Citations
All
Search in:AllTitleAbstractAuthor name
Publications
(1K+)
Patents
Grants
Pathways
Clinical trials
Publication
Journal: Blood
February/25/2008
Abstract
The transcription factor Runx1/AML1 is an important regulator of hematopoiesis and is critically required for the generation of the first definitive hematopoietic stem cells (HSCs) in the major vasculature of the mouse embryo. As a pivotal factor in HSC ontogeny, its transcriptional regulation is of high interest but is largely undefined. In this study, we used a combination of comparative genomics and chromatin analysis to identify a highly conserved 531-bp enhancer located at position + 23.5 in the first intron of the 224-kb mouse Runx1 gene. We show that this enhancer contributes to the early hematopoietic expression of Runx1. Transcription factor binding in vivo and analysis of the mutated enhancer in transient transgenic mouse embryos implicate Gata2 and Ets proteins as critical factors for its function. We also show that the SCL/Lmo2/Ldb-1 complex is recruited to the enhancer in vivo. Importantly, transplantation experiments demonstrate that the intronic Runx1 enhancer targets all definitive HSCs in the mouse embryo, suggesting that it functions as a crucial cis-regulatory element that integrates the Gata, Ets, and SCL transcriptional networks to initiate HSC generation.
Publication
Journal: Blood
March/31/2009
Abstract
We demonstrate that in zebrafish, the microRNA miR-451 plays a crucial role in promoting erythroid maturation, in part via its target transcript gata2. Zebrafish miR-144 and miR-451 are processed from a single precursor transcript selectively expressed in erythrocytes. In contrast to other hematopoietic mutants, the zebrafish mutant meunier (mnr) showed intact erythroid specification but diminished miR-144/451 expression. Although erythropoiesis initiated normally in mnr, erythrocyte maturation was morphologically retarded. Morpholino knockdown of miR-451 increased erythrocyte immaturity in wild-type embryos, and miR-451 RNA duplexes partially rescued erythroid maturation in mnr, demonstrating a requirement and role for miR-451 in erythrocyte maturation. mnr provided a selectively miR-144/451-deficient background, facilitating studies to discern miRNA function and validate candidate targets. Among computer-predicted miR-451 targets potentially mediating these biologic effects, the pro-stem cell transcription factor gata2 was an attractive candidate. In vivo reporter assays validated the predicted miR-451/gata2-3'UTR interaction, gata2 down-regulation was delayed in miR-451-knockdown and mnr embryos, and gata2 knockdown partially restored erythroid maturation in mnr, collectively confirming gata2 down-regulation as pivotal for miR-451-driven erythroid maturation. These studies define a new genetic pathway promoting erythroid maturation (mnr/miR-451/gata2) and provide a rare example of partial rescue of a mutant phenotype solely by miRNA overexpression.
Publication
Journal: Cell Metabolism
January/7/2009
Abstract
Hedgehog (Hh) signals regulate invertebrate and vertebrate development, yet the role of the cascade in adipose development was undefined. To analyze a potential function, we turned to Drosophila and mammalian models. Fat-body-specific transgenic activation of Hh signaling inhibits fly fat formation. Conversely, fat-body-specific Hh blockade stimulated fly fat formation. In mammalian models, sufficiency and necessity tests showed that Hh signaling also inhibits mammalian adipogenesis. Hh signals elicit this function early in adipogenesis, upstream of PPARgamma, potentially diverting preadipocytes as well as multipotent mesenchymal prescursors away from adipogenesis and toward osteogenesis. Hh may elicit these effects by inducing the expression of antiadipogenic transcription factors such as Gata2. These data support the notion that Hh signaling plays a conserved role, from invertebrates to vertebrates, in inhibiting fat formation and highlighting the potential of the Hh pathway as a therapeutic target for osteoporosis, lipodystrophy, diabetes, and obesity.
