Citations
All
Search in:AllTitleAbstractAuthor name
Publications
(3K+)
Patents
Grants
Pathways
Clinical trials
Publication
Journal: Nature
May/30/2001
Abstract
T-lymphocyte activation and immune function are regulated by co-stimulatory molecules. CD28, a receptor for B7 gene products, has a chief role in initiating T-cell immune responses. CTLA4, which binds B7 with a higher affinity, is induced after T-cell activation and is involved in downregulating T-cell responses. The inducible co-stimulatory molecule (ICOS), a third member of the CD28/CTLA4 family, is expressed on activated T cells. Its ligand B7H/B7RP-1 is expressed on B cells and in non-immune tissues after injection of lipopolysaccharide into animals. To understand the role of ICOS in T-cell activation and function, we generated and analysed ICOS-deficient mice. Here we show that T-cell activation and proliferation are defective in the absence of ICOS. In addition, ICOS -/- T cells fail to produce interleukin-4 when differentiated in vitro or when primed in vivo. ICOS is required for humoral immune responses after immunization with several antigens. ICOS-/- mice showed greatly enhanced susceptibility to experimental autoimmune encephalomyelitis, indicating that ICOS has a protective role in inflammatory autoimmune diseases.
Publication
Journal: Nature Reviews Drug Discovery
October/21/2015
Abstract
Targeting immune checkpoints such as programmed cell death protein 1 (PD1), programmed cell death 1 ligand 1 (PDL1) and cytotoxic T lymphocyte antigen 4 (CTLA4) has achieved noteworthy benefit in multiple cancers by blocking immunoinhibitory signals and enabling patients to produce an effective antitumour response. Inhibitors of CTLA4, PD1 or PDL1 administered as single agents have resulted in durable tumour regression in some patients, and combinations of PD1 and CTLA4 inhibitors may enhance antitumour benefit. Numerous additional immunomodulatory pathways as well as inhibitory factors expressed or secreted by myeloid and stromal cells in the tumour microenvironment are potential targets for synergizing with immune checkpoint blockade. Given the breadth of potential targets in the immune system, critical questions to address include which combinations should move forward in development and which patients will benefit from these treatments. This Review discusses the leading drug targets that are expressed on tumour cells and in the tumour microenvironment that allow enhancement of the antitumour immune response.
Publication
Journal: Annals of Oncology
November/14/2018
Abstract
UNASSIGNED
Treatment with immune checkpoint blockade (ICB) with agents such as anti-programmed cell death protein 1 (PD-1), anti-programmed death-ligand 1 (PD-L1), and/or anti-cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) can result in impressive response rates and durable disease remission but only in a subset of patients with cancer. Expression of PD-L1 has demonstrated utility in selecting patients for response to ICB and has proven to be an important biomarker for patient selection. Tumor mutation burden (TMB) is emerging as a potential biomarker. However, refinement of interpretation and contextualization is required.
UNASSIGNED
In this review, we outline the evolution of TMB as a biomarker in oncology, delineate how TMB can be applied in the clinic, discuss current limitations as a diagnostic test, and highlight mechanistic insights unveiled by the study of TMB. We review available data to date studying TMB as a biomarker for response to ICB by tumor type, focusing on studies proposing a threshold for TMB as a predictive biomarker for ICB activity.
UNASSIGNED
High TMB consistently selects for benefit with ICB therapy. In lung, bladder and head and neck cancers, the current predictive TMB thresholds proposed approximates 200 non-synonymous somatic mutations by whole exome sequencing (WES). PD-L1 expression influences response to ICB in high TMB tumors with single agent PD-(L)1 antibodies; however, response may not be dependent on PD-L1 expression in the setting of anti-CTLA4 or anti-PD-1/CTLA-4 combination therapy. Disease-specific TMB thresholds for effective prediction of response in various other malignancies are not well established.
UNASSIGNED
TMB, in concert with PD-L1 expression, has been demonstrated to be a useful biomarker for ICB selection across some cancer types; however, further prospective validation studies are required. TMB determination by selected targeted panels has been correlated with WES. Calibration and harmonization will be required for optimal utility and alignment across all platforms currently used internationally. Key challenges will need to be addressed prior to broader use in different tumor types.
