Citations
All
Search in:AllTitleAbstractAuthor name
Publications
(2K+)
Patents
Grants
Pathways
Clinical trials
Publication
Journal: Proceedings of the National Academy of Sciences of the United States of America
December/6/2009
Abstract
Allergic asthma is an inflammatory disease of the lung characterized by abnormal T helper-2 (T(H)2) lymphocyte responses to inhaled antigens. The molecular mechanisms leading to the generation of T(H)2 responses remain unclear, although toll-like receptors (TLRs) present on innate immune cells play a pivotal role in sensing molecular patterns and in programming adaptive T cell responses. Here we show that in vivo activation of TLR4 by house dust mite antigens leads to the induction of allergic disease, a process that is associated with expression of a unique subset of small, noncoding microRNAs. Selective blockade of microRNA (miR)-126 suppressed the asthmatic phenotype, resulting in diminished T(H)2 responses, inflammation, airways hyperresponsiveness, eosinophil recruitment, and mucus hypersecretion. miR-126 blockade resulted in augmented expression of POU domain class 2 associating factor 1, which activates the transcription factor PU.1 that alters T(H)2 cell function via negative regulation of GATA3 expression. In summary, this study presents a functional connection between miRNA expression and asthma pathogenesis, and our data suggest that targeting miRNA in the airways may lead to anti-inflammatory treatments for allergic asthma.
Publication
Journal: Immunity
August/27/2007
Abstract
Notch signaling plays multiple roles to direct diverse decisions regarding cell fate during T cell development. During helper T (Th) cell differentiation, Notch is involved in generating optimal Th2 cell responses. Here, we present data investigating how Notch mediates Th2 cell differentiation. Notch showed a CD4(+) T cell intrinsic role in promoting IL-4 expression that required GATA-3. In the absence of Notch signals, Gata3 expression was markedly diminished. Introduction of an activated allele of Notch1 into CD4(+) T cells led to the specific and direct upregulation of a developmentally regulated Gata3 transcript that included the exon 1a sequences. Furthermore, Notch acted in parallel with GATA-3 to synergistically activate IL-4 expression. Together, these data implicate Gata3 as a direct transcriptional Notch target that acts in concert with Notch signaling to generate optimal Th2 cell responses.
Publication
Journal: Current Biology
January/4/2006
Abstract
BACKGROUND
The mammalian hair represents an unparalleled model system to understand both developmental processes and stem cell biology. The hair follicle consists of several concentric epithelial sheaths with the outer root sheath (ORS) forming the outermost layer. Functionally, the ORS has been implicated in the migration of hair stem cells from the stem cell niche toward the hair bulb. However, factors required for the differentiation of this critical cell lineage remain to be identified. Here, we describe an unexpected role of the HMG-box-containing gene Sox9 in hair development.
RESULTS
Sox9 expression can be first detected in the epithelial component of the hair placode but then becomes restricted to the outer root sheath (ORS) and the hair stem cell compartment (bulge). Using tissue-specific inactivation of Sox9, we demonstrate that this gene serves a crucial role in hair differentiation and that skin deleted for Sox9 lacks external hair. Strikingly, the ORS acquires epidermal characteristics with ectopic expression of GATA3. Moreover, Sox9 knock hair show severe proliferative defects and the stem cell niche never forms. Finally, we show that Sox9 expression depends on sonic hedgehog (Shh) signaling and demonstrate overexpression in skin tumors in mouse and man.
CONCLUSIONS
We conclude that although Sox9 is dispensable for hair induction, it directs differentiation of the ORS and is required for the formation of the hair stem cell compartment. Our genetic analysis places Sox9 in a molecular cascade downstream of sonic hedgehog and suggests that this gene is involved in basal cell carcinoma.
