Citations
All
Search in:AllTitleAbstractAuthor name
Publications
(114)
Patents
Grants
Pathways
Clinical trials
Publication
Journal: Journal of Pathology
June/6/2019
Abstract
Lymphoepithelioma-like hepatocellular carcinoma (LEL-HCC) is a distinct variant of HCC that is characterized by dense tumor-infiltrating lymphocytes (TILs). Patients with LEL-HCC also show better clinical outcomes compared to conventional HCC (c-HCC), which is commonly presented with low TIL. Emerging evidence has begun to highlight tumor-intrinsic genetic abnormalities in the tumor-host immune interfaces. However, genome-wide characterization of LEL-HCC remains largely unexplored. Here, we defined the genomic landscape of 12 LEL-HCC using whole-exome sequencing, and further underpinned those genetic alterations related to an immune active microenvironment by comparing findings to 15 c-HCC that were sequenced in parallel. Overall, the mutational load between LEL-HCC and c-HCC was similar. Interestingly, SNV incidences of specific genes (CTNNB1, AXIN1, NOTCH1, and NOTCH2) were significantly higher in c-HCC than LEL-HCC, suggesting a plausible link between activated Wnt/β-catenin and Notch signaling pathways and immune avoidance. Marked focal amplification of chromosome 11q13.3 was prevalent in LEL-HCC. Using The Cancer Genome Atlas dataset, we further established oncogenes expressed from chromosome 11q13.3 (CCND1, FGF19, and FGF4) to be strongly associated with the immune checkpoint signature (CD274, PDCD1, BTLA, CTLA4, HAVCR2, IDO1, and LAG3). Our results have illustrated for the first time the somatic landscape of LEL-HCC, and highlighted molecular alterations that could be exploited in combinatory therapy with checkpoint inhibitors in targeting HCC. © 2019 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Publication
Journal: Cancers
January/19/2021
Abstract
Lung cancer is one of the leading causes of death worldwide. Cell death pathways such as autophagy, apoptosis, and necrosis can provide useful clinical and immunological insights that can assist in the design of personalized therapeutics. In this study, variations in the expression of genes involved in cell death pathways and resulting infiltration of immune cells were explored in lung adenocarcinoma (The Cancer Genome Atlas: TCGA, lung adenocarcinoma (LUAD), 510 patients). Firstly, genes involved in autophagy (n = 34 genes), apoptosis (n = 66 genes), and necrosis (n = 32 genes) were analyzed to assess the prognostic significance in lung cancer. The significant genes were used to develop the cell death index (CDI) of 21 genes which clustered patients based on high risk (high CDI) and low risk (low CDI). The survival analysis using the Kaplan-Meier curve differentiated patients based on overall survival (40.4 months vs. 76.2 months), progression-free survival (26.2 months vs. 48.6 months), and disease-free survival (62.2 months vs. 158.2 months) (Log-rank test, p < 0.01). Cox proportional hazard model significantly associated patients in high CDI group with a higher risk of mortality (Hazard Ratio: H.R 1.75, 95% CI: 1.28-2.45, p < 0.001). Differential gene expression analysis using principal component analysis (PCA) identified genes with the highest fold change forming distinct clusters. To analyze the immune parameters in two risk groups, cytokines expression (n = 265 genes) analysis revealed the highest association of IL-15RA and IL 15 (> 1.5-fold, p < 0.01) with the high-risk group. The microenvironment cell-population (MCP)-counter algorithm identified the higher infiltration of CD8+ T cells, macrophages, and lower infiltration of neutrophils with the high-risk group. Interestingly, this group also showed a higher expression of immune checkpoint molecules CD-274 (PD-L1), CTLA-4, and T cell exhaustion genes (HAVCR2, TIGIT, LAG3, PDCD1, CXCL13, and LYN) (p < 0.01). Furthermore, functional enrichment analysis identified significant perturbations in immune pathways in the higher risk group. This study highlights the presence of an immunocompromised microenvironment indicated by the higher infiltration of cytotoxic T cells along with the presence of checkpoint molecules and T cell exhaustion genes. These patients at higher risk might be more suitable to benefit from PD-L1 blockade or other checkpoint blockade immunotherapies.
Keywords: LUAD; apoptosis; cell death; gene expression; immunotherapy; lung cancer; necrosis; prognostic genes; tumor microenvironment.