Publication
Journal: Nature
August/12/2013
Abstract
The mechanistic target of rapamycin (mTOR) pathway integrates diverse environmental inputs, including immune signals and metabolic cues, to direct T-cell fate decisions. The activation of mTOR, which is the catalytic subunit of the mTORC1 and mTORC2 complexes, delivers an obligatory signal for the proper activation and differentiation of effector CD4(+) T cells, whereas in the regulatory T-cell (T(reg)) compartment, the Akt-mTOR axis is widely acknowledged as a crucial negative regulator of T(reg)-cell de novo differentiation and population expansion. However, whether mTOR signalling affects the homeostasis and function of T(reg) cells remains largely unexplored. Here we show that mTORC1 signalling is a pivotal positive determinant of T(reg)-cell function in mice. T(reg) cells have elevated steady-state mTORC1 activity compared to naive T cells. Signals through the T-cell antigen receptor (TCR) and interleukin-2 (IL-2) provide major inputs for mTORC1 activation, which in turn programs the suppressive function of T(reg) cells. Disruption of mTORC1 through Treg-specific deletion of the essential component raptor leads to a profound loss of T(reg)-cell suppressive activity in vivo and the development of a fatal early onset inflammatory disorder. Mechanistically, raptor/mTORC1 signalling in T(reg) cells promotes cholesterol and lipid metabolism, with the mevalonate pathway particularly important for coordinating T(reg)-cell proliferation and upregulation of the suppressive molecules CTLA4 and ICOS to establish Treg-cell functional competency. By contrast, mTORC1 does not directly affect the expression of Foxp3 or anti- and pro-inflammatory cytokines in T(reg) cells, suggesting a non-conventional mechanism for T(reg)-cell functional regulation. Finally, we provide evidence that mTORC1 maintains T(reg)-cell function partly through inhibiting the mTORC2 pathway. Our results demonstrate that mTORC1 acts as a fundamental 'rheostat' in T(reg) cells to link immunological signals from TCR and IL-2 to lipogenic pathways and functional fitness, and highlight a central role of metabolic programming of T(reg)-cell suppressive activity in immune homeostasis and tolerance.
Publication
Journal: Journal of immunotherapy (Hagerstown, Md. : 1997)
January/23/2008
Abstract
The inhibitory receptor CTLA4 has a key role in peripheral tolerance of T cells for both normal and tumor-associated antigens. Murine experiments suggested that blockade of CTLA4 might have antitumor activity and a clinical experience with the blocking antibody ipilimumab in patients with metastatic melanoma did show durable tumor regressions in some patients. Therefore, a phase II study of ipilimumab was conducted in patients with metastatic renal cell cancer with a primary end point of response by Response Evaluation Criteria in Solid Tumors (RECIST) criteria. Two sequential cohorts received either 3 mg/kg followed by 1 mg/kg or all doses at 3 mg/kg every 3 weeks (with no intention of comparing cohort response rates). Major toxicities were enteritis and endocrine deficiencies of presumed autoimmune origin. One of 21 patients receiving the lower dose had a partial response. Five of 40 patients at the higher dose had partial responses (95% confidence interval for cohort response rate 4% to 27%) and responses were seen in patients who had previously not responded to IL-2. Thirty-three percent of patients experienced a grade III or IV immune-mediated toxicity. There was a highly significant association between autoimmune events (AEs) and tumor regression (response rate=30% with AE, 0% without AE). CTLA4 blockade with ipilimumab induces cancer regression in some patients with metastatic clear cell renal cancer, even if they have not responded to other immunotherapies. These regressions are highly associated with other immune-mediated events of presumed autoimmune origin by mechanisms as yet undefined.
Publication
Journal: Journal of Clinical Oncology
May/27/2015
Abstract
OBJECTIVE
Modulation of immunologic interactions in cancer tissue is a promising therapeutic strategy. To investigate the immunogenicity of human epidermal growth factor receptor 2 (HER2) -positive and triple-negative (TN) breast cancers (BCs), we evaluated tumor-infiltrating lymphocytes (TILs) and immunologically relevant genes in the neoadjuvant GeparSixto trial.
METHODS
GeparSixto investigated the effect of adding carboplatin (Cb) to an anthracycline-plus-taxane combination (PM) on pathologic complete response (pCR). A total of 580 tumors were evaluated before random assignment for stromal TILs and lymphocyte-predominant BC (LPBC). mRNA expression of immune-activating (CXCL9, CCL5, CD8A, CD80, CXCL13, IGKC, CD21) as well as immunosuppressive factors (IDO1, PD-1, PD-L1, CTLA4, FOXP3) was measured in 481 tumors.
