Citations
All
Search in:AllTitleAbstractAuthor name
Publications
(3K+)
Patents
Grants
Pathways
Clinical trials
Publication
Journal: Current Cancer Drug Targets
August/11/2014
Abstract
Epithelial-mesenchymal transition (EMT) is a highly conserved process in which polarized, immobile epithelial cells lose tight junctions, associated adherence, and become migratory mesenchymal cells. Several transcription factors, including the Snail/Slug family, Twist, δEF1/ZEB1, SIP1/ZEB2 and E12/E47 respond to microenvironmental stimuli and function as molecular switches for the EMT program. Snail is a zinc-finger transcriptional repressor controlling EMT during embryogenesis and tumor progression. Through its N-terminal SNAG domain, Snail interacts with several corepressors and epigenetic remodeling complexes to repress specific target genes, such as the E-cadherin gene (CDH1). An integrated and complex signaling network, including the RTKs, TGF-β, Notch, Wnt, TNF-α, and BMPs pathways, activates Snail, thereby inducing EMT. Snail expression correlates with the tumor grade, nodal metastasis of many types of tumor and predicts a poor outcome in patients with metastatic cancer. Emerging evidences indicate that Snail causes a metabolic reprogramming, bestows tumor cells with cancer stem cell-like traits, and additionally, promotes drug resistance, tumor recurrence and metastasis. Despite many new and exciting developments, several challenges remain to be addressed in order to understand more thoroughly the role of Snail in metastasis. Additional investigations are required to disclose the contribution of microenvironmental factors on tumor progression. This information will lead to a comprehensive understanding of Snail in cancer and will provide us with novel approaches for preventing and treating metastatic cancers.
Publication
Journal: Cancer Cell
February/13/2012
Abstract
Members of sirtuin family regulate multiple critical biological processes, yet their role in carcinogenesis remains controversial. To investigate the physiological functions of SIRT2 in development and tumorigenesis, we disrupted Sirt2 in mice. We demonstrated that SIRT2 regulates the anaphase-promoting complex/cyclosome activity through deacetylation of its coactivators, APC(CDH1) and CDC20. SIRT2 deficiency caused increased levels of mitotic regulators, including Aurora-A and -B that direct centrosome amplification, aneuploidy, and mitotic cell death. Sirt2-deficient mice develop gender-specific tumorigenesis, with females primarily developing mammary tumors, and males developing more hepatocellular carcinoma (HCC). Human breast cancers and HCC samples exhibited reduced SIRT2 levels compared with normal tissues. These data demonstrate that SIRT2 is a tumor suppressor through its role in regulating mitosis and genome integrity.
Publication
Journal: Journal of Cell Biology
May/20/2001
Abstract
Cyclin A is a stable protein in S and G2 phases, but is destabilized when cells enter mitosis and is almost completely degraded before the metaphase to anaphase transition. Microinjection of antibodies against subunits of the anaphase-promoting complex/cyclosome (APC/C) or against human Cdc20 (fizzy) arrested cells at metaphase and stabilized both cyclins A and B1. Cyclin A was efficiently polyubiquitylated by Cdc20 or Cdh1-activated APC/C in vitro, but in contrast to cyclin B1, the proteolysis of cyclin A was not delayed by the spindle assembly checkpoint. The degradation of cyclin B1 was accelerated by inhibition of the spindle assembly checkpoint. These data suggest that the APC/C is activated as cells enter mitosis and immediately targets cyclin A for degradation, whereas the spindle assembly checkpoint delays the degradation of cyclin B1 until the metaphase to anaphase transition. The "destruction box" (D-box) of cyclin A is 10-20 residues longer than that of cyclin B. Overexpression of wild-type cyclin A delayed the metaphase to anaphase transition, whereas expression of cyclin A mutants lacking a D-box arrested cells in anaphase.