Publication
Journal: Blood
April/4/2012
Abstract
Recent work has established that heterozygous germline GATA2 mutations predispose carriers to familial myelodysplastic syndrome (MDS)/acute myeloid leukemia (AML), "MonoMAC" syndrome, and DCML deficiency. Here, we describe a previously unreported MDS family carrying a missense GATA2 mutation (p.Thr354Met), one patient with MDS/AML carrying a frameshift GATA2 mutation (p.Leu332Thrfs*53), another with MDS harboring a GATA2 splice site mutation, and 3 patients exhibiting MDS or MDS/AML who have large deletions encompassing the GATA2 locus. Intriguingly, 2 MDS/AML or "MonoMAC" syndrome patients with GATA2 deletions and one with a frameshift mutation also have primary lymphedema. Primary lymphedema occurs as a result of aberrations in the development and/or function of lymphatic vessels, spurring us to investigate whether GATA2 plays a role in the lymphatic vasculature. We demonstrate here that GATA2 protein is present at high levels in lymphatic vessel valves and that GATA2 controls the expression of genes important for programming lymphatic valve development. Our data expand the phenotypes associated with germline GATA2 mutations to include predisposition to primary lymphedema and suggest that complete haploinsufficiency or loss of function of GATA2, rather than missense mutations, is the key predisposing factor for lymphedema onset. Moreover, we reveal a crucial role for GATA2 in lymphatic vascular development.
Publication
Journal: Developmental Cell
March/13/2005
Abstract
The differentiation of hematopoietic progenitors into erythroid or myeloid cell lineages is thought to depend upon relative levels of the transcription factors gata1 and pu.1. While loss-of-function analysis shows that gata1 is necessary for terminal erythroid differentiation, no study has demonstrated that loss of gata1 alters myeloid differentiation during ontogeny. Here we provide in vivo evidence that loss of Gata1, but not Gata2, transforms primitive blood precursors into myeloid cells, resulting in a massive expansion of granulocytic neutrophils and macrophages at the expense of red blood cells. In addition to this fate change, expression of many erythroid genes was found to be differentially dependent on Gata1 alone, on both Gata1 and Gata2, or independent of both Gata factors, suggesting that multiple pathways regulate erythroid gene expression. Our studies establish a transcriptional hierarchy of Gata factor dependence during hematopoiesis and demonstrate that gata1 plays an integral role in directing myelo-erythroid lineage fate decisions during embryogenesis.
Publication
Journal: EMBO Journal
July/21/2008
Abstract
Specific deletion of Notch1 and RBPjkappa in the mouse results in abrogation of definitive haematopoiesis concomitant with the loss of arterial identity at embryonic stage. As prior arterial determination is likely to be required for the generation of embryonic haematopoiesis, it is difficult to establish the specific haematopoietic role of Notch in these mutants. By analysing different Notch-ligand-null embryos, we now show that Jagged1 is not required for the establishment of the arterial fate but it is required for the correct execution of the definitive haematopoietic programme, including expression of GATA2 in the dorsal aorta. Moreover, successful haematopoietic rescue of the Jagged1-null AGM cells was obtained by culturing them with Jagged1-expressing stromal cells or by lentiviral-mediated transduction of the GATA2 gene. Taken together, our results indicate that Jagged1-mediated activation of Notch1 is responsible for regulating GATA2 expression in the AGM, which in turn is essential for definitive haematopoiesis in the mouse.
Publication
Journal: Development (Cambridge)
March/26/2007
Abstract
Molecular mechanisms that regulate the generation of hematopoietic and endothelial cells from mesoderm are poorly understood. To define the underlying mechanisms, we compared gene expression profiles between embryonic stem (ES) cell-derived hemangioblasts (Blast-Colony-Forming Cells, BL-CFCs) and their differentiated progeny, Blast cells. Bioinformatic analysis indicated that BL-CFCs resembled other stem cell populations. A role for Gata2, one of the BL-CFC-enriched transcripts, was further characterized by utilizing the in vitro model of ES cell differentiation. Our studies revealed that Gata2 was a direct target of BMP4 and that enforced GATA2 expression upregulated Bmp4, Flk1 and Scl. Conditional GATA2 induction resulted in a temporal-sensitive increase in hemangioblast generation, precocious commitment to erythroid fate, and increased endothelial cell generation. GATA2 additionally conferred a proliferative signal to primitive erythroid progenitors. Collectively, we provide compelling evidence that GATA2 plays specific, contextual roles in the generation of Flk-1+ mesoderm, the Flk-1+Scl+ hemangioblast, primitive erythroid and endothelial cells.