RESULTS
Increased levels of stromal TILs predicted pCR in univariable (P < .001) and multivariable analyses (P < .001). pCR rate was 59.9% in LPBC and 33.8% for non-LPBC (P < .001). pCR rates ≥ 75% were observed in patients with LPBC tumors treated with PMCb, with a significant test for interaction with therapy in the complete (P = .002) and HER2-positive (P = .006), but not the TNBC, cohorts. Hierarchic clustering of mRNA markers revealed three immune subtypes with different pCR rates (P < .001). All 12 immune mRNA markers were predictive for increased pCR. The highest odds ratios (ORs) were observed for PD-L1 (OR, 1.57; 95% CI, 1.34 to 1.86; P < .001) and CCL5 (OR, 1.41; 95% CI, 1.23 to 1.62; P < .001).
CONCLUSIONS
Immunologic factors were highly significant predictors of therapy response in the GeparSixto trial, particularly in patients treated with Cb. After further standardization, they could be included in histopathologic assessment of BC.
Publication
Journal: New England Journal of Medicine
June/16/2009
Abstract
BACKGROUND
Primary biliary cirrhosis is a chronic granulomatous cholangitis, characteristically associated with antimitochondrial antibodies. Twin and family aggregation data suggest that there is a significant genetic predisposition to primary biliary cirrhosis, but the susceptibility loci are unknown.
METHODS
To identify genetic loci conferring a risk for primary biliary cirrhosis, we carried out a genomewide association analysis in which DNA samples from 2072 Canadian and U.S. subjects (536 patients with primary biliary cirrhosis and 1536 controls) were genotyped for more than 300,000 single-nucleotide polymorphisms (SNPs). Sixteen of the SNPs most strongly associated with primary biliary cirrhosis were genotyped in two independent replication sets. We carried out fine-mapping studies across three loci associated with primary biliary cirrhosis.
RESULTS
We found significant associations between primary biliary cirrhosis and 13 loci across the HLA class II region; the HLA-DQB1 locus (encoding the major histocompatibility complex class II, DQ beta chain 1) had the strongest association (P=1.78x10(-19); odds ratio for patients vs. controls, 1.75). Primary biliary cirrhosis was also significantly and reproducibly associated with two SNPs at the IL12A locus (encoding interleukin-12alpha), rs6441286 (P=2.42x10(-14); odds ratio, 1.54) and rs574808 (P=1.88x10(-13); odds ratio, 1.54), and one SNP at the IL12RB2 locus (encoding interleukin-12 receptor beta2), rs3790567 (P=2.76x10(-11); odds ratio, 1.51). Fine-mapping analysis showed that a five-allele haplotype in the 3' flank of IL12A was significantly associated with primary biliary cirrhosis (P=1.15x10(-34)). We found a modest genomewide association (P<5.0x10(-5)) with the risk of disease for SNPs at the STAT4 locus (encoding signal transducer and activator of transcription 4) and the CTLA4 locus (encoding cytotoxic T-lymphocyte-associated protein 4) and 10 other loci.
CONCLUSIONS
Our data show significant associations between primary biliary cirrhosis and common genetic variants at the HLA class II, IL12A, and IL12RB2 loci and suggest that the interleukin-12 immunoregulatory signaling axis is relevant to the pathophysiology of primary biliary cirrhosis. (ClinicalTrials.gov number, NCT00242125.)
Publication
Journal: Nature
September/7/2005
Abstract
Hassall's corpuscles-first described in the human thymus over 150 years ago-are groups of epithelial cells within the thymic medulla. The physical nature of these structures differs between mammalian species. Although Hassall's corpuscles have been proposed to act in both the removal of apoptotic thymocytes and the maturation of developing thymocytes within the thymus, the function of Hassall's corpuscles has remained an enigma. Here we report that human Hassall's corpuscles express thymic stromal lymphopoietin (TSLP). Human TSLP activates thymic CD11c-positive dendritic cells to express high levels of CD80 and CD86. These TSLP-conditioned dendritic cells are then able to induce the proliferation and differentiation of CD4(+)CD8(-)CD25(-) thymic T cells into CD4(+)CD25(+)FOXP3(+) (forkhead box P3) regulatory T cells. This induction depends on peptide-major histocompatibility complex class II interactions, and the presence of CD80 and CD86, as well as interleukin 2. Immunohistochemistry studies reveal that CD25(+)CTLA4(+) (cytotoxic T-lymphocyte-associated protein 4) regulatory T cells associate in the thymic medulla with activated or mature dendritic cells and TSLP-expressing Hassall's corpuscles. These findings suggest that Hassall's corpuscles have a critical role in dendritic-cell-mediated secondary positive selection of medium-to-high affinity self-reactive T cells, leading to the generation of CD4(+)CD25(+) regulatory T cells within the thymus.
