, but in stimulated leucocytes from the other two individuals only 75% of the antiviral activity was neutralized. This shows that although IFNa1/IFNa2 are major IFNs secreted by poly I:C stimulated leucocytes, these cells can also produce additional molecules with IFN-like activity.
Publication
Journal: Molecular Immunology
October/25/2018
Abstract
Infection of ruminants and humans with Fasciola gigantica is attracting increasing attention due to its economic impact and public health significance. However, little is known of innate immune responses during F. gigantica infection. Here, we investigated the expression profiles of genes involved in Toll-like receptors (TLRs) and NOD-like receptors (NLRs) signaling pathways in buffaloes infected with 500F. gigantica metacercariae. Serum, liver and peripheral blood mononuclear cell (PBMC) samples were collected from infected and control buffaloes at 3, 10, 28, and 70days post infection (dpi). Then, the levels of 12 cytokines in serum samples were evaluated by ELISA. Also, the levels of expression of 42 genes, related to TLRs and NLRs signaling, in liver and PBMCs were determined using custom RT2 Profiler PCR Arrays. At 3 dpi, modest activation of TLR4 and TLR8 and the adaptor protein (TICAM1) was detected. At 10 dpi, NF-κB1 and Interferon Regulatory Factor signaling pathways were upregulated along with activation of TLR1, TLR2, TLR6, TLR10, TRAF6, IRF3, TBK1, CASP1, CD80, and IFNA1 in the liver, and inflammatory response with activated TLR4, TLR9, TICAM1, NF-κB1, NLRP3, CD86, IL-1B, IL-6, and IL-8 in PBMCs. At 28 dpi, there was increase in the levels of cytokines along with induction of NLRP1 and NLRP3 inflammasomes-dependent immune responses in the liver and PBMCs. At 70 dpi, F. gigantica activated TLRs and NLRs, and their downstream interacting molecules. The activation of TLR7/9 signaling (perhaps due to increased B-cell maturation and activation) and upregulation of NLRP3 gene were also detected. These findings indicate that F. gigantica alters the expression of TLRs and NLRs genes to evade host immune defenses. Elucidation of the roles of the downstream effectors interacting with these genes may aid in the development of new interventions to control disease caused by F. gigantica infection.
load more...