Publication
Journal: Journal of Pharmacology and Experimental Therapeutics
January/17/2008
Abstract
A number of recent studies testify that calcitriol alone or in combination with corticosteroids exerts strong immune modulatory activity. As a new approach, we evaluated the protolerogenic potential of calcitriol and dexamethasone in acute T helper (Th)1-mediated colitis in mice. A rectal enema of trinitrobenzene sulfonic acid (TNBS) (100 mg/kg) was applied to BALB/c mice. Calcitriol and/or dexamethasone were administered i.p. from days 0 to 3 or 3 to 5 following the instillation of the haptenating agent. Assessment of colitis severity was performed daily. Colon tissue was analyzed macroscopically and microscopically, and myeloperoxidase activity, as well as cytokine levels [tumor necrosis factor-alpha, interferon-gamma, interleukin (IL)-12p70, IL-1beta, IL-10, IL-4] were determined by enzyme-linked immunosorbent assay, T-bet, GATA family of transcription factors 3, a Th2 master regulator (GATA3), Foxp3, cytotoxic T-lymphocyte-associated antigen 4 (CTLA4), IL-23p19 and IL-17 expression by immunoblot analysis. The combination of the steroids most effectively reduced the clinical and histopathologic severity of TNBS colitis. Th1-related parameters were down-regulated, whereas Th2 markers like IL-4 and GATA3 were up-regulated. Apart from known steroid effects, calcitriol in particular promoted regulatory T cell profiles as indicated by a marked increase of IL-10, TGFbeta, FoxP3, and CTLA4. Furthermore, analysis of dendritic cell mediators responsible for a proinflammatory differentiation of T cells revealed a significant reduction of IL-12p70 and IL23p19 as well as IL-6 and IL-17. Thus, our data support a rationale for a steroid-sparing, clinical application of calcitriol derivatives in inflammatory bowel disease. Furthermore they suggest that early markers of inflammatory dendritic cell and Th17 differentiation qualify as new target molecules for both calcitriol and highly selective immune-modulating vitamin D analogs.
Publication
Journal: Proceedings of the National Academy of Sciences of the United States of America
September/20/2009
Abstract
Expression of T1ST2, the IL-33R, by Th2 cells requires GATA3. Resting Th2 cells express little GATA3, which is increased by IL-33 and a STAT5 activator, in turn increasing T1ST2 from its low-level expression on resting Th2 cells. Th2 cells that have upregulated T1ST2 produce IL-13, but not IL-4, in response to IL-33 plus a STAT5 activator in an antigen-independent, NF-kappaB-dependent, cyclosporin A (CsA)-resistant manner. Similarly, Th17 cells produce IL-17A in response to IL-1beta and a STAT3 activator and Th1 cells produce IFNgamma in response to IL-18 and a STAT4 inducer. Thus, each effector Th cell produces cytokines without antigenic stimulation in response to an IL-1 family member and a specific STAT activator, implying an innate mechanism through which memory CD4 T cells are recruited by an induced cytokine environment.
Publication
Journal: Nature Genetics
November/19/1995
Abstract
GATA-3 is one member of a growing family of related transcription factors which share a strongly conserved expression pattern in all vertebrate organisms. In order to elucidate GATA-3 function using a direct genetic approach, we have disrupted the murine gene by homologous recombination in embryonic stem cells. Mice heterozygous for the GATA3 mutation are fertile and appear in all respects to be normal, whereas homozygous mutant embryos die between days 11 and 12 postcoitum (p.c.) and display massive internal bleeding, marked growth retardation, severe deformities of the brain and spinal cord, and gross aberrations in fetal liver haematopoiesis.
Publication
Journal: Nature Immunology
April/11/2001
Abstract
The transcription factor GATA-3 is expressed in T helper 2 (TH2) but not TH1 cells and plays a critical role in TH2 differentiation and allergic airway inflammation in vivo. Mice that lack the p50 subunit of nuclear factor kappa B (NF-kappa B) are unable to mount airway eosinophilic inflammation. We show here that this is not due to defects in TH2 cell recruitment but due to the inability of the p50-/- mice to produce interleukin 4 (IL-4), IL-5 and IL-13: cytokines that play distinct roles in asthma pathogenesis. CD4+ T cells from p50-/- mice failed to induce Gata3 expression under TH2-differentiating conditions but showed unimpaired T-bet expression and interferon gamma (IFN-gamma) production under TH1-differentiating conditions. Inhibition of NF-kappa B activity prevented GATA-3 expression and TH2 cytokine production in developing, but not committed, TH2 cells. Our studies provide a molecular basis for the need for both T cell receptor and cytokine signaling for GATA-3 expression and, in turn, TH2 differentiation.