Publication
Journal: Cancer Research
May/12/2009
Abstract
In tumor-bearing hosts, myeloid-derived suppressor cells (MDSC) and T regulatory cells (Treg) play important roles in immune suppression, the reversal of which is vitally important for the success of immune therapy. We have shown that ckit ligand is required for MDSC accumulation and Treg development. We hypothesized that sunitinib malate, a receptor tyrosine kinase inhibitor, could reverse MDSC-mediated immune suppression and modulate the tumor microenvironment, thereby improving the efficacy of immune-based therapies. Treatment with sunitinib decreased the number of MDSC and Treg in advanced tumor-bearing animals. Furthermore, it not only reduced the suppressive function of MDSCs but also prevented tumor-specific T-cell anergy and Treg development. Interestingly, sunitinib treatment resulted in reduced expression of interleukin (IL)-10, transforming growth factor-beta, and Foxp3 but enhanced expression of Th1 cytokine IFN-gamma and increased CTL responses in isolated tumor-infiltrating leukocytes. A significantly higher percentage and infiltration of CD8 and CD4 cells was detected in tumors of sunitinib-treated mice when compared with control-treated mice. More importantly, the expression of negative costimulatory molecules CTLA4 and PD-1 in both CD4 and CD8 T cells, and PDL-1 expression on MDSC and plasmacytoid dendritic cells, was also significantly decreased by sunitinib treatment. Finally, sunitinib in combination with our immune therapy protocol (IL-12 and 4-1BB activation) significantly improves the long-term survival rate of large tumor-bearing mice. These data suggest that sunitinib can be used to reverse immune suppression and as a potentially useful adjunct for enhancing the efficacy of immune-based cancer therapy for advanced malignancies.
Publication
Journal: American Journal of Human Genetics
January/29/2006
Abstract
Candidate-gene association studies in rheumatoid arthritis (RA) have lead to encouraging yet apparently inconsistent results. One explanation for the inconsistency is insufficient power to detect modest effects in the context of a low prior probability of a true effect. To overcome this limitation, we selected alleles with an increased probability of a disease association, on the basis of a review of the literature on RA and other autoimmune diseases, and tested them for association with RA susceptibility in a sample collection powered to detect modest genetic effects. We tested 17 alleles from 14 genes in 2,370 RA cases and 1,757 controls from the North American Rheumatoid Arthritis Consortium (NARAC) and the Swedish Epidemiological Investigation of Rheumatoid Arthritis (EIRA) collections. We found strong evidence of an association of PTPN22 with the development of anti-citrulline antibody-positive RA (odds ratio [OR] 1.49; P=.00002), using previously untested EIRA samples. We provide support for an association of CTLA4 (CT60 allele, OR 1.23; P=.001) and PADI4 (PADI4_94, OR 1.24; P=.001) with the development of RA, but only in the NARAC cohort. The CTLA4 association is stronger in patients with RA from both cohorts who are seropositive for anti-citrulline antibodies (P=.0006). Exploration of our data set with clinically relevant subsets of RA reveals that PTPN22 is associated with an earlier age at disease onset (P=.004) and that PTPN22 has a stronger effect in males than in females (P=.03). A meta-analysis failed to demonstrate an association of the remaining alleles with RA susceptibility, suggesting that the previously published associations may represent false-positive results. Given the strong statistical power to replicate a true-positive association in this study, our results provide support for PTPN22, CTLA4, and PADI4 as RA susceptibility genes and demonstrate novel associations with clinically relevant subsets of RA.
Publication
Journal: Nature Reviews Immunology
January/12/2012
Abstract
The T cell protein cytotoxic T lymphocyte antigen 4 (CTLA4) was identified as a crucial negative regulator of the immune system over 15 years ago, but its mechanisms of action are still under debate. It has long been suggested that CTLA4 transmits an inhibitory signal to the cells that express it. However, not all the available data fit with a cell-intrinsic function for CTLA4, and other studies have suggested that CTLA4 functions in a T cell-extrinsic manner. Here, we discuss the data for and against the T cell-intrinsic and -extrinsic functions of CTLA4.
Publication
Journal: American Journal of Transplantation
June/1/2005
Abstract
Current success in organ transplantation is dependent upon the use of calcineurin-inhibitor-based immunosuppressive regimens. Unfortunately, current immunotherapy targets molecules with ubiquitous expression resulting in devastating non-immune side effects. T-cell costimulation has been identified as a new potential immunosuppressive target. The best characterized pathway includes CD28, its homologue CTLA4 and their ligands CD80 and CD86. While an immunoglobulin fusion protein construct of CTLA4 suppressed rejection in rodents, it lacked efficacy in primate transplant models. In an attempt to increase the biologic potency of the parent molecule a novel, modified version of CTLA4-Ig, LEA29Y (belatacept), was constructed. Two amino acid substitutions (L104E and A29Y) gave rise to slower dissociation rates for both CD86 and CD80. The increased avidity resulted in a 10-fold increase in potency in vitro and significant prolongation of renal allograft survival in a pre-clinical primate model. The use of immunoselective biologics may provide effective maintenance immunosuppression while avoiding the collateral toxicities associated with conventional immunsuppressants.