Publication
Journal: PLoS ONE
December/22/2008
Abstract
BACKGROUND
The androgen receptor (AR) is a steroid-activated transcription factor that binds at specific DNA locations and plays a key role in the etiology of prostate cancer. While numerous studies have identified a clear connection between AR binding and expression of target genes for a limited number of loci, high-throughput elucidation of these sites allows for a deeper understanding of the complexities of this process.
RESULTS
We have mapped 189 AR occupied regions (ARORs) and 1,388 histone H3 acetylation (AcH3) loci to a 3% continuous stretch of human genomic DNA using chromatin immunoprecipitation (ChIP) microarray analysis. Of 62 highly reproducible ARORs, 32 (52%) were also marked by AcH3. While the number of ARORs detected in prostate cancer cells exceeded the number of nearby DHT-responsive genes, the AcH3 mark defined a subclass of ARORs much more highly associated with such genes -- 12% of the genes flanking AcH3+ARORs were DHT-responsive, compared to only 1% of genes flanking AcH3-ARORs. Most ARORs contained enhancer activities as detected in luciferase reporter assays. Analysis of the AROR sequences, followed by site-directed ChIP, identified binding sites for AR transcriptional coregulators FoxA1, CEBPbeta, NFI and GATA2, which had diverse effects on endogenous AR target gene expression levels in siRNA knockout experiments.
CONCLUSIONS
We suggest that only some ARORs function under the given physiological conditions, utilizing diverse mechanisms. This diversity points to differential regulation of gene expression by the same transcription factor related to the chromatin structure.
Publication
Journal: Molecular and Cellular Biology
October/23/2006
Abstract
The reciprocal expression of GATA-1 and GATA-2 during hematopoiesis is an important determinant of red blood cell development. Whereas Gata2 is preferentially transcribed early in hematopoiesis, elevated GATA-1 levels result in GATA-1 occupancy at sites upstream of the Gata2 locus and transcriptional repression. GATA-2 occupies these sites in the transcriptionally active locus, suggesting that a "GATA switch" abrogates GATA-2-mediated positive autoregulation. Chromatin immunoprecipitation (ChIP) coupled with genomic microarray analysis and quantitative ChIP analysis with GATA-1-null cells expressing an estrogen receptor ligand binding domain fusion to GATA-1 revealed additional GATA switches 77 kb upstream of Gata2 and within intron 4 at +9.5 kb. Despite indistinguishable GATA-1 occupancy at -77 kb and +9.5 kb versus other GATA switch sites, GATA-1 functioned uniquely at the different regions. GATA-1 induced histone deacetylation at and near Gata2 but not at the -77 kb region. The -77 kb region, which was DNase I hypersensitive in both active and inactive states, conferred equivalent enhancer activities in GATA-1- and GATA-2-expressing cells. By contrast, the +9.5 kb region exhibited considerably stronger enhancer activity in GATA-2- than in GATA-1-expressing cells, and other GATA switch sites were active only in GATA-1- or GATA-2-expressing cells. Chromosome conformation capture analysis demonstrated higher-order interactions between the -77 kb region and Gata2 in the active and repressed states. These results indicate that dispersed GATA factor complexes function via long-range chromatin interactions and qualitatively distinct activities to regulate Gata2 transcription.