Publication
Journal: Journal of Clinical Oncology
April/19/2006
Abstract
OBJECTIVE
The prognosis of a patient with estrogen receptor (ER) and/or progesterone receptor (PR) -positive breast cancer can be highly variable. Therefore, we developed a gene expression-based outcome predictor for ER+ and/or PR+ (ie, luminal) breast cancer patients using biologic differences among these tumors.
METHODS
The ER+ MCF-7 breast cancer cell line was treated with 17beta-estradiol to identify estrogen-regulated genes. These genes were used to develop an outcome predictor on a training set of 65 luminal epithelial primary breast carcinomas. The outcome predictor was then validated on three independent published data sets. Results The estrogen-induced gene set identified in MCF-7 cells was used to hierarchically cluster a 65 tumor training set into two groups, which showed significant differences in survival (P = .0004). Supervised analyses identified 822 genes that optimally defined these two groups, with the poor-prognosis group IIE showing high expression of cell proliferation and antiapoptosis genes. The good prognosis group IE showed high expression of estrogen- and GATA3-regulated genes. Mean expression profiles (ie, centroids) created for each group were applied to ER+ and/or PR+ tumors from three published data sets. For all data sets, Kaplan-Meier survival analyses showed significant differences in relapse-free and overall survival between group IE and IIE tumors. Multivariate Cox analysis of the largest test data set showed that this predictor added significant prognostic information independent of standard clinical predictors and other gene expression-based predictors.
CONCLUSIONS
This study provides new biologic information concerning differences within hormone receptor-positive breast cancers and a means of predicting long-term outcomes in tamoxifen-treated patients.
Publication
Journal: Nature Genetics
March/6/2016
Abstract
Adult T cell leukemia/lymphoma (ATL) is a peripheral T cell neoplasm of largely unknown genetic basis, associated with human T cell leukemia virus type-1 (HTLV-1) infection. Here we describe an integrated molecular study in which we performed whole-genome, exome, transcriptome and targeted resequencing, as well as array-based copy number and methylation analyses, in a total of 426 ATL cases. The identified alterations overlap significantly with the HTLV-1 Tax interactome and are highly enriched for T cell receptor-NF-κB signaling, T cell trafficking and other T cell-related pathways as well as immunosurveillance. Other notable features include a predominance of activating mutations (in PLCG1, PRKCB, CARD11, VAV1, IRF4, FYN, CCR4 and CCR7) and gene fusions (CTLA4-CD28 and ICOS-CD28). We also discovered frequent intragenic deletions involving IKZF2, CARD11 and TP73 and mutations in GATA3, HNRNPA2B1, GPR183, CSNK2A1, CSNK2B and CSNK1A1. Our findings not only provide unique insights into key molecules in T cell signaling but will also guide the development of new diagnostics and therapeutics in this intractable tumor.
Publication
Journal: Journal of Experimental Medicine
November/15/2010
Abstract
The inflammatory cytokine interleukin (IL)-17 is involved in the pathogenesis of allergic diseases. However, the identity and functions of IL-17-producing T cells during the pathogenesis of allergic diseases remain unclear. Here, we report a novel subset of T(H)2 memory/effector cells that coexpress the transcription factors GATA3 and RORγt and coproduce T(H)17 and T(H)2 cytokines. Classical T(H)2 memory/effector cells had the potential to produce IL-17 after stimulation with proinflammatory cytokines IL-1β, IL-6, and IL-21. The number of IL-17-T(H)2 cells was significantly increased in blood of patients with atopic asthma. In a mouse model of allergic lung diseases, IL-17-producing CD4(+) T(H)2 cells were induced in the inflamed lung and persisted as the dominant IL-17-producing T cell population during the chronic stage of asthma. Treating cultured bronchial epithelial cells with IL-17 plus T(H)2 cytokines induced strong up-regulation of chemokine eotaxin-3, Il8, Mip1b, and Groa gene expression. Compared with classical T(H)17 and T(H)2 cells, antigen-specific IL-17-producing T(H)2 cells induced a profound influx of heterogeneous inflammatory leukocytes and exacerbated asthma. Our findings highlight the plasticity of T(H)2 memory cells and suggest that IL-17-producing T(H)2 cells may represent the key pathogenic T(H)2 cells promoting the exacerbation of allergic asthma.