Publication
Journal: Blood
October/22/2020
Abstract
Emerging immunotherapies such as chimeric antigen receptor T cells have advanced the treatment of acute lymphoblastic leukemia. In contrast, long-term control of acute myeloid leukemia (AML) cannot be achieved by single lineage-specific targeting while sparing benign hematopoiesis. In addition, heterogeneity of AML warrants combinatorial targeting and several suitable immunotargets (HAVCR2/CD33 or HAVCR2/CLEC12A) were identified in adult AML. However, clinical and biologic characteristics differ between children and the elderly. Here, we analyzed 36 bone marrow (BM) samples of pediatric AML patients and 13 age-matched healthy donors using whole RNA-sequencing of sorted CD45dim and CD34+CD38-CD45dim BM populations and flow cytometry for surface expression of putative target antigens. Pediatric AML clusters apart from healthy myeloid BM precursors in principle component analysis. Immunotargets known from adult AML such as IL3RA were not overexpressed in pediatric AML compared to healthy precursors by RNA-sequencing. CD33 and CLEC12A were the most upregulated immunotargets on RNA level and showed the highest surface expression on AML detected by flow cytometry. KMT2A mutated infant AML cluster separately by RNA-sequencing, overexpress FLT3 and hence CD33/FLT3 co-targeting is an additional specific option for this subgroup. CLEC12A and CD33/CLEC12Adouble-positive expression was absent in CD34+CD38-CD45RA-CD90+ hematopoietic stem cells (HSC) and both are restricted to healthy hematopoietic tissue, while CD33 and FLT3 is expressed on HSC. In summary, we show that expression of immunotargets in pediatric AML differs from known expression profiles in adult AML. We identify CLEC12A/CD33 as preferential generic combinatorial immunotargets in pediatric AML and CD33/FLT3 as immunotargets specific for KMT2A mutated infant AML.
Publication
Journal: PLoS ONE
May/27/2015
Abstract
The HAVCR2 gene encodes TIM-3, an immunoglobulin superfamily member expressed by exhausted CD8+ T cells during chronic viral infection. We investigated whether genetic variation at HAVCR2 modulates the susceptibility to HIV-1 acquisition; specifically we focused on a 3' UTR variant (rs4704846, A/G) that represents a natural selection target. We genotyped rs4704846 in three independent cohorts of HIV-1 exposed seronegative (HESN) individuals with different geographic origin (Italy and Spain) and distinct route of exposure to HIV-1 (sexual and injection drug use). Matched HIV-1 positive subjects and healthy controls were also analyzed. In all case-control cohorts the minor G allele at rs4704846 was more common in HIV-1 infected individuals than in HESN, with healthy controls showing intermediate frequency. Results from the three association analyses were combined through a random effect meta-analysis, which revealed no heterogeneity among samples (Cochrane's Q, p value = 0.89, I2 = 0) and yielded a p value of 6.8 ×10(-4). The minor G allele at rs4704846 was found to increase HAVCR2 expression after in vitro HIV-1 infection. Thus, a positively selected polymorphism in the 3' UTR, which modulates HAVCR2 expression, is associated with the susceptibility to HIV-1 infection. These data warrant further investigation into the role of TIM-3 in the prevention and treatment of HIV-1/AIDS.
Publication
Journal: EBioMedicine
May/6/2019
Abstract
Investigations into the function of non-promoter DNA methylation have yielded new insights into the epigenetic regulation of gene expression. However, integrated genome-wide non-promoter DNA methylation and gene expression analyses across a wide number of tumour types and corresponding normal tissues have not been performed.To investigate the impact of non-promoter DNA methylation on cancer pathogenesis, we performed a large-scale analysis of gene expression and DNA methylation profiles, finding enrichment in the 3'UTR DNA methylation positively correlated with gene expression. Filtering for genes in which 3'UTR DNA methylation strongly correlated with gene expression yielded a list of genes enriched for functions involving T cell activation.The important immune checkpoint gene Havcr2 showed a substantial increase in 3'UTR DNA methylation upon T cell activation and subsequent upregulation of gene expression in mice. Furthermore, this increase in Havcr2 gene expression was abrogated by treatment with decitabine.These findings indicate that the 3'UTR is a functionally relevant DNA methylation site. Additionally, we show a potential novel mechanism of HAVCR2 regulation in T cells, providing new insights for modulating immune checkpoint blockade.
Publication
Journal: Frontiers in Immunology
August/15/2017
Abstract
Natural resistance to HIV-1 infection is influenced by genetics, viral-exposure, and endogenous immunomodulators such as vitamin D (VitD), being a multifactorial phenomenon that characterizes HIV-1-exposed seronegative individuals (HESNs). We compared mRNA expression of 10 antivirals, 5 immunoregulators, and 3 VitD pathway genes by qRT-PCR in cells of a small cohort of 11 HESNs, 16 healthy-controls (HCs), and 11 seropositives (SPs) at baseline, in response to calcidiol (VitD precursor) and/or aldithriol-2-(AT2)-inactivated HIV-1. In addition, the expression of TIM-3 on T and NK cells of six HCs after calcidiol and calcitriol (active VitD) treatments was evaluated by flow cytometry. Calcidiol increased the mRNA expression of HAVCR2 (TIM-3; Th1-cells inhibitor) in HCs and HESNs. AT2-HIV-1 increased the mRNA expression of the activating VitD enzyme CYP27B1, of the endogenous antiviral proteins MX2, TRIM22, APOBEC3G, and of immunoregulators ERAP2 and HAVCR2, but reduced the mRNA expression of VitD receptor (VDR) and antiviral peptides PI3 and CAMP in all groups. Remarkably, higher mRNA levels of VDR, CYP27B1, PI3, CAMP, SLPI, and of ERAP2 were found in HESNs compared to HCs either at baseline or after stimuli. Furthermore, calcitriol increases the percentage of CD4+ T cells expressing TIM-3 protein compared to EtOH controls. These results suggest that high mRNA expression of antiviral and VitD pathway genes could be genetically determined in HESNs more than viral-induced at least in peripheral blood mononuclear cells. Moreover, the virus could potentiate bio-activation and use of VitD, maintaining the homeostasis of the immune system. Interestingly, VitD-induced TIM-3 on T cells, a T cell inhibitory and anti-HIV-1 molecule, requires further studies to analyze the functional outcomes during HIV-1 infection.