Publication
Journal: Molecular and Cellular Biology
December/29/2011
Abstract
Wnt/β-catenin signaling is a critical regulator of skeletal physiology. However, previous studies have mainly focused on its roles in osteoblasts, while its specific function in osteoclasts is unknown. This is a clinically important question because neutralizing antibodies against Wnt antagonists are promising new drugs for bone diseases. Here, we show that in osteoclastogenesis, β-catenin is induced during the macrophage colony-stimulating factor (M-CSF)-mediated quiescence-to-proliferation switch but suppressed during the RANKL-mediated proliferation-to-differentiation switch. Genetically, β-catenin deletion blocks osteoclast precursor proliferation, while β-catenin constitutive activation sustains proliferation but prevents osteoclast differentiation, both causing osteopetrosis. In contrast, β-catenin heterozygosity enhances osteoclast differentiation, causing osteoporosis. Biochemically, Wnt activation attenuates whereas Wnt inhibition stimulates osteoclastogenesis. Mechanistically, β-catenin activation increases GATA2/Evi1 expression but abolishes RANKL-induced c-Jun phosphorylation. Therefore, β-catenin exerts a pivotal biphasic and dosage-dependent regulation of osteoclastogenesis. Importantly, these findings suggest that Wnt activation is a more effective treatment for skeletal fragility than previously recognized that confers dual anabolic and anti-catabolic benefits.
Publication
Journal: Cell
June/28/1999
Abstract
The mechanisms by which transient gradients of signaling molecules lead to emergence of specific cell types remain a central question in mammalian organogenesis. Here, we demonstrate that the appearance of four ventral pituitary cell types is mediated via the reciprocal interactions of two transcription factors, Pit1 and GATA2, which are epistatic to the remainder of the cell type-specific transcription programs and serve as the molecular memory of the transient signaling events. Unexpectedly, this program includes a DNA binding-independent function of Pit1, suppressing the ventral GATA2-dependent gonadotrope program by inhibiting GATA2 binding to gonadotrope- but not thyrotrope-specific genes, indicating that both DNA binding-dependent and -independent actions of abundant determining factors contribute to generate distinct cell phenotypes.
Publication
Journal: Blood
March/19/2012
Abstract
Etv2 (Ets Variant 2) has been shown to be an indispensable gene for the development of hematopoietic cells (HPCs)/endothelial cells (ECs). However, how Etv2 specifies the mesoderm-generating HPCs/ECs remains incompletely understood. In embryonic stem cell (ESC) differentiation culture and Etv2-null embryos, we show that Etv2 is dispensable for generating primitive Flk-1(+)/PDGFRα(+) mesoderm but is required for the progression of Flk-1(+)/PDGFRα(+) cells into vascular/hematopoietic mesoderm. Etv2-null ESCs and embryonic cells were arrested as Flk-1(+)/PDGFRα(+) and failed to generate Flk-1(+)/PDGFRα(-) mesoderm. Flk-1(+)/Etv2(+) early embryonic cells showed significantly higher hemato-endothelial potential than the Flk-1(+)/Etv2(-) population, suggesting that Etv2 specifies a hemato-endothelial subset of Flk-1(+) mesoderm. Critical hemato-endothelial genes were severely down-regulated in Etv2-null Flk-1(+) cells. Among those genes Scl, Fli1, and GATA2 were expressed simultaneously with Etv2 in early embryos and seemed to be critical targets. Etv2 reexpression in Etv2-null cells restored the development of CD41(+), CD45(+), and VE-cadherin(+) cells. Expression of Scl or Fli1 alone could also restore HPCs/ECs in the Etv2-null background, indicating that these 2 genes are critical downstream targets. Furthermore, VEGF induced Etv2 potently and rapidly in Flk-1(+) mesoderm. We propose that Flk-1(+)/PDGFRα(+) primitive mesoderm is committed into Flk-1(+)/PDGFRα(-) vascular mesoderm through Etv2 and that up-regulation of Etv2 by VEGF promotes this commitment.