Pulse
Views:
1
Posts:
No posts
Rating:
Not rated
Publication
Journal: Molecular and Cellular Biology
August/11/2008
Abstract
The transcriptional factor Snail1 is a repressor of E-cadherin (CDH1) gene expression essential for triggering epithelial-mesenchymal transition. Snail1 represses CDH1, directly binding its promoter and inducing the synthesis of the Zeb1 repressor. In this article, we show that repression of CDH1 by Snail1, but not by Zeb1, is dependent on the activity of Polycomb repressive complex 2 (PRC2). Embryonic stem (ES) cells null for Suz12, one of the components of PRC2, show higher levels of Cdh1 mRNA than control ES cells. In tumor cells, interference of PRC2 activity prevents the ability of Snail1 to downregulate CDH1 and partially derepresses CDH1. Chromatin immunoprecipitation assays demonstrated that Snail1 increases the binding of Suz12 to the CDH1 promoter and the trimethylation of lysine 27 in histone H3. Moreover, Snail1 interacts with Suz12 and Ezh2, as shown by coimmunoprecipitation experiments. In conclusion, these results demonstrate that Snail1 recruits PRC2 to the CDH1 promoter and requires the activity of this complex to repress E-cadherin expression.
Publication
Journal: Cancer Research
May/9/2001
Abstract
Esophageal adenocarcinoma (EAC) arises after normal squamous mucosa undergoes metaplasia to specialized columnar epithelium (intestinal metaplasia or Barrett's esophagus), which can then ultimately progress to dysplasia and subsequent malignancy. Epigenetic studies of this model have thus far been limited to the DNA methylation analysis of a few genes. In this study, we analyzed a panel of 20 genes using a quantitative, high-throughput methylation assay, METHYLIGHT: We used this broader approach to gain insight into concordant methylation behavior between genes and to generate epigenomic fingerprints for the different histological stages of EAC. Our study included a total of 104 tissue specimens from 51 patients with different stages of Barrett's esophagus and/or associated adenocarcinoma. We screened 84 of these samples with the full panel of 20 genes and found distinct classes of methylation patterns in the different types of tissue. The most informative genes were those with an intermediate frequency of significant hypermethylation [ranging from 15% (CDKN2A) to 60% (MGMT) of the samples]. This group could be further subdivided into three classes, according to the absence (CDKN2A, ESR1, and MYOD1) or presence (CALCA, MGMT, and TIMP3) of methylation in normal esophageal mucosa and stomach, or the infrequent methylation of normal esophageal mucosa accompanied by methylation in all normal stomach samples (APC). The other genes were less informative, because the frequency of hypermethylation was below 5% (ARF, CDH1, CDKN2B, GSTP1, MLH1, PTGS2, and THBS1), completely absent (CTNNB1, RB1, TGFBR2, and TYMS1), or ubiquitous (HIC1 and MTHFR), regardless of tissue type. Each class undergoes unique epigenetic changes at different steps of disease progression of EAC, suggesting a step-wise loss of multiple protective barriers against CpG island hypermethylation. The aberrant hypermethylation occurs at many different loci in the same tissues, suggestive of an overall deregulation of methylation control in EAC tumorigenesis. However, we did not find evidence for a distinct group of tumors with a CpG island methylator phenotype. Finally, we found that normal and metaplastic tissues from patients with evidence of associated dysplasia or cancer had a significantly higher incidence of hypermethylation than similar tissues from patients with no further progression of their disease. The fact that the samples from these two groups of patients were histologically indistinguishable, yet molecularly distinct, suggests that the occurrence of such hypermethylation may provide a clinical tool to identify patients with premalignant Barrett's who are at risk for further progression.
Publication
Journal: Cancer Research
April/7/2004
Abstract
Aberrant DNA methylation patterns may be the earliest somatic genome changes in prostate cancer. Using real-time methylation-specific PCR, we assessed the extent of hypermethylation at 16 CpG islands in DNA from seven prostate cancer cell lines (LNCaP, PC-3, DU-145, LAPC-4, CWR22Rv1, VCaP, and C42B), normal prostate epithelial cells, normal prostate stromal cells, 73 primary prostate cancers, 91 metastatic prostate cancers, and 25 noncancerous prostate tissues. We found that CpG islands at GSTP1, APC, RASSF1a, PTGS2, and MDR1 were hypermethylated in >85% of prostate cancers and cancer cell lines but not in normal prostate cells and tissues; CpG islands at EDNRB, ESR1, CDKN2a, and hMLH1 exhibited low to moderate rates of hypermethylation in prostate cancer tissues and cancer cell lines but were entirely unmethylated in normal tissues; and CpG islands at DAPK1, TIMP3, MGMT, CDKN2b, p14/ARF, and CDH1 were not abnormally hypermethylated in prostate cancers. Receiver operator characteristic curve analyses suggested that CpG island hypermethylation changes at GSTP1, APC, RASSF1a, PTGS2, and MDR1 in various combinations can distinguish primary prostate cancer from benign prostate tissues with sensitivities of 97.3-100% and specificities of 92-100%. Hypermethylation of the CpG island at EDNRB was correlated with the grade and stage of the primary prostate cancers. PTGS2 CpG island hypermethylation portended an increased risk of recurrence. Furthermore, CpG island hypermethylation patterns in prostate cancer metastases were very similar to the primary prostate cancers and tended to show greater differences between cases than between anatomical sites of metastasis.