Publication
Journal: Journal of Clinical Oncology
June/6/2006
Abstract
OBJECTIVE
Cytotoxic T-lymphocyte-associated antigen 4 (CTLA4) is an inhibitory receptor on T cells. Knocking out CTLA4 in mice causes lethal lymphoproliferation, and polymorphisms in human CTLA4 are associated with autoimmune disease. Trials of the anti-CTLA4 antibody ipilimumab (MDX-010) have resulted in durable cancer regression and immune-mediated toxicities. A report on the diagnosis, pathology, treatment, clinical outcome, and significance of the immune-mediated enterocolitis seen with ipilimumab is presented.
METHODS
We treated 198 patients with metastatic melanoma (MM) or renal cell carcinoma (RCC) with ipilimumab.
RESULTS
The overall objective tumor response rate was 14%. We observed several immune mediated toxicities including dermatitis, enterocolitis, hypophysitis, uveitis, hepatitis, and nephritis. Enterocolitis, defined by grade 3/4 clinical presentation and/or biopsy documentation, was the most common major toxicity (21% of patients). It presented with diarrhea, and biopsies showed both neutrophilic and lymphocytic inflammation. Most patients who developed enterocolitis responded to high-dose systemic corticosteroids. There was no evidence that steroid administration affected tumor responses. Five patients developed perforation or required colectomy. Four other patients with steroid-refractory enterocolitis appeared to respond promptly to tumor necrosis factor alpha blockade with infliximab. Objective tumor response rates in patients with enterocolitis were 36% for MM and 35% for RCC, compared with 11% and 2% in patients without enterocolitis, respectively (P = .0065 for MM and P = .0016 for RCC).
CONCLUSIONS
CTLA4 seems to be a significant component of tolerance to tumor and in protection against immune mediated enterocolitis and these phenomena are significantly associated in cancer patients.
Publication
Journal: Science
October/22/2014
Abstract
Cytotoxic T lymphocyte antigen-4 (CTLA-4) is an inhibitory receptor found on immune cells. The consequences of mutations in CTLA4 in humans are unknown. We identified germline heterozygous mutations in CTLA4 in subjects with severe immune dysregulation from four unrelated families. Whereas Ctla4 heterozygous mice have no obvious phenotype, human CTLA4 haploinsufficiency caused dysregulation of FoxP3(+) regulatory T (Treg) cells, hyperactivation of effector T cells, and lymphocytic infiltration of target organs. Patients also exhibited progressive loss of circulating B cells, associated with an increase of predominantly autoreactive CD21(lo) B cells and accumulation of B cells in nonlymphoid organs. Inherited human CTLA4 haploinsufficiency demonstrates a critical quantitative role for CTLA-4 in governing T and B lymphocyte homeostasis.
Pulse
Views:
3
Posts:
No posts
Rating:
Not rated
Publication
Journal: Nature
December/1/1993
Abstract
The membrane antigen B7/BB1 (refs 1, 2) is expressed on activated B cells, macrophages and dendritic cells, and binds to a counter-receptor, CD28, expressed on T lymphocytes and thymocytes. Interaction between CD28 and B7 results in potent costimulation of T-cell activation initiated through the CD3/T-cell receptor complex. Discrepancies between results with anti-CD28 and anti-B7 antibodies have suggested the existence of a second ligand for CD28 and CTLA-4 (refs 3, 6-8). We have generated a monoclonal antibody, IT2, that reacts with a 70K glycoprotein (B70). B70 complementary DNA was cloned from a B-lymphoblastoid cell line library and encodes a new protein of the immunoglobulin superfamily with limited homology to B7. B70 is expressed on resting monocytes and dendritic cells and on activated, but not resting, T, NK and B lymphocytes. IT2 substantially inhibited the binding of a CTLA4-immunoglobulin fusion protein to human B-lymphoblastoid cell lines and, together with anti-B7 antibody, completely blocked CTLA-4 binding. Further IT2 efficiently inhibited primary allogeneic mixed lymphocyte responses. These findings indicate that B70 is a second ligand for CD28 and CTLA-4 and may play an important role for costimulation of T cells in a primary immune response.