Publication
Journal: Current Biology
October/27/2008
Abstract
Blood and endothelium arise in close association during development, possibly from a common precursor, the hemangioblast [1-4]. Genes essential for blood and endothelial development contain functional ETS binding sites, and binding and expression data implicate the transcription factor, friend leukaemia integration 1 (Fli1) [5-10]. However, loss-of-function phenotypes in mice, although suffering both blood and endothelial defects, have thus far precluded the conclusion that Fli1 is essential for these two lineages [11, 12]. By using Xenopus and zebrafish embryos, we show that loss of Fli1 function results in a substantial reduction or absence of hemangioblasts, revealing an absolute requirement. TUNEL assays show that the cells are eventually lost by apoptosis, but only after the regulatory circuit has been disrupted by loss of Fli1. In addition, a constitutively active form of Fli1 is sufficient to induce expression of key hemangioblast genes, such as Scl/Tal1, Lmo2, Gata2, Etsrp, and Flk1. Epistasis assays show that Fli1 expression is induced by Bmp signaling or Cloche, depending on the hemangioblast population, and in both cases Fli1 acts upstream of Gata2, Scl, Lmo2, and Etsrp. Taken together, these results place Fli1 at the top of the transcriptional regulatory hierarchy for hemangioblast specification in vertebrate embryos.
Publication
Journal: Mechanisms of Development
April/26/2000
Abstract
Fli-1 is an ETS-domain transcription factor whose locus is disrupted in Ewing's Sarcoma and F-MuLV induced erythroleukaemia. To gain a better understanding of its normal function, we have isolated the zebrafish homologue. Similarities with other vertebrates, in the amino acid sequence and DNA binding properties of Fli-1 from zebrafish, suggest that its function has been conserved during vertebrate evolution. The initial expression of zebrafish fli-1 in the posterior lateral mesoderm overlaps with that of gata2 in a potential haemangioblast population which likely contains precursors of blood and endothelium. Subsequently, fli-1 and gata2 expression patterns diverge, with separate fli-1 and gata2 expression domains arising in the developing vasculature and in sites of blood formation respectively. Elsewhere in the embryo, fli-1 is expressed in sites of vasculogenesis. The expression of fli-1 was investigated in a number of zebrafish mutants, which affect the circulatory system. In cloche, endothelium is absent and blood is drastically reduced. In contrast to the blood and endothelial markers that have been studied previously, fli-1 expression was initiated normally in cloche embryos, indicating that induction of fli-1 is one of the earliest indicators of haemangioblast formation. Furthermore, although fli-1 expression in the trunk was not maintained, the normal expression pattern in the anterior half of the embryo was retained. These anterior cells did not, however, condense to form blood vessels. These data indicate that cloche has previously unsuspected roles at multiple stages in the formation of the vasculature. Analysis of fli-1 expression in midline patterning mutants floating head and squint, confirms a requirement for the notochord in the formation of the dorsal-aorta. The formation of endothelium in one-eyed pinhead, cyclops and squint embryos indicates a novel role for the endoderm in the formation of the axial vein. The phenotype of sonic-you mutants implies a likely role for Sonic Hedgehog in mediating these processes.
Publication
Journal: Development (Cambridge)
March/14/2001
Abstract
Pituitary gland development serves as an excellent model system in which to study the emergence of distinct cell types from a common primordium in mammalian organogenesis. We have investigated the role of the morphogen Sonic hedgehog (SHH) in outgrowth and differentiation of the pituitary gland using loss- and gain-of-function studies in transgenic mice. Shh is expressed throughout the ventral diencephalon and the oral ectoderm, but its expression is subsequently absent from the nascent Rathke's pouch as soon as it becomes morphologically visible, creating a Shh boundary within the oral epithelium. We used oral ectoderm/Rathke's pouch-specific 5' regulatory sequences (Pitx1(HS)) from the bicoid related pituitary homeobox gene (Pitx1) to target overexpression of the Hedgehog inhibitor Hip (Huntingtin interacting protein) to block Hedgehog signaling, finding that SHH is required for proliferation of the pituitary gland. In addition, we provide evidence that Hedgehog signaling, acting at the Shh boundary within the oral ectoderm, may exert a role in differentiation of ventral cell types (gonadotropes and thyrotropes) by inducing Bmp2 expression in Rathke's pouch, which subsequently regulates expression of ventral transcription factors, particularly Gata2. Furthermore, our data suggest that Hedgehog signaling, together with FGF8/10 signaling, synergizes to regulate expression of the LIM homeobox gene Lhx3, which has been proved to be essential for initial pituitary gland formation. Thus, SHH appears to exert effects on both proliferation and cell-type determination in pituitary gland development.