Publication
Journal: Science
March/1/2004
Abstract
The anaphase-promoting complex (APC) is highly expressed in postmitotic neurons, but its function in the nervous system was previously unknown. We report that the inhibition of Cdh1-APC in primary neurons specifically enhanced axonal growth. Cdh1 knockdown in cerebellar slice overlay assays and in the developing rat cerebellum in vivo revealed cell-autonomous abnormalities in layer-specific growth of granule neuron axons and parallel fiber patterning. Cdh1 RNA interference in neurons was also found to override the inhibitory influence of myelin on axonal growth. Thus, Cdh1-APC appears to play a role in regulating axonal growth and patterning in the developing brain that may also limit the growth of injured axons in the adult brain.
Publication
Journal: Cell
February/13/2011
Abstract
PTEN is a frequently mutated tumor suppressor gene that opposes the PI3K/AKT pathway through dephosphorylation of phosphoinositide-3,4,5-triphosphate. Recently, nuclear compartmentalization of PTEN was found as a key component of its tumor-suppressive activity; however its nuclear function remains poorly defined. Here we show that nuclear PTEN interacts with APC/C, promotes APC/C association with CDH1, and thereby enhances the tumor-suppressive activity of the APC-CDH1 complex. We find that nuclear exclusion but not phosphatase inactivation of PTEN impairs APC-CDH1. This nuclear function of PTEN provides a straightforward mechanistic explanation for the fail-safe cellular senescence response elicited by acute PTEN loss and the tumor-suppressive activity of catalytically inactive PTEN. Importantly, we demonstrate that PTEN mutant and PTEN null states are not synonymous as they are differentially sensitive to pharmacological inhibition of APC-CDH1 targets such as PLK1 and Aurora kinases. This finding identifies a strategy for cancer patient stratification and, thus, optimization of targeted therapies. PAPERCLIP:
Publication
Journal: Nature
March/8/2005
Abstract
Cell-cycle events are controlled by cyclin-dependent kinases (CDKs), whose periodic activation is driven by cyclins. Different cyclins promote distinct cell-cycle events, but the molecular basis for these differences remains unclear. Here we compare the specificity of two budding yeast cyclins, the S-phase cyclin Clb5 and the M-phase cyclin Clb2, in the phosphorylation of 150 Cdk1 (Cdc28) substrates. About 24% of these proteins were phosphorylated more efficiently by Clb5-Cdk1 than Clb2-Cdk1. The Clb5-specific targets include several proteins (Sld2, Cdc6, Orc6, Mcm3 and Cdh1) involved in early S-phase events. Clb5 specificity depended on an interaction between a hydrophobic patch in Clb5 and a short sequence in the substrate (the RXL or Cy motif). Phosphorylation of Clb5-specific targets during S phase was reduced by replacing Clb5 with Clb2 or by mutating the substrate RXL motif, confirming the importance of Clb5 specificity in vivo. Although we did not identify any highly Clb2-specific substrates, we found that Clb2-Cdk1 possessed higher intrinsic kinase activity than Clb5-Cdk1, enabling efficient phosphorylation of a broad range of mitotic Cdk1 targets. Thus, Clb5 and Clb2 use distinct mechanisms to enhance the phosphorylation of S-phase and M-phase substrates.