Publication
Journal: Genome Research
December/27/2014
Abstract
Somatic missense mutations can initiate tumorogenesis and, conversely, anti-tumor cytotoxic T cell (CTL) responses. Tumor genome analysis has revealed extreme heterogeneity among tumor missense mutation profiles, but their relevance to tumor immunology and patient outcomes has awaited comprehensive evaluation. Here, for 515 patients from six tumor sites, we used RNA-seq data from The Cancer Genome Atlas to identify mutations that are predicted to be immunogenic in that they yielded mutational epitopes presented by the MHC proteins encoded by each patient's autologous HLA-A alleles. Mutational epitopes were associated with increased patient survival. Moreover, the corresponding tumors had higher CTL content, inferred from CD8A gene expression, and elevated expression of the CTL exhaustion markers PDCD1 and CTLA4. Mutational epitopes were very scarce in tumors without evidence of CTL infiltration. These findings suggest that the abundance of predicted immunogenic mutations may be useful for identifying patients likely to benefit from checkpoint blockade and related immunotherapies.
Publication
Journal: Nature Medicine
February/9/2015
Abstract
The protein cytotoxic T lymphocyte antigen-4 (CTLA-4) is an essential negative regulator of immune responses, and its loss causes fatal autoimmunity in mice. We studied a large family in which five individuals presented with a complex, autosomal dominant immune dysregulation syndrome characterized by hypogammaglobulinemia, recurrent infections and multiple autoimmune clinical features. We identified a heterozygous nonsense mutation in exon 1 of CTLA4. Screening of 71 unrelated patients with comparable clinical phenotypes identified five additional families (nine individuals) with previously undescribed splice site and missense mutations in CTLA4. Clinical penetrance was incomplete (eight adults of a total of 19 genetically proven CTLA4 mutation carriers were considered unaffected). However, CTLA-4 protein expression was decreased in regulatory T cells (Treg cells) in both patients and carriers with CTLA4 mutations. Whereas Treg cells were generally present at elevated numbers in these individuals, their suppressive function, CTLA-4 ligand binding and transendocytosis of CD80 were impaired. Mutations in CTLA4 were also associated with decreased circulating B cell numbers. Taken together, mutations in CTLA4 resulting in CTLA-4 haploinsufficiency or impaired ligand binding result in disrupted T and B cell homeostasis and a complex immune dysregulation syndrome.
Publication
Journal: Haematologica
May/24/2006
Abstract
OBJECTIVE
Experimental evidence and preliminary clinical studies have demonstrated that human mesenchymal stem cells (MSC) have an important immune modulatory function in the setting of allogeneic hematopoietic stem cell (HSC) transplantation. We extended the evaluation of mechanisms responsible for the immune regulatory effect derived from the interaction of human MSC with cells involved in alloantigen-specific immune response in mixed lymphocyte culture (MLC).
METHODS
Dendritic cell (DC) differentiation, T- and natural killer (NK)-lymphocyte expansion, alloantigen-specific cytotoxic activity and differentiation of CD4+ T-cell subsets co-expressing CD25 and/or CTLA4 molecules were assessed, comparing the effect observed using third-party MSC with that obtained employing MSC autologous to the MLC responder.
RESULTS
We found that human MSC strongly inhibit alloantigen-induced DC1 differentiation, down-regulate alloantigen-induced lymphocyte expansion, especially that of CD8+ T cells and of NK lymphocytes, decrease alloantigen-specific cytotoxic capacity mediated by either cytotoxic T lymphocytes or NK cells and favor the differentiation of CD4+ T-cell subsets co-expressing CD25 and/or CTLA4. More effective suppressive activity on MLC-induced T-cell activation was observed when MSC were third-party, rather than autologous, with respect to MLC-responder cells.
CONCLUSIONS
Our results strongly suggest that MSC-mediated inhibition of alloantigen-induced DC1 differentiation and preferential activation of CD4+ CD25+ T-cell subsets with presumed regulatory activity represent important mechanisms contributing to the immunosuppressive activity of MSC. Collectively, these data provide immunological support for the use of MSC to prevent immune complications related to both HSC and solid organ transplantation and to the theory that MSC are universal suppressors of immune reactivity.
Publication
Journal: Annals of Oncology
June/19/2013
Abstract
BACKGROUND
Ipilimumab, an anti-CTLA4 monoclonal antibody, demonstrated survival benefit in melanoma with immune-related (ir) adverse events (irAEs) managed by the protocol-defined guidelines. This phase 2 study evaluated ipilimumab+paclitaxel (Taxol)/carboplatin in extensive-disease-small-cell lung cancer (ED-SCLC).