Publication
Journal: JCI insight
August/18/2020
Abstract
Regulatory T cells (Tregs) are crucial for maintaining maternal immune-tolerance against the semi-allogeneic fetus. We investigated the elusive transcriptional profile and functional adaptation of human uterine Tregs (uTregs) during pregnancy. Uterine biopsies, from placental bed (=maternal-fetal interface) and incision site (=control), and blood were obtained from women with uneventful pregnancies undergoing Caesarean section. Tregs and CD4+ non-Tregs were isolated for transcriptomic profiling by Cel-Seq2. Results were validated on protein and single cell level by flow cytometry. Placental bed uterine Tregs (uTregs) showed elevated expression of Treg signature markers, including FOXP3, CTLA-4 and TIGIT. Their transcriptional profile was indicative of late-stage effector Treg differentiation and chronic activation, with increased expression of immune checkpoints GITR, TNFR2, OX-40, 4-1BB, genes associated with suppressive capacity (HAVCR2, IL10, LAYN, PDCD1), and transcription factors MAF, PRDM1, BATF, and VDR. uTregs mirrored non-Treg Th1 polarization and tissue-residency. The particular transcriptional signature of placental bed uTregs overlapped strongly with that of tumor-infiltrating Tregs, and was remarkably pronounced at the placental bed compared to uterine control site. Concluding, human uTregs acquire a differentiated effector Treg profile similar to tumor-infiltrating Tregs, specifically at the maternal-fetal interface. This introduces the novel concept of site-specific transcriptional adaptation of Tregs within one organ.
Keywords: Adaptive immunity; Immunology; Obstetrics/gynecology; Reproductive Biology; T cells.
Publication
Journal: Laryngoscope
April/16/2020
Abstract
To investigate differences in the immunogenomic landscape among young patients presenting with oral cavity squamous cell carcinoma (OCSCC).Retrospective database review.Normalized messenger mRNA expression data were downloaded from The Cancer Genome Atlas (TCGA) database. OCSCC patients were categorized into young and older age groups with a cutoff of 45 years. Human papillomavirus-positive tumors were excluded. Cell fractions, marker expression, and mutational load were compared between age groups using the Wilcoxon rank sum test. Adjustment for multiple comparisons was performed using the Benjamini-Hochberg method, with a false discovery rate of 0.05.Two hundred forty-five OCSCC tumors were included; 21 (8.6%) were young (37.1 ± 7.5 years) and 224 (91.4%) were older (64.5 ± 10.3 years). There was no significant difference between groups in the fraction of B and T lymphocytes, macrophages, monocytes, natural killers, and dendritic cells. Cytolytic activity score was decreased in young patients (8.33 vs. 18.9, P = .023). Additionally, young patients had significantly lower expression of immunomodulatory markers of immune activation, including PD-1 (PDCD1, P = .003), CTLA4 (P = .025), TIGIT (P = .002), GITR (TNFRSF18, P = .005), OX40 (TNFRSF4, P = .009), LAG-3 (P < .001), and TIM-3 (HAVCR2, P = .002). Young patients had a significantly lower number of single nucleotide variant-derived neoantigens (26.2 vs. 60.6, P < .001).OCSCC patients aged 45 years and younger appear to have an attenuated immune response that may be related to a lower frequency of immunogenic mutations. This may contribute to the pathogenesis of these tumors, and ultimately help inform personalized immune-based therapeutic strategies for young patients with OCSCC.NA Laryngoscope, 2020.
Publication
Journal: Cancer Management and Research
July/1/2020
Abstract
Background: Programmed cell death protein-1 (PD-1) blockade therapy is one of the most remarkable immunotherapy strategies in many solid tumors, excluding glioma. The PD-1 expression, immune characteristics, and prognosis relevance in glioma remain poorly understood.