Publication
Journal: Journal of Experimental Medicine
February/9/2014
Abstract
Knowledge of the key transcription factors that drive hematopoietic stem cell (HSC) generation is of particular importance for current hematopoietic regenerative approaches and reprogramming strategies. Whereas GATA2 has long been implicated as a hematopoietic transcription factor and its dysregulated expression is associated with human immunodeficiency syndromes and vascular integrity, it is as yet unknown how GATA2 functions in the generation of HSCs. HSCs are generated from endothelial cells of the major embryonic vasculature (aorta, vitelline, and umbilical arteries) and are found in intra-aortic hematopoietic clusters. In this study, we find that GATA2 function is essential for the generation of HSCs during the stage of endothelial-to-hematopoietic cell transition. Specific deletion of Gata2 in Vec (Vascular Endothelial Cadherin)-expressing endothelial cells results in a deficiency of long-term repopulating HSCs and intra-aortic cluster cells. By specific deletion of Gata2 in Vav-expressing hematopoietic cells (after HSC generation), we further show that GATA2 is essential for HSC survival. This is in contrast to the known activity of the RUNX1 transcription factor, which functions only in the generation of HSCs, and highlights the unique requirement for GATA2 function in HSCs throughout all developmental stages.
Publication
Journal: Blood
January/2/2012
Abstract
Erythropoiesis is dependent on the activity of transcription factors, including the erythroid-specific erythroid Kruppel-like factor (EKLF). ChIP followed by massively parallel sequencing (ChIP-Seq) is a powerful, unbiased method to map trans-factor occupancy. We used ChIP-Seq to study the interactome of EKLF in mouse erythroid progenitor cells and more differentiated erythroblasts. We correlated these results with the nuclear distribution of EKLF, RNA-Seq analysis of the transcriptome, and the occupancy of other erythroid transcription factors. In progenitor cells, EKLF is found predominantly at the periphery of the nucleus, where EKLF primarily occupies the promoter regions of genes and acts as a transcriptional activator. In erythroblasts, EKLF is distributed throughout the nucleus, and erythroblast-specific EKLF occupancy is predominantly in intragenic regions. In progenitor cells, EKLF modulates general cell growth and cell cycle regulatory pathways, whereas in erythroblasts EKLF is associated with repression of these pathways. The EKLF interactome shows very little overlap with the interactomes of GATA1, GATA2, or TAL1, leading to a model in which EKLF directs programs that are independent of those regulated by the GATA factors or TAL1.
Publication
Journal: Cell Research
December/17/2012
Abstract
Oncogenic mutations in RAS genes are very common in human cancer, resulting in cells with well-characterized selective advantages, but also less well-understood vulnerabilities. We have carried out a large-scale loss-of-function screen to identify genes that are required by KRAS-transformed colon cancer cells, but not by derivatives lacking this oncogene. Top-scoring genes were then tested in a larger panel of KRAS mutant and wild-type cancer cells. Cancer cells expressing oncogenic KRAS were found to be highly dependent on the transcription factor GATA2 and the DNA replication initiation regulator CDC6. Extending this analysis using a collection of drugs with known targets, we found that cancer cells with mutant KRAS showed selective addiction to proteasome function, as well as synthetic lethality with topoisomerase inhibition. Combination targeting of these functions caused improved killing of KRAS mutant cells relative to wild-type cells. These observations suggest novel targets and new ways of combining existing therapies for optimal effect in RAS mutant cancers, which are traditionally seen as being highly refractory to therapy.