METHODS
Patients (n=130) with chemotherapy-naïve ED-SCLC were randomized 1: 1: 1 to receive paclitaxel (175 mg/m2)/carboplatin (area under the curve=6) with either placebo (control) or ipilimumab 10 mg/kg in two alternative regimens, concurrent ipilimumab (ipilimumab+paclitaxel/carboplatin followed by placebo+paclitaxel/carboplatin) or phased ipilimumab (placebo+paclitaxel/carboplatin followed by ipilimumab+paclitaxel/carboplatin). Treatment was administered every 3 weeks for a maximum of 18 weeks (induction), followed by maintenance ipilimumab or placebo every 12 weeks. End points included progression-free survival (PFS), irPFS, best overall response rate (BORR); irBORR, overall survival (OS), and safety.
RESULTS
Phased ipilimumab, but not concurrent ipilimumab, improved irPFS versus control [HR (hazard ratio)=0.64; P=0.03]. No improvement in PFS (HR=0.93; P=0.37) or OS (HR=0.75; P=0.13) occurred. Phased ipilimumab, concurrent ipilimumab and control, respectively, were associated with median irPFS of 6.4, 5.7 and 5.3 months; median PFS of 5.2, 3.9 and 5.2 months; median OS of 12.9, 9.1 and 9.9 months. Overall rates of grade 3/4 irAEs were 17, 21 and 9% for phased ipilimumab, concurrent ipilimumab and control, respectively.
CONCLUSIONS
These results suggest further investigation of ipilimumab in ED-SCLC.
Publication
Journal: Immunity
May/8/2011
Abstract
Foxo transcription factors integrate extrinsic signals to regulate cell division, differentiation and survival, and specific functions of lymphoid and myeloid cells. Here, we showed the absence of Foxo1 severely curtailed the development of Foxp3(+) regulatory T (Treg) cells and those that developed were nonfunctional in vivo. The loss of function included diminished CTLA-4 receptor expression as the Ctla4 gene was a direct target of Foxo1. T cell-specific loss of Foxo1 resulted in exocrine pancreatitis, hind limb paralysis, multiorgan lymphocyte infiltration, anti-nuclear antibodies and expanded germinal centers. Foxo-mediated control over Treg cell specification was further revealed by the inability of TGF-β cytokine to suppress T-bet transcription factor in the absence of Foxo1, resulting in IFN-γ secretion. In addition, the absence of Foxo3 exacerbated the effects of the loss of Foxo1. Thus, Foxo transcription factors guide the contingencies of T cell differentiation and the specific functions of effector cell populations.
Publication
Journal: Proceedings of the National Academy of Sciences of the United States of America
September/7/1997
Abstract
Selective inhibition of T cell costimulation using the B7-specific fusion protein CTLA4-Ig has been shown to induce long-term allograft survival in rodents. Antibodies preventing the interaction between CD40 and its T cell-based ligand CD154 (CD40L) have been shown in rodents to act synergistically with CTLA4-Ig. It has thus been hypothesized that these agents might be capable of inducing long-term acceptance of allografted tissues in primates. To test this hypothesis in a relevant preclinical model, CTLA4-Ig and the CD40L-specific monoclonal antibody 5C8 were tested in rhesus monkeys. Both agents effectively inhibited rhesus mixed lymphocyte reactions, but the combination was 100 times more effective than either drug alone. Renal allografts were transplanted into nephectomized rhesus monkeys shown to be disparate at major histocompatibility complex class I and class II loci. Control animals rejected in 5-8 days. Brief induction doses of CTLA4-Ig or 5C8 alone significantly prolonged rejection-free survival (20-98 days). Two of four animals treated with both agents experienced extended (>150 days) rejection-free allograft survival. Two animals treated with 5C8 alone and one animal treated with both 5C8 and CTLA4-Ig experienced late, biopsy-proven rejection, but a repeat course of their induction regimen successfully restored normal graft function. Neither drug affected peripheral T cell or B cell counts. There were no clinically evident side effects or rejections during treatment. We conclude that CTLA4-Ig and 5C8 can both prevent and reverse acute allograft rejection, significantly prolonging the survival of major histocompatibility complex-mismatched renal allografts in primates without the need for chronic immunosuppression.