Patients and methods: RNA sequencing (RNA-seq) and mRNA microarray data were obtained for 325 and 301 glioma patients, respectively, from the Chinese Glioma Genome Atlas (CGGA) database. We analyzed the expression profile of PDCD1 (encoding PD-1) according to the different grade, isocitrate dehydrogenase (IDH) mutation status, and molecular subtype of glioblastoma. Gene ontology (GO) analyses were performed to explore biological processes of PD-1-related genes. Survival analysis was conducted using the Kaplan-Meier method. The findings were validated using The Cancer Genome Atlas (TCGA) RNA-seq data from 697 glioma samples. We also confirmed the PDCD1 gene expression feature and survival relevance in our own cohort of 73 glioma patients. R language was used for statistical analysis and generating figures.
Results: PDCD1 was enriched in glioblastoma (WHO, grade IV), IDH wild-type glioma and mesenchymal glioblastoma in CGGA and TCGA datasets; similar results were validated in our own patient cohort. GO analysis revealed that PDCD1-related genes were involved in inflammation immune responses and T cell-mediated immune responses in glioma. Circos plots indicated that PDCD1 was positively associated with CD28, ICOS, and the inhibitory checkpoint molecules CTLA4, HAVCR2, TIGIT, and LAG3. Patients with PDCD1 upregulation had much shorter overall survival.
Conclusion: PDCD1 upregulation was found in more malignant phenotypes of glioma and indicated a worse prognosis. Immunotherapy of targeting PD-1 or combined with other checkpoint molecules (eg, TIM-3, LAG-3, or TIGIT) blockade may represent a promising treatment strategy for glioma.
Keywords: The Cancer Genome Atlas; costimulatory; glioma; immunotherapy; inhibitory T-cell receptors; programmed cell death 1; survival analysis.
Publication
Journal: Oncology Reports
October/29/2019
Abstract
Persistent infection with high‑risk human papillomavirus is known to cause cervical cancer. The binding of the costimulatory factors, Tim‑3 and galectin‑9, can cause immune tolerance and lead to immune escape during carcinogenesis. Epigenetic regulation is essential for Tim‑3/galectin‑9 expression, which affects the outcome of local cervical cancer infection. Hence, exploring the epigenetic regulatory mechanisms of costimulatory signaling by Tim‑3/galectin‑9 is of great interest for investigating the mechanisms through which these proteins are regulated in cervical cancer tumorigenesis. In this study, we report that E2F‑1 and FOXM1 mediated by HPV18 E6 and E7 can enhance the transcriptional activity of Enhancer of zeste homolog 2 (EZH2) by binding to its promoter region, resulting in the induced expression of the EZH2‑specific target protein, H3K27me3, which consequently reduces the expression of the downstream target gene, DNA (cytosine‑5)‑methyltransferase 3A (DNMT3A). EZH2 and H3K27me3 directly interact with the DNMT3A promoter region to negatively regulate its expression in HeLa cells. Moreover, the downregulated DNMT3A and the decreased methylation levels in HAVCR2/LGALS9 promoter regions in HeLa cells promoted the expression of Tim‑3/galectin‑9. Furthermore, the high expression of Tim‑3/galectin‑9 was associated with HPV positivity among patients with cervical cancer. Moreover, HAVCR2/LGALS9 promoter regions were hypermethylated in normal cervical tissues, and this hypermethylated status inhibited gene expression. On the whole, these findings suggest that EZH2, H3K27me3 and DNMT3A mediate the epigenetic regulation of the negative stimulatory molecules, Tim‑3 and galectin‑9 in cervical cancer which is associated with HPV18 infection.
Publication
Journal: Journal of Pediatric Hematology/Oncology
September/30/2020
Abstract
Background: We identified 3 adolescents with alpha-beta subtype subcutaneous panniculitis-like T-cell lymphoma.
Case presentation: Three patients presented with prolonged fever, abnormal skin lesions, and cytopenia described in the context. All had the same disease entity, which showed the prolonged duration of B systemic symptoms till diagnosis, difficulty to distinguish from autoimmune diseases, presence of hemophagocytic lymphohistiocytosis syndrome, good response, and remained on long-term remission with nonchemotherapy treatment, which included oral corticosteroid and cyclosporin.
Conclusions: Although diagnosis can only be "highly suspected" with pathologic review, some cases may need multiple serial skin biopsy to clarify diagnosis because of the discrete distribution of specific histology. T-cell receptor gene rearrangement, which demonstrates a monoclonal pattern of alpha and beta chain gene, is the essential requirement for specific diagnosis. The role of molecular analysis by identification of germline hepatitis A virus cellular receptor 2 (HAVCR2) gene mutation can be much valuable in classifying susceptible patients.