Publication
Journal: Development (Cambridge)
November/18/2004
Abstract
Sympathetic neurons are specified during their development from neural crest precursors by a network of crossregulatory transcription factors, which includes Mash1, Phox2b, Hand2 and Phox2a. Here, we have studied the function of Gata2 and Gata3 zinc-finger transcription factors in autonomic neuron development. In the chick, Gata2 but not Gata3 is expressed in developing sympathetic precursor cells. Gata2 expression starts after Mash1, Phox2b, Hand2 and Phox2a expression, but before the onset of the noradrenergic marker genes Th and Dbh, and is maintained throughout development. Gata2 expression is affected in the chick embryo by Bmp gain- and loss-of-function experiments, and by overexpression of Phox2b, Phox2a, Hand2 and Mash1. Together with the lack of Gata2/3 expression in Phox2b knockout mice, these results characterize Gata2 as member of the Bmp-induced cluster of transcription factors. Loss-of-function experiments resulted in a strong reduction in the size of the sympathetic chain and in decreased Th expression. Ectopic expression of Gata2 in chick neural crest precursors elicited the generation of neurons with a non-autonomic, Th-negative phenotype. This implies a function for Gata factors in autonomic neuron differentiation, which, however, depends on co-regulators present in the sympathetic lineage. The present data establish Gata2 and Gata3 in the chick and mouse, respectively, as essential members of the transcription factor network controlling sympathetic neuron development.
Publication
Journal: Development (Cambridge)
June/10/2008
Abstract
The differentiation of embryonic stem (ES) cells offers a powerful approach to study mechanisms implicated in cell fate decision. A major hurdle, however, is to promote the directed and efficient differentiation of ES cells toward a specific lineage. Here, we define in serum-free media the minimal factor requirement controlling each step of the differentiation process, resulting in the production of highly enriched hematopoietic progenitors. Four factors - Bmp4, activin A, bFGF (Fgf2) and VEGF (VegfA) - are sufficient to drive the selective and efficient differentiation of mouse ES cells to hematopoiesis. Each of these factors appears to regulate a step of the process: Bmp4 promotes the very efficient formation of mesoderm; bFGF and activin A induce the differentiation of these mesodermal precursors to the hemangioblast fate; and VEGF is required for the production of fully committed hematopoietic progenitors. The stimulation of mesodermal precursors by bFGF and activin A switches on very rapidly the hematopoietic program, allowing us to dissect the molecular events leading to the formation of the hemangioblast. Runx1, Scl (Tal1) and Hhex expression is upregulated within 3 hours of stimulation, whereas upregulation of Lmo2 and Fli1 is observed later. Interestingly, increased expression levels of genes such as cMyb, Pu.1 (Sfpi1), Gata1 and Gata2 are not observed at the onset of hemangioblast commitment. This stepwise control of differentiation is extremely efficient, giving rise to a very high frequency of hematopoietic precursors, and provides an optimal system for understanding the molecular machineries involved in blood progenitor commitment.
Publication
Journal: European Journal of Neuroscience
February/24/2008
Abstract
The ventral spinal cord consists of interneuron groups arising from distinct, genetically defined, progenitor domains along the dorsoventral axis. Many of these interneuron groups settle in the ventral spinal cord which, in mammals, contains the central pattern generator for locomotion. In order to better understand the locomotor networks, we have used different transgenic mice for anatomical characterization of one of these interneuron groups, called V2 interneurons. Neurons in this group are either V2a interneurons marked by the postmitotic expression of the transcription factor Chx10, or V2b interneurons which express the transcription factors Gata2 and Gata3. We found that all V2a and most V2b interneurons were ipsilaterally projecting in embryos as well as in newborns. V2a interneurons were for the most part glutamatergic while V2b interneurons were mainly GABAergic or glycinergic. Furthermore, we demonstrated that a large proportion of V2 interneurons expressed the axon guidance molecule EphA4, a molecule previously shown to be important for correct organization of locomotor networks. We also showed that V2 interneurons and motor neurons alone did not account for all EphA4-expressing neurons in the spinal cord. Together, these findings enable a better interpretation of neural networks underlying locomotion, and open up the search for as yet unknown components of the mammalian central pattern generator.