Publication
Journal: Journal of Pharmacology and Experimental Therapeutics
January/17/2008
Abstract
A number of recent studies testify that calcitriol alone or in combination with corticosteroids exerts strong immune modulatory activity. As a new approach, we evaluated the protolerogenic potential of calcitriol and dexamethasone in acute T helper (Th)1-mediated colitis in mice. A rectal enema of trinitrobenzene sulfonic acid (TNBS) (100 mg/kg) was applied to BALB/c mice. Calcitriol and/or dexamethasone were administered i.p. from days 0 to 3 or 3 to 5 following the instillation of the haptenating agent. Assessment of colitis severity was performed daily. Colon tissue was analyzed macroscopically and microscopically, and myeloperoxidase activity, as well as cytokine levels [tumor necrosis factor-alpha, interferon-gamma, interleukin (IL)-12p70, IL-1beta, IL-10, IL-4] were determined by enzyme-linked immunosorbent assay, T-bet, GATA family of transcription factors 3, a Th2 master regulator (GATA3), Foxp3, cytotoxic T-lymphocyte-associated antigen 4 (CTLA4), IL-23p19 and IL-17 expression by immunoblot analysis. The combination of the steroids most effectively reduced the clinical and histopathologic severity of TNBS colitis. Th1-related parameters were down-regulated, whereas Th2 markers like IL-4 and GATA3 were up-regulated. Apart from known steroid effects, calcitriol in particular promoted regulatory T cell profiles as indicated by a marked increase of IL-10, TGFbeta, FoxP3, and CTLA4. Furthermore, analysis of dendritic cell mediators responsible for a proinflammatory differentiation of T cells revealed a significant reduction of IL-12p70 and IL23p19 as well as IL-6 and IL-17. Thus, our data support a rationale for a steroid-sparing, clinical application of calcitriol derivatives in inflammatory bowel disease. Furthermore they suggest that early markers of inflammatory dendritic cell and Th17 differentiation qualify as new target molecules for both calcitriol and highly selective immune-modulating vitamin D analogs.
Publication
Journal: Cancer immunology research
July/22/2015
Abstract
Ipilimumab improves survival in advanced melanoma and can induce immune-mediated tumor vasculopathy. Besides promoting angiogenesis, vascular endothelial growth factor (VEGF) suppresses dendritic cell maturation and modulates lymphocyte endothelial trafficking. This study investigated the combination of CTLA4 blockade with ipilimumab and VEGF inhibition with bevacizumab. Patients with metastatic melanoma were treated in four dosing cohorts of ipilimumab (3 or 10 mg/kg) with four doses at 3-week intervals and then every 12 weeks, and bevacizumab (7.5 or 15 mg/kg) every 3 weeks. Forty-six patients were treated. Inflammatory events included giant cell arteritis (n = 1), hepatitis (n = 2), and uveitis (n = 2). On-treatment tumor biopsies revealed activated vessel endothelium with extensive CD8(+) and macrophage cell infiltration. Peripheral blood analyses demonstrated increases in CCR7(+/-)/CD45RO(+) cells and anti-galectin antibodies. Best overall response included 8 partial responses, 22 instances of stable disease, and a disease-control rate of 67.4%. Median survival was 25.1 months. Bevacizumab influences changes in tumor vasculature and immune responses with ipilimumab administration. The combination of bevacizumab and ipilimumab can be safely administered and reveals VEGF-A blockade influences on inflammation, lymphocyte trafficking, and immune regulation. These findings provide a basis for further investigating the dual roles of angiogenic factors in blood vessel formation and immune regulation, as well as future combinations of antiangiogenesis agents and immune checkpoint blockade.
Pulse
Views:
1
Posts:
No posts
Rating:
Not rated
Publication
Journal: Nature Genetics
July/16/2009
Abstract
We conducted a genome-wide association study of rheumatoid arthritis in 2,418 cases and 4,504 controls from North America and identified an association at the REL locus, encoding c-Rel, on chromosome 2p13 (rs13031237, P = 6.01 x 10(-10)). Replication in independent case-control datasets comprising 2,604 cases and 2,882 controls confirmed this association, yielding an allelic OR = 1.25 (P = 3.08 x 10(-14)) for marker rs13031237 and an allelic OR = 1.21 (P = 2.60 x 10(-11)) for marker rs13017599 in the combined dataset. The combined dataset also provides definitive support for associations at both CTLA4 (rs231735; OR = 0.85; P = 6.25 x 10(-9)) and BLK (rs2736340; OR = 1.19; P = 5.69 x 10(-9)). c-Rel is an NF-kappaB family member with distinct functional properties in hematopoietic cells, and its association with rheumatoid arthritis suggests disease pathways that involve other recently identified rheumatoid arthritis susceptibility genes including CD40, TRAF1, TNFAIP3 and PRKCQ.
load more...