Publication
Journal: Journal of Cancer
January/16/2020
Abstract
Aiming to identify novel immunotargets for gastric cancer (GC), we retrospectively analyzed the formalin-fixed paraffin embedded (FFPE) samples of gastric cancer tissues from postoperative patients who relapsed or metastasized within (early recurrence, n=25) or after two years (late recurrence, n=23). RNA immune-oncology panel (RIOP) including 398 immune-related genes was used to detect the RNA expression level. Disease free survival (DFS) time in early and late recurrent group was 7.52±0.72 and 28.49±0.81 months, respectively. 18 genes were significantly different between the early and late recurrent groups, and the expression of ITK, EBI3, CX3CL1, MYC, EOMES, CA4, TAGAP, MMP2, HAVCR2, FCGR1 and SNAI2 were verified to be associated with the DFS time. We also found that 18 genes were differentially expressed in diffusal type and non-diffusal type of GC. Leukocyte-inhibition, Leukocyte-migration, and Lymphocyte-infiltrate signal/functional pathways were activated in diffusal type of GC by cluster analysis. Our data uncovered the gene set consisted of ITK, EBI3, and CX3CL1 as a potential tool for prediction of early recurrence or poor prognosis in GC, which could be used as novel immunotargets and prognostic markers for the management of GC.
Publication
Journal: Developmental and Comparative Immunology
April/11/2019
Abstract
We previously demonstrated that the most bioactive vitamin A metabolite, all-trans retinoic acid (ATRA), increased T helper 2-associated responses induced in pigs by infection with the parasitic nematode Ascaris suum We also showed that ATRA potentiated the mRNA expression of several IL-4 induced chemokines (chemokine (CC motif) ligand 11 [(CCL11), CCL17, CCL22 and CCL26] associated with alternative activation (M2a) in porcine macrophages in vitro. Herein, several mechanisms whereby ATRA affects IL-4 signaling are profiled using large-scale real time PCR and RNA-Seq analysis. Twenty-three genes associated with M2a markers in other species were independently upregulated by both IL-4 and ATRA, including the adenosine receptor A2B (ADORA2B), cysteinyl leukotriene receptor 2 (CYSLTR2) and the vitamin D receptor (VDR). ATRA synergistically enhanced IL-4 up-regulation of Hepatitis A virus cellular receptor 2 (HAVCR2) and transglutaminase 2 (TGM2) and further repressed IL-4 down-regulated CD163 and Cytochrome b-245, beta polypeptide (CYBB) mRNA. Macrophages treated with ATRA exhibited a dose-dependent reduction in phagocytosis of opsonized Staphylococcus aureus. In addition, the combination of IL-4 and ATRA up-regulated the anti-inflammatory protein, IL-1R antagonist (IL1RN) and TGM2. These data indicate that ATRA induces a state of partial alternative activation in porcine macrophages, and amplifies certain aspects of M2a activation induced by IL-4. Given the prevalence of allergic and parasitic diseases worldwide and the close similarities in the porcine and human immune responses, these findings have important implications for the nutritional regulation of allergic inflammation at mucosal surfaces.
Publication
Journal: Combinatorial Chemistry and High Throughput Screening
April/8/2020
Abstract
Tumor microenvironment (TME) cells play important roles in tumor progression. Accumulating evidence show that they can be exploited to predict the clinical outcomes and therapeutic responses of tumor. However, the role of immune genes of TME in small cell lung cancer (SCLC) is currently unknown.To determine the role of immune genes in SCLC.We downloaded the expression profile and clinical follow-up data of SCLC patients from Gene Expression Omnibus (GEO), and TME infiltration profile data of 158 patients using CIBERSORT. The correlation between TME phenotypes, genomic features, and clinicopathological features of SCLC was examined. A gene signature was constructed based on TME genes to further evaluate the relationship between molecular subtypes of SCLC with the prognosis and clinical features.We identified a group of genes that are highly associated with TME. Several immune cells in TME cells were significantly correlated with SCLC prognosis (p<0.0001). These immune cells displayed diverse immune patterns. Three molecular subtypes of SCLC (TMEC1-3) were identified on the basis of enrichment of immune cell components, and these subtypes showed dissimilar prognosis profiles (p=0.03). The subtype with the best prognosis, TMEC3, was enriched with immune activation factors such as oncogene M0, oncogene M2, T cells follicular helper, and T cells CD8 (p<0.001). The TMEC1 subtype with the worst prognosis was enriched with T cells CD4 naive, B cells memory and Dendritic cells activated cells (p<0.001). Further analysis showed that the TME was significantly enriched with immune checkpoint genes, immune genes, and immune pathway genes (p<0.01). From the gene expression data, we identified four TME-related genes, GZMB, HAVCR2, PRF1 and TBX2, which were significantly associated with poor prognosis in both the training set and the validation set (p<0.05). These genes may serve as markers for monitoring tumor responses to immune checkpoint inhibitors.This study shows that TME features may serve as markers for evaluating response of SCLC cells to immunotherapy.