Publication
Journal: Cancer Cell
June/22/2015
Abstract
Specific combinations of acute myeloid leukemia (AML) disease alleles, including FLT3 and TET2 mutations, confer distinct biologic features and adverse outcome. We generated mice with mutations in Tet2 and Flt3, which resulted in fully penetrant, lethal AML. Multipotent Tet2(-/-);Flt3(ITD) progenitors (LSK CD48(+)CD150(-)) propagate disease in secondary recipients and were refractory to standard AML chemotherapy and FLT3-targeted therapy. Flt3(ITD) mutations and Tet2 loss cooperatively remodeled DNA methylation and gene expression to an extent not seen with either mutant allele alone, including at the Gata2 locus. Re-expression of Gata2 induced differentiation in AML stem cells and attenuated leukemogenesis. TET2 and FLT3 mutations cooperatively induce AML, with a defined leukemia stem cell population characterized by site-specific changes in DNA methylation and gene expression.
Publication
Journal: Nature Medicine
November/12/2018
Abstract
We present the molecular landscape of pediatric acute myeloid leukemia (AML) and characterize nearly 1,000 participants in Children's Oncology Group (COG) AML trials. The COG-National Cancer Institute (NCI) TARGET AML initiative assessed cases by whole-genome, targeted DNA, mRNA and microRNA sequencing and CpG methylation profiling. Validated DNA variants corresponded to diverse, infrequent mutations, with fewer than 40 genes mutated in >2% of cases. In contrast, somatic structural variants, including new gene fusions and focal deletions of MBNL1, ZEB2 and ELF1, were disproportionately prevalent in young individuals as compared to adults. Conversely, mutations in DNMT3A and TP53, which were common in adults, were conspicuously absent from virtually all pediatric cases. New mutations in GATA2, FLT3 and CBL and recurrent mutations in MYC-ITD, NRAS, KRAS and WT1 were frequent in pediatric AML. Deletions, mutations and promoter DNA hypermethylation convergently impacted Wnt signaling, Polycomb repression, innate immune cell interactions and a cluster of zinc finger-encoding genes associated with KMT2A rearrangements. These results highlight the need for and facilitate the development of age-tailored targeted therapies for the treatment of pediatric AML.
Publication
Journal: Blood
March/18/2013
Abstract
Congenital neutropenia is a group of genetic disorders that involve chronic neutropenia and susceptibility to infections. These neutropenias may be isolated or associated with immunologic defects or extra-hematopoietic manifestations. Complications may occur as infectious diseases, but also less frequently as myelodysplastic syndrome (MDS) or acute myeloid leukemia (AML). Recently, the transcription factor GATA2 has been identified as a new predisposing gene for familial AML/MDS. In the present study, we describe the initial identification by exome sequencing of a GATA2 R396Q mutation in a family with a history of chronic mild neutropenia evolving to AML and/or MDS. The subsequent analysis of the French Severe Chronic Neutropenia Registry allowed the identification of 6 additional pedigrees and 10 patients with 6 different and not previously reportedGATA2 mutations (R204X, E224X, R330X, A372T, M388V, and a complete deletion of the GATA2 locus). The frequent evolution to MDS and AML in these patients reveals the importance of screening GATA2 in chronic neutropenia associated with monocytopenia because of the frequent hematopoietic transformation, variable clinical expression at onset, and the need for aggressive therapy in patients with poor clinical outcome.
CONCLUSIONS
Mutations of key transcription factor in myeloid malignancies.
load more...