Publication
Journal: Journal of Allergy and Clinical Immunology
April/17/2003
Abstract
There is considerable evidence to support a role for T cells in asthma, particularly the involvement of T(H)2 cells both in atopic allergic asthma and in nonatopic and occupational asthma. There might also be a minor contribution from T(C)2 CD8+ T cells. Several T(H)2 cytokines have the potential to modulate airway inflammation, particularly IL-13, which induces airway hyperresponsiveness independently of IgE and eosinophilia in animal models. The identification of transcription factors controlling T(H)1 and T(H)2 development further support the T(H)2 hypothesis because GATA3 is overexpressed and T-bet is underexpressed in the asthmatic airway. Specific T cell directed immunotherapy might allow induction, modulation, or both of T-cell responses, and elucidation of the mechanisms of regulatory T cells might allow further optimization of immunotherapy. Recent advances in our understanding of dendritic cell function in directing T-cell responses might uncover further therapeutic targets. The efficacy of cyclosporin A and anti-CD4 treatment in patients with chronic severe asthma argues for continued T-cell involvement, but whether remodeling contributes to pathology inaccessible to anti-inflammatory treatment or T-cell immunotherapy will be an important future question.
Publication
Journal: Nature Cell Biology
March/28/2013
Abstract
Despite advances in our understanding of breast cancer, patients with metastatic disease have poor prognoses. GATA3 is a transcription factor that specifies and maintains mammary luminal epithelial cell fate, and its expression is lost in breast cancer, correlating with a worse prognosis in human patients. Here, we show that GATA3 promotes differentiation, suppresses metastasis and alters the tumour microenvironment in breast cancer by inducing microRNA-29b (miR-29b) expression. Accordingly, miR-29b is enriched in luminal breast cancers and loss of miR-29b, even in GATA3-expressing cells, increases metastasis and promotes a mesenchymal phenotype. Mechanistically, miR-29b inhibits metastasis by targeting a network of pro-metastatic regulators involved in angiogenesis, collagen remodelling and proteolysis, including VEGFA, ANGPTL4, PDGF, LOX and MMP9, and targeting ITGA6, ITGB1 and TGFB, thereby indirectly affecting differentiation and epithelial plasticity. The discovery that a GATA3-miR-29b axis regulates the tumour microenvironment and inhibits metastasis opens up possibilities for therapeutic intervention in breast cancer.
Publication
Journal: Nature
August/16/2000
Abstract
Terminal deletions of chromosome 10p result in a DiGeorge-like phenotype that includes hypoparathyroidism, heart defects, immune deficiency, deafness and renal malformations. Studies in patients with 10p deletions have defined two non-overlapping regions that contribute to this complex phenotype. These are the DiGeorge critical region II (refs 1, 2), which is located on 10p13-14, and the region for the hypoparathyroidism, sensorineural deafness, renal anomaly (HDR) syndrome (Mendelian Inheritance in Man number 146255), which is located more telomeric (10p14-10pter). We have performed deletion-mapping studies in two HDR patients, and here we define a critical 200-kilobase region which contains the GATA3 gene. This gene belongs to a family of zinc-finger transcription factors that are involved in vertebrate embryonic development. Investigation for GATA3 mutations in three other HDR probands identified one nonsense mutation and two intragenic deletions that predicted a loss of function, as confirmed by absence of DNA binding by the mutant GATA3 protein. These results show that GATA3 is essential in the embryonic development of the parathyroids, auditory system and kidneys, and indicate that other GATA family members may be involved in the aetiology of human malformations.
Publication
Journal: Nature
September/5/2011
Abstract
The vertebrate thymus provides an inductive environment for T-cell development. Within the mouse thymus, Notch signals are indispensable for imposing the T-cell fate on multipotential haematopoietic progenitors, but the downstream effectors that impart T-lineage specification and commitment are not well understood. Here we show that a transcription factor, T-cell factor 1 (TCF-1; also known as transcription factor 7, T-cell specific, TCF7), is a critical regulator in T-cell specification. TCF-1 is highly expressed in the earliest thymic progenitors, and its expression is upregulated by Notch signals. Most importantly, when TCF-1 is forcibly expressed in bone marrow (BM) progenitors, it drives the development of T-lineage cells in the absence of T-inductive Notch1 signals. Further characterization of these TCF-1-induced cells revealed expression of many T-lineage genes, including T-cell-specific transcription factors Gata3 and Bcl11b, and components of the T-cell receptor. Our data suggest a model where Notch signals induce TCF-1, and TCF-1 in turn imprints the T-cell fate by upregulating expression of T-cell essential genes.