Publication
Journal: Frontiers in Oncology
June/29/2020
Abstract
Background: Tumor mutational burden (TMB) was verified to be closely associated with immune checkpoint inhibitors, but it is unclear whether gene mutation has an effect on immunotherapy of hepatocellular carcinoma (HCC). This research aimed to investigate the underlying correlation between gene mutation and immunotherapy in HCC. Methods: The somatic gene mutation data and gene expression data were retrieved from International Cancer Genome Consortium database and The Cancer Genome Atlas (TCGA) database. The mutational genes were selected by the intersection of three cohorts and further identified using survival analysis and TMB correlation analysis. After the identification of key mutational gene, we explored the correlation between gene mutation and both the immune cell infiltration and immune inhibitors. The signaling pathways associated with gene mutation were confirmed through gene set enrichment analysis. Furthermore, the survival analysis and mutational analysis based on TCGA cohort were performed for the validation of included gene. Results: As one of the frequently mutational genes in HCC, CTNNB1 was finally included in our research, for which it showed the significant result in survival analysis and the positive association with TMB of the three cohorts. Meanwhile, the validation of TCGA showed the significant results. Furthermore, natural killer (NK) cells and neutrophil were found to significantly infiltrate CTNNB1 mutation group from two cohorts. Besides, further analysis demonstrated that four types of immune inhibitors (CD96, HAVCR2, LGALS9, and TGFB1) were downregulated in CTNNB1 mutation group. Conclusion: Our research firstly revealed the underlying association between CTNNB1 mutation and immunotherapy, and we speculated that CTNNB1 mutation may modulate NK cells by affecting CD96. However, more functional experiments should be performed for verification.
Keywords: CTNNB1; gene mutation; hepatocellular carcinoma; immune inhibitor; immunotherapy.
Publication
Journal: Frontiers in Oncology
August/1/2021
Abstract
Background: Kidney Renal Clear Cell Carcinoma (KIRC) is one of the most prevalent types of cancer worldwide. KIRC has a poor prognosis and, to date, immunotherapy based on immune checkpoints is the most promising treatment. However, the role of immune checkpoints in KIRC remains ambiguous.
Methods: Bioinformatics analyses and qRT-PCR were performed to explore and further confirm the prognostic value of immune checkpoint genes and their correlation with immune infiltration in KIRC samples.
Results: The expression of the immune checkpoint genes CD274, PDCD1LG2, HAVCR2, CTLA4, TIGFT, LAG3, and PDCD1 was upregulated in KIRC tissues. These genes were involved in the activation of the apoptosis pathway in KIRC. Low expression of CD274 and HAVCR2 and high expression of CTLA4 were associated with poor overall survival (OS), progression-free survival (PFS), and disease-free survival (DFS) of KIRC patients. The univariate and multivariate analyses revealed that CTLA4, HAVCR2, age, pTNM stage, and tumor grade were independent factors affecting the prognosis of KIRC patients. A predictive nomogram demonstrated that the calibration plots for the 3-year and 5-year OS probabilities showed good agreement compared to the actual OS of KIRC patients. The expression of CTLA4 and HAVCR2 were positively associated with immune cell infiltration, immune biomarkers, chemokines, and chemokine receptors. Moreover, miR-20b-5p was identified as a potential miRNA target of CTLA4 in KIRC.
Conclusion: Our study clarified the prognostic value of several immune checkpoint regulators in KIRC, revealing a CTLA4/miR-20b-5p axis in the control of immune cell infiltration in the tumor microenvironment.
Keywords: CTLA4; KIRC; immune infiltration; miR-20b-5p; prognosis biomarker.
Publication
Journal: Proceedings of the National Academy of Sciences of the United States of America
July/20/2021
Abstract
Dysfunction in T cells limits the efficacy of cancer immunotherapy. We profiled the epigenome, transcriptome, and enhancer connectome of exhaustion-prone GD2-targeting HA-28z chimeric antigen receptor (CAR) T cells and control CD19-targeting CAR T cells, which present less exhaustion-inducing tonic signaling, at multiple points during their ex vivo expansion. We found widespread, dynamic changes in chromatin accessibility and three-dimensional (3D) chromosome conformation preceding changes in gene expression, notably at loci proximal to exhaustion-associated genes such as PDCD1, CTLA4, and HAVCR2, and increased DNA motif access for AP-1 family transcription factors, which are known to promote exhaustion. Although T cell exhaustion has been studied in detail in mice, we find that the regulatory networks of T cell exhaustion differ between species and involve distinct loci of accessible chromatin and cis-regulated target genes in human CAR T cell exhaustion. Deletion of exhaustion-specific candidate enhancers of PDCD1 suppress the expression of PD-1 in an in vitro model of T cell dysfunction and in HA-28z CAR T cells, suggesting enhancer editing as a path forward in improving cancer immunotherapy.
Keywords: cancer immunotherapy; enhancer editing; epigenomics.