Publication
Journal: Molecular and Cellular Biology
July/20/2005
Abstract
5-Azacytidine- and 5-aza-deoxycytidine (5-aza-CdR)-mediated reactivation of tumor suppressor genes silenced by promoter methylation has provided an alternate approach in cancer therapy. Despite the importance of epigenetic therapy, the mechanism of action of DNA-hypomethylating agents in vivo has not been completely elucidated. Here we report that among three functional DNA methyltransferases (DNMT1, DNMT3A, and DNMT3B), the maintenance methyltransferase, DNMT1, was rapidly degraded by the proteasomal pathway upon treatment of cells with these drugs. The 5-aza-CdR-induced degradation, which occurs in the nucleus, could be blocked by proteasomal inhibitors and required a functional ubiquitin-activating enzyme. The drug-induced degradation occurred even in the absence of DNA replication. Treatment of cells with other nucleoside analogs modified at C-5, 5-fluorodeoxyuridine and 5-fluorocytidine, did not induce the degradation of DNMT1. Mutation of cysteine at the catalytic site of Dnmt1 (involved in the formation of a covalent intermediate with cytidine in DNA) to serine (CS) did not impede 5-aza-CdR-induced degradation. Neither the wild type nor the catalytic site mutant of Dnmt3a or Dnmt3b was sensitive to 5-aza-CdR-mediated degradation. These results indicate that covalent bond formation between the enzyme and 5-aza-CdR-incorporated DNA is not essential for enzyme degradation. Mutation of the conserved KEN box, a targeting signal for proteasomal degradation, to AAA increased the basal level of Dnmt1 and blocked its degradation by 5-aza-CdR. Deletion of the catalytic domain increased the expression of Dnmt1 but did not confer resistance to 5-aza-CdR-induced degradation. Both the nuclear localization signal and the bromo-adjacent homology domain were essential for nuclear localization and for the 5-aza-CdR-mediated degradation of Dnmt1. Polyubiquitination of Dnmt1 in vivo and its stabilization upon treatment of cells with a proteasomal inhibitor indicate that the level of Dnmt1 is controlled by ubiquitin-dependent proteasomal degradation. Overexpression of the substrate recognition component, Cdh1 but not Cdc20, of APC (anaphase-promoting complex)/cyclosome ubiquitin ligase reduced the level of Dnmt1 in both untreated and 5-aza-CdR-treated cells. In contrast, the depletion of Cdh1 with small interfering RNA increased the basal level of DNMT1 that blocked 5-aza-CdR-induced degradation. Dnmt1 interacted with Cdh1 and colocalized in the nucleus at discrete foci. Both Dnmt1 and Cdh1 were phosphorylated in vivo, but only Cdh1 was significantly dephosphorylated upon 5-aza-CdR treatment, suggesting its involvement in initiating the proteasomal degradation of DNMT1. These results demonstrate a unique mechanism for the selective degradation of DNMT1, the maintenance DNA methyltransferase, by well-known DNA-hypomethylating agents.
Publication
Journal: BMC Cancer
April/30/2007
Abstract
BACKGROUND
Invasive ductal and lobular carcinomas (IDC and ILC) are the most common histological types of breast cancer. Clinical follow-up data and metastatic patterns suggest that the development and progression of these tumors are different. The aim of our study was to identify gene expression profiles of IDC and ILC in relation to normal breast epithelial cells.
METHODS
We examined 30 samples (normal ductal and lobular cells from 10 patients, IDC cells from 5 patients, ILC cells from 5 patients) microdissected from cryosections of ten mastectomy specimens from postmenopausal patients. Fifty nanograms of total RNA were amplified and labeled by PCR and in vitro transcription. Samples were analysed upon Affymetrix U133 Plus 2.0 Arrays. The expression of seven differentially expressed genes (CDH1, EMP1, DDR1, DVL1, KRT5, KRT6, KRT17) was verified by immunohistochemistry on tissue microarrays. Expression of ASPN mRNA was validated by in situ hybridization on frozen sections, and CTHRC1, ASPN and COL3A1 were tested by PCR.
RESULTS
Using GCOS pairwise comparison algorithm and rank products we have identified 84 named genes common to ILC versus normal cell types, 74 named genes common to IDC versus normal cell types, 78 named genes differentially expressed between normal ductal and lobular cells, and 28 named genes between IDC and ILC. Genes distinguishing between IDC and ILC are involved in epithelial-mesenchymal transition, TGF-beta and Wnt signaling. These changes were present in both tumor types but appeared to be more prominent in ILC. Immunohistochemistry for several novel markers (EMP1, DVL1, DDR1) distinguished large sets of IDC from ILC.