Publication
Journal: Immunity
October/31/2011
Abstract
The transcription factor GATA3 plays an essential role during T cell development and T helper 2 (Th2) cell differentiation. To understand GATA3-mediated gene regulation, we identified genome-wide GATA3 binding sites in ten well-defined developmental and effector T lymphocyte lineages. In the thymus, GATA3 directly regulated many critical factors, including Th-POK, Notch1, and T cell receptor subunits. In the periphery, GATA3 induced a large number of Th2 cell-specific as well as Th2 cell-nonspecific genes, including several transcription factors. Our data also indicate that GATA3 regulates both active and repressive histone modifications of many target genes at their regulatory elements near GATA3 binding sites. Overall, although GATA3 binding exhibited both shared and cell-specific patterns among various T cell lineages, many genes were either positively or negatively regulated by GATA3 in a cell type-specific manner, suggesting that GATA3-mediated gene regulation depends strongly on cofactors existing in different T cells.
Publication
Journal: Journal of Immunology
August/27/2002
Abstract
Peripheral T cell differentiation is accompanied by chromatin changes at the signature cytokine loci. Using chromatin immunoprecipitation we demonstrate that profound increases in histone acetylation occur at the IFN-gamma and IL-4 loci during Th1/Th2 differentiation. These changes in histone acetylation status are locus and lineage specific, and are maintained by the transcription factors Tbet and GATA3 in a STAT-dependent manner. Our results suggest a model of cytokine locus activation in which TCR signals initiate chromatin remodeling and locus opening in a cytokine-independent fashion. Subsequently, cytokine signaling reinforces polarization by expanding and maintaining the accessible state at the relevant cytokine locus (IL-4 or IFN-gamma). In this model, GATA3 and Tbet serve as transcriptional maintenance factors, which keep the locus accessible to the transcriptional machinery.
Publication
Journal: Cell Research
August/6/2006
Abstract
Naïve CD4 T cells can differentiate into at least two different types of T helpers, Th1 and Th2 cells. Th2 cells, capable of producing IL-4, IL-5 and IL-13, are involved in humoral immunity against extracellular pathogens and in the induction of asthma and other allergic diseases. In this review, we summarize recent reports regarding the transcription factors involved in Th2 differentiation and cell expansion, including Stat5, Gfi-1 and GATA-3. Stat5 activation is necessary and sufficient for IL-2-mediated function in Th2 differentiation. Enhanced Stat5 signaling induces Th2 differentiation independent of IL-4 signaling; although it does not up-regulate GATA-3 expression, it does require the presence of GATA-3 for its action. Gfi-1, induced by IL-4, promotes the expansion of GATA-3-expressing cells. Analysis of conditional Gata3 knockout mice confirmed the critical role of GATA-3 in Th2 cell differentiation (both IL-4 dependent and IL-4 independent) and in Th2 cell proliferation and also showed the importance of basal GATA-3 expression in inhibiting Th1 differentiation.