Publication
Journal: Clinical Medicine
June/1/2021
Abstract
Cholangiocarcinoma (CCA) is a hepatobiliary malignancy associated with steadily increasing incidence and poor prognosis. Ongoing clinical trials are assessing the effectiveness and safety of a few immune checkpoint inhibitors (ICIs) in CCA patients. However, these ICI treatments as monotherapies may be effective for a proportion of patients with CCA. The prevalence and distribution of other immune checkpoints (ICs) in CCA remain unclear. In this pilot study, we screened databases of CCA patients for the expression of 19 ICs and assessed the prognostic significance of these ICs in CCA patients. Notably, expression of immune modulator IDO1 and PD-L1 were linked with poor overall survival, while FASLG and NT5E were related to both worse overall survival and progression-free survival. We also identified immune modulators IDO1, FASLG, CD80, HAVCR2, NT5E, CTLA-4, LGALS9, VTCN1 and TNFRSF14 that synergized with PD-L1 and correlated with worse patient outcomes. In vitro studies revealed that the expression of ICs was closely linked with aggressive CCA subpopulations, such as cancer stem cells and cells undergoing TGF-β and TNF-α-mediated epithelial-to-mesenchymal transition. These findings suggest that the aforementioned IC molecules may serve as potential prognostic biomarkers and drug targets in CCA patients, leading to lasting and durable treatment outcomes.
Keywords: CD73; EMT; Galectin-9; IDO1; PD-L1; cancer stem cells; cholangiocarcinoma; immune checkpoints.
Publication
Journal: Frontiers in Oncology
February/14/2021
Abstract
Melanoma remains a potentially deadly malignant tumor. The incidence of melanoma continues to rise. Immunotherapy has become a new treatment method and is widely used in a variety of tumors. Original melanoma data were downloaded from TCGA. ssGSEA was performed to classify them. GSVA software and the "hclust" package were used to analyze the data. The ESTIMATE algorithm screened DEGs. The edgeR package and Venn diagram identified valid immune-related genes. Univariate, LASSO and multivariate analyses were used to explore the hub genes. The "rms" package established the nomogram and calibrated the curve. Immune infiltration data were obtained from the TIMER database. Compared with that of samples in the high immune cell infiltration cluster, we found that the tumor purity of samples in the low immune cell infiltration cluster was higher. The immune score, ESTIMATE score and stromal score in the low immune cell infiltration cluster were lower. In the high immune cell infiltration cluster, the immune components were more abundant, while the tumor purity was lower. The expression levels of TIGIT, PDCD1, LAG3, HAVCR2, CTLA4 and the HLA family were also higher in the high immune cell infiltration cluster. Survival analysis showed that patients in the high immune cell infiltration cluster had shorter OS than patients in the low immune cell infiltration cluster. IGHV1-18, CXCL11, LTF, and HLA-DQB1 were identified as immune cell infiltration-related DEGs. The prognosis of melanoma was significantly negatively correlated with the infiltration of CD4+ T cells, CD8+ T cells, dendritic cells, neutrophils and macrophages. In this study, we identified immune-related melanoma core genes and relevant immune cell subtypes, which may be used in targeted therapy and immunotherapy of melanoma.
Keywords: immune gene; melanoma; prognostic; ssGSEA; tumor environment.
Publication
Journal: Frontiers in Immunology
January/3/2021
Abstract
Background: TP53 gene mutation is one of the most common mutations in human bladder cancer (BC) and has been implicated in the progression and prognosis of BC.
Methods: RNA sequencing data and TP53 mutation data in different populations and platforms were downloaded from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) database to determine and validate a TP53-associated immune prognostic signature (TIPS) based on differentially expressed immune-related genes (DEIGs) between muscle-invasive bladder cancer (MIBC) patients with and without TP53 mutations.
Results: A total of 99 DEIGs were identified based on TP53 mutation status. TIPS including ORM1, PTHLH, and CTSE were developed and validated to identify high-risk prognostic group who had a poorer prognosis than low-risk prognostic group in TCGA and GEO database. The high-risk prognostic group were characterized by a higher abundance of regulatory T cells, myeloid-derived suppressor cells, and tumor-associated macrophages than the low-risk prognostic group. Moreover, they exhibited a lower abundance of CD56bright NK cells, higher expression of CTLA4, LAG3, PDCD1, TIGIT, and HAVCR2, as well as being more likely to respond to anti-PD-1, and neoadjuvant chemotherapy than the low-risk prognostic group. Based on TIPS and other clinical characteristics, a nomogram was constructed for clinical use.
Conclusion: TIPS derived from TP53 mutation status is a potential prognostic signature or therapeutic target but additional prospective studies are necessary to confirm this potential.
Keywords: TP53 mutation; immune prognostic signature; muscle-invasive bladder cancer; nomogram; the cancer genome atlas (TCGA) and gene expression omnibus (GEO) database.