CONCLUSIONS
IDC and ILC can be differentiated both at the gene and protein levels. In this study we report two candidate genes, asporin (ASPN) and collagen triple helix repeat containing 1 (CTHRC1) which might be significant in breast carcinogenesis. Besides E-cadherin, the proteins validated on tissue microarrays (EMP1, DVL1, DDR1) may represent novel immunohistochemical markers helpful in distinguishing between IDC and ILC. Further studies with larger sets of patients are needed to verify the gene expression profiles of various histological types of breast cancer in order to determine molecular subclassifications, prognosis and the optimum treatment strategies.
Publication
Journal: Nature
February/2/2000
Abstract
Ubiquitin-mediated proteolysis due to the anaphase-promoting complex/cyclosome (APC/C) is essential for separation of sister chromatids, requiring degradation of the anaphase inhibitor Pds1, and for exit from mitosis, requiring inactivation of cyclin B Cdk1 kinases. Exit from mitosis in yeast involves accumulation of the cyclin kinase inhibitor Sic1 as well as cyclin proteolysis mediated by APC/C bound by the activating subunit Cdh1/Hct1 (APC(Cdh1)). Both processes require the Cdc14 phosphatase, whose release from the nucleolus during anaphase causes dephosphorylation and thereby activation of Cdh1 and accumulation of another protein, Sic1 (refs 4-7). We do not know what determines the release of Cdc14 and enables it to promote Cdk1 inactivation, but it is known to be dependent on APC/C bound by Cdc20 (APC(Cdc20)) (ref. 4). Here we show that APC(Cdc20) allows activation of Cdc14 and promotes exit from mitosis by mediating proteolysis of Pds1 and the S phase cyclin Clb5 in the yeast Saccharomyces cerevisiae. Degradation of Pds1 is necessary for release of Cdc14 from the nucleolus, whereas degradation of Clb5 is crucial if Cdc14 is to overwhelm Cdk1 and activate its foes (Cdh1 and Sic1). Remarkably, cells lacking both Pds1 and Clb5 can proliferate in the complete absence of Cdc20.
Publication
Journal: Developmental Cell
September/12/2007
Abstract
Centrosome duplication involves the formation of a single procentriole next to each centriole, once per cell cycle. The mechanisms governing procentriole formation and those restricting its occurrence to one event per centriole are poorly understood. Here, we show that HsSAS-6 is necessary for procentriole formation and that it localizes asymmetrically next to the centriole at the onset of procentriole formation. HsSAS-6 levels oscillate during the cell cycle, with the protein being degraded in mitosis and starting to accumulate again at the end of the following G1. Our findings indicate that APC(Cdh1) targets HsSAS-6 for degradation by the 26S proteasome. Importantly, we demonstrate that increased HsSAS-6 levels promote formation of more than one procentriole per centriole. Therefore, regulated HsSAS-6 levels normally ensure that each centriole seeds the formation of a single procentriole per cell cycle, thus playing a fundamental role in driving the centrosome duplication cycle and ensuring genome integrity.
Publication
Journal: Journal of Medical Genetics
October/14/2010
Abstract
25-30% of families fulfilling the criteria for hereditary diffuse gastric cancer have germline mutations of the CDH1 (E-cadherin) gene. In light of new data and advancement of technologies, a multidisciplinary workshop was convened to discuss genetic testing, surgery, endoscopy and pathology reporting. The updated recommendations include broadening of CDH1 testing criteria such that: histological confirmation of diffuse gastric criteria is only required for one family member; inclusion of individuals with diffuse gastric cancer before the age of 40 years without a family history; and inclusion of individuals and families with diagnoses of both diffuse gastric cancer (including one before the age of 50 years) and lobular breast cancer. Testing is considered appropriate from the age of consent following counselling and discussion with a multidisciplinary team. In addition to direct sequencing, large genomic rearrangements should be sought. Annual mammography and breast MRI from the age of 35 years is recommended for women due to the increased risk for lobular breast cancer. In mutation positive individuals prophylactic total gastrectomy at a centre of excellence should be strongly considered. Protocolised endoscopic surveillance in centres with endoscopists and pathologists experienced with these patients is recommended for: those opting not to have gastrectomy, those with mutations of undetermined significance, and in those families for whom no germline mutation is yet identified. The systematic histological study of prophylactic gastrectomies almost universally shows pre-invasive lesions including in situ signet ring carcinoma with pagetoid spread of signet ring cells. Expert histopathological confirmation of these early lesions is recommended.
Publication
Journal: Gastroenterology
December/30/2001
Abstract
OBJECTIVE
Germline mutations in CDH1 are known to cause hereditary diffuse gastric cancer (HDGC). Breast and colorectal cancer have also been reported in CDH1-associated HDGC. The purpose of this study was to estimate the cumulative risk of gastric and breast cancer in CDH1 mutation carriers.
METHODS
Family data were collected by member groups of the International Gastric Cancer Linkage Consortium. Eligible families had at least 3 cases of diffuse gastric cancer, and at least 1 affected member had tested positive for a mutation in CDH1. Eleven families met these criteria. We used the pedigree information to estimate penetrance using the MENDEL program. The conditional likelihood of the pedigree was maximized given the phenotype of the pedigree and genotype of the index case at ascertainment. We parameterized the model in terms of log relative risks for mutation carriers compared with risks in the general population of the United Kingdom. Noncarriers of the gene were assumed to develop the disease at population incidence rates.
RESULTS
The estimated cumulative risk of gastric cancer by age 80 years was 67% for men (95% confidence interval [95% CI], 39-99) and 83% for women (95% CI, 58-99). For women, the cumulative risk of breast cancer was 39% (95% CI, 12-84). The combined risk of gastric cancer and breast cancer in women was 90% by age 80 years.
CONCLUSIONS
These penetrance estimates should be useful for genetic counseling in multiple-case families. However, they may not apply to individuals with a minimal family history, in whom the risks may be lower.
Publication
Journal: Annual Review of Cell and Developmental Biology
December/8/2008
Abstract
The anaphase-promoting complex/cyclosome (APC/C) is a multisubunit E3 ubiquitin ligase that triggers the degradation of multiple substrates during mitosis. Cdc20/Fizzy and Cdh1/Fizzy-related activate the APC/C and confer substrate specificity through complex interactions with both the core APC/C and substrate proteins. The regulation of Cdc20 and Cdh1 is critical for proper APC/C activity and occurs in multiple ways: targeted protein degradation, phosphorylation, and direct binding of inhibitory proteins. During the specialized divisions of meiosis, the activity of the APC/C must be modified to achieve proper chromosome segregation. Recent studies show that one way in which APC/C activity is modified is through the use of meiosis-specific APC/C activators. Furthermore, regulation of the APC/C during meiosis is carried out by both mitotic regulators of the APC/C as well as meiosis-specific regulators. Here, we review the regulation of APC/C activators during mitosis and the role and regulation of the APC/C during female meiosis.
Pulse
Views:
1
Posts:
No posts
Rating:
Not rated
Publication
Journal: Nature Cell Biology
August/5/2002
Abstract
Emi1 promotes mitotic entry in Xenopus laevis embryos by inhibiting the APC(Cdc20) ubiquitination complex to allow accumulation of cyclin B. We show here that human Emi1 (hEmi1) functions to promote cyclin A accumulation and S phase entry in somatic cells by inhibiting the APC(Cdh1) complex. At the G1-S transition, hEmi1 is transcriptionally induced by the E2F transcription factor, much like cyclin A. hEmi1 overexpression accelerates S phase entry and can override a G1 block caused by overexpression of Cdh1 or the E2F-inhibitor p105 retinoblastoma protein (pRb). Depleting cells of hEmi1 through RNA interference prevents accumulation of cyclin A and inhibits S phase entry. These data suggest that E2F can activate both transcription of cyclin A and the hEmi1-dependent stabilization of APC(Cdh1) targets, such as cyclin A, to promote S phase entry.
Publication
Journal: British Journal of Cancer
April/4/2006
Abstract
Using genome-wide expression profiling of a panel of 27 human mammary cell lines with different mechanisms of E-cadherin inactivation, we