Publication
Journal: Blood
October/15/2006
Abstract
During hematopoietic differentiation of human embryonic stem cells (hESCs), early hematopoietic progenitors arise along with endothelial cells within the CD34(+) population. Although hESC-derived hematopoietic progenitors have been previously identified by functional assays, their phenotype has not been defined. Here, using hESC differentiation in coculture with OP9 stromal cells, we demonstrate that early progenitors committed to hematopoietic development could be identified by surface expression of leukosialin (CD43). CD43 was detected on all types of emerging clonogenic progenitors before expression of CD45, persisted on differentiating hematopoietic cells, and reliably separated the hematopoietic CD34(+) population from CD34(+)CD43(-)CD31(+)KDR(+) endothelial and CD34(+)CD43(-)CD31(-)KDR(-) mesenchymal cells. Furthermore, we demonstrated that the first-appearing CD34(+)CD43(+)CD235a(+)CD41a(+/-)CD45(-) cells represent precommitted erythro-megakaryocytic progenitors. Multipotent lymphohematopoietic progenitors were generated later as CD34(+)CD43(+)CD41a(-)CD235a(-)CD45(-) cells. These cells were negative for lineage-specific markers (Lin(-)), expressed KDR, VE-cadherin, and CD105 endothelial proteins, and expressed GATA-2, GATA-3, RUNX1, C-MYB transcription factors that typify initial stages of definitive hematopoiesis originating from endothelial-like precursors. Acquisition of CD45 expression by CD34(+)CD43(+)CD45(-)Lin(-) cells was associated with progressive myeloid commitment and a decrease of B-lymphoid potential. CD34(+)CD43(+)CD45(+)Lin(-) cells were largely devoid of VE-cadherin and KDR expression and had a distinct FLT3(high)GATA3(low)RUNX1(low)PU1(high)MPO(high)IL7RA(high) gene expression profile.
Publication
Journal: Nature Reviews Immunology
April/2/2009
Abstract
Many advances in our understanding of the molecules that regulate the development, differentiation and function of T cells have been made over the past few years. One important regulator of T-cell differentiation is the transcription factor GATA-binding protein 3 (GATA3). Although the main function of GATA3 is to act as a master transcription factor for the differentiation of T helper 2 (T(H)2) cells, new research has helped to uncover crucial functions of GATA3 in T cells that go beyond T(H)2-cell differentiation and that are important at earlier stages of haematopoietic and lymphoid-cell development. This Review focuses on the functions of GATA3 from early thymocyte development to effector T-cell differentiation. In addition, we discuss the interactions between GATA3 and other transcription factors and signalling pathways, and highlight the functional significance of the GATA3 protein structure.
Publication
Journal: Immunity
May/14/2014
Abstract
Innate lymphoid cells (ILCs) are critical in innate immune responses to pathogens and lymphoid organ development. Similar to CD4(+) T helper (Th) cell subsets, ILC subsets positive for interleukin-7 receptor α (IL-7Rα) produce distinct sets of effector cytokines. However, the molecular control of IL-7Rα(+) ILC development and maintenance is unclear. Here, we report that GATA3 was indispensable for the development of all IL-7Rα(+) ILC subsets and T cells but was not required for the development of classical natural killer cells. Conditionally Gata3-deficient mice had no lymph nodes and were susceptible to Citrobactor rodentium infection. After the ILCs had fully developed, GATA3 remained important for the maintenance and functions of ILC2s. Genome-wide gene expression analyses indicated that GATA3 regulated a similar set of cytokines and receptors in Th2 cells and ILC2s, but not in ILC3s. Thus, GATA3 plays parallel roles in regulating the development and functions of CD4(+) T cells and IL-7Rα(+) ILCs.
Publication
Journal: Development (Cambridge)
October/5/2003
Abstract
The homeobox Six genes, homologues to Drosophila sine oculis (so) gene, are expressed in multiple organs during mammalian development. However, their roles during auditory system development have not been studied. We report that Six1 is required for mouse auditory system development. During inner ear development, Six1 expression was first detected in the ventral region of the otic pit and later is restricted to the middle and ventral otic vesicle within which, respectively, the vestibular and auditory epithelia form. By contrast, Six1 expression is excluded from the dorsal otic vesicle within which the semicircular canals form. Six1 is also expressed in the vestibuloacoustic ganglion. At E15.5, Six1 is expressed in all sensory epithelia of the inner ear. Using recently generated Six1 mutant mice, we found that all Six1(+/-) mice showed some degree of hearing loss because of a failure of sound transmission in the middle ear. By contrast, Six1(-/-) mice displayed malformations of the auditory system involving the outer, middle and inner ears. The inner ear development in Six1(-/-) embryos arrested at the otic vesicle stage and all components of the inner ear failed to form due to increased cell death and reduced cell proliferation in the otic epithelium. Because we previously reported that Six1 expression in the otic vesicle is Eya1 dependent, we first clarified that Eya1 expression was unaffected in Six1(-/-) otic vesicle, further demonstrating that the Drosophila Eya-Six regulatory cassette is evolutionarily conserved during mammalian inner ear development. We also analyzed several other otic markers and found that the expression of Pax2 and Pax8 was unaffected in Six1(-/-) otic vesicle. By contrast, Six1 is required for the activation of Fgf3 expression and the maintenance of Fgf10 and Bmp4 expression in the otic vesicle. Furthermore, loss of Six1 function alters the expression pattern of Nkx5.1 and Gata3, indicating that Six1 is required for regional specification of the otic vesicle. Finally, our data suggest that the interaction between Eya1 and Six1 is crucial for the morphogenesis of the cochlea and the posterior ampulla during inner ear development. These analyses establish a role for Six1 in early growth and patterning of the otic vesicle.