Publication
Journal: Blood
November/22/2020
Abstract
Lineage plasticity and stemness have been invoked as the cause of therapy resistance in cancer, as these flexible states allow cancer cells to de-differentiate and alter their dependencies. We investigated such resistance mechanisms in relapsed / refractory early T-cell progenitor acute lymphoblastic leukemia carrying activating NOTCH1 mutations, by full-length single cell RNA sequencing of malignant and microenvironmental cells. We identified two highly distinct stem-like states that critically differ in their cell-cycle and oncogenic signaling. Fast-cycling stem-like leukemia cells demonstrate Notch activation and are effectively eliminated in patients by Notch inhibition, while slow cycling stem-like cells are Notch-independent but rather rely on PI3K signaling, likely explaining the poor efficacy of Notch inhibition in this disease. Remarkably, we find that both stem-like states can differentiate into a more mature leukemia state with prominent immune-modulatory functions, including high expression of the LGALS9 checkpoint molecule. These cells promote an immunosuppressive leukemia ecosystem with clonal accumulation of dysfunctional CD8+ T cells that express HAVCR2, the cognate receptor for LGALS9. Our study identifies complex interactions between signaling programs, cellular plasticity and immune programs that characterize T-ALL and illustrates the multi-dimensionality of tumor heterogeneity. In this scenario, combination therapies targeting diverse oncogenic states and the immune ecosystem appear most promising to successfully eliminate tumor cells that escape treatment through co-existing transcriptional programs.
Publication
Journal: OncoImmunology
March/23/2021
Abstract
Accumulating evidence indicates that immune checkpoint inhibitors (ICIs) can restore CD8+ cytotoxic T lymphocyte (CTL) functions in preclinical models of acute myeloid leukemia (AML). However, ICIs targeting programmed cell death 1 (PDCD1, best known as PD-1) and cytotoxic T lymphocyte-associated protein 4 (CTLA4) have limited clinical efficacy in patients with AML. Natural killer (NK) cells are central players in AML-targeting immune responses. However, little is known on the relationship between co-inhibitory receptors expressed by NK cells and the ability of the latter to control AML. Here, we show that hepatitis A virus cellular receptor 2 (HAVCR2, best known as TIM-3) is highly expressed by NK cells from AML patients, correlating with improved functional licensing and superior effector functions. Altogether, our data indicate that NK cell frequency as well as TIM-3 expression levels constitute prognostically relevant biomarkers of active immunity against AML.
Keywords: Co-inhibitory receptor; innate lymphoid cells; lag-3; tigit; vista.
Publication
Journal: OncoImmunology
April/18/2021
Abstract
Currently, a significant proportion of cancer patients do not benefit from programmed cell death-1 (PD-1)-targeted therapy. Overcoming drug resistance remains a challenge. In this study, single-cell RNA sequencing and bulk RNA sequencing data from samples collected before and after anti-PD-1 therapy were analyzed. Cell-cell interaction analyses were performed to determine the differences between pretreatment responders and nonresponders and the relative differences in changes from pretreatment to posttreatment status between responders and nonresponders to ultimately investigate the specific mechanisms underlying response and resistance to anti-PD-1 therapy. Bulk-RNA sequencing data were used to validate our results. Furthermore, we analyzed the evolutionary trajectory of ligands/receptors in specific cell types in responders and nonresponders. Based on pretreatment data from responders and nonresponders, we identified several different cell-cell interactions, like WNT5A-PTPRK, EGFR-AREG, AXL-GAS6 and ACKR3-CXCL12. Furthermore, relative differences in the changes from pretreatment to posttreatment status between responders and nonresponders existed in SELE-PSGL-1, CXCR3-CCL19, CCL4-SLC7A1, CXCL12-CXCR3, EGFR-AREG, THBS1-a3b1 complex, TNF-TNFRSF1A, TNF-FAS and TNFSF10-TNFRSF10D interactions. In trajectory analyses of tumor-specific exhausted CD8 T cells using ligand/receptor genes, we identified a cluster of T cells that presented a distinct pattern of ligand/receptor expression. They highly expressed suppressive genes like HAVCR2 and KLRC1, cytotoxic genes like GZMB and FASLG and the tissue-residence-related gene CCL5. These cells had increased expression of survival-related and tissue-residence-related genes, like heat shock protein genes and the interleukin-7 receptor (IL-7R), CACYBP and IFITM3 genes, after anti-PD-1 therapy. These results reveal the mechanisms underlying anti-PD-1 therapy response and offer abundant clues for potential strategies to improve immunotherapy.
Keywords: Single-cell rna sequencing; cell-cell interaction; immune checkpoint blockade; immunotherapy; programmed cell death-1.
Publication
Journal: Pediatric Blood and Cancer
April/14/2020
Abstract
This report offers novel clinical and diagnostic aspects of the association between germline mutations in HAVCR2 and subcutaneous panniculitis-like T-cell lymphoma (SPTCL). The patient presented with panniculitis-like T-cell lymphoma involving mesenteric fatty tissue associated with hemophagocytic lymphohistiocytosis (HLH). Five years later, he developed a clonally unrelated SPTCL and underwent hematopoietic stem cell transplantation. Retrospectively, he was found to carry germline mutations in HAVCR2 associated with reduced T-cell immunoglobulin mucin-3 (TIM-3) expression. We show that mesenteric fatty tissue localization of SPTCL can be the presenting manifestation of TIM-3 deficiency, that this condition predisposes to recurrent lymphoma, and that flow cytometry is a possible screening tool.
load more...