Publication
Journal: Blood
June/8/2009
Abstract
Hematopoiesis is a carefully controlled process that is regulated by complex networks of transcription factors that are, in part, controlled by signals resulting from ligand binding to cell-surface receptors. To further understand hematopoiesis, we have compared gene expression profiles of human erythroblasts, megakaryocytes, B cells, cytotoxic and helper T cells, natural killer cells, granulocytes, and monocytes using whole genome microarrays. A bioinformatics analysis of these data was performed focusing on transcription factors, immunoglobulin superfamily members, and lineage-specific transcripts. We observed that the numbers of lineage-specific genes varies by 2 orders of magnitude, ranging from 5 for cytotoxic T cells to 878 for granulocytes. In addition, we have identified novel coexpression patterns for key transcription factors involved in hematopoiesis (eg, GATA3-GFI1 and GATA2-KLF1). This study represents the most comprehensive analysis of gene expression in hematopoietic cells to date and has identified genes that play key roles in lineage commitment and cell function. The data, which are freely accessible, will be invaluable for future studies on hematopoiesis and the role of specific genes and will also aid the understanding of the recent genome-wide association studies.
Pulse
Views:
2
Posts:
No posts
Rating:
Not rated
Publication
Journal: Development (Cambridge)
March/25/2010
Abstract
The mouse blastocyst and stem cells derived from its tissue lineages provide a unique genetic system for examining the establishment and loss of pluripotency. The transcription factor Cdx2 plays a central role by repressing pluripotency genes, such as Oct4, and promoting extraembryonic trophoblast fate at the blastocyst stage. However, genetic evidence has suggested that Cdx2 does not work alone in the trophoblast lineage. We have used bioinformatic and functional genomic strategies to identify the transcription factor Gata3 as a trophoblast factor. We show Gata3 to be capable of inducing trophoblast fate in embryonic stem cells and driving trophoblast differentiation in trophoblast stem cells. In addition, Cdx2 is not required for Gata3-induced expression of a subset of trophoblast genes in embryonic stem cells. We show that Gata3 is coexpressed with Cdx2 in the blastocyst, but this does not depend on Cdx2. In the embryo, expression of Gata3, like that of Cdx2, depends on Tead4, and the expression of both factors becomes restricted to trophoblast by a mechanism that does not initially rely on Oct4. These observations suggest that Gata3 and Cdx2 can act in parallel pathways downstream of Tead4 to induce the expression of common and independent targets in the trophoblast lineage, whereas Oct4 is required for continued repression of trophoblast fate in the embryonic lineage.
Publication
Journal: Blood
September/28/2014
Abstract
Innate lymphoid cells (ILCs) are lymphoid cells that do not express rearranged receptors and have important effector and regulatory functions in innate immunity and tissue remodeling. ILCs are categorized into 3 groups based on their distinct patterns of cytokine production and the requirement of particular transcription factors for their development and function. Group 1 ILCs (ILC1s) produce interferon γ and depend on Tbet, group 2 ILCs (ILC2s) produce type 2 cytokines like interleukin-5 (IL-5) and IL-13 and require GATA3, and group 3 ILCs (ILC3s) include lymphoid tissue inducer cells, produce IL-17 and/or IL-22, and are dependent on RORγt. Whereas ILCs play essential roles in the innate immune system, uncontrolled activation and proliferation of ILCs can contribute to inflammatory autoimmune diseases. In this review, we provide an overview of the characteristics of ILCs in the context of health and disease. We will focus on human ILCs but refer to mouse studies if needed to clarify aspects of ILC biology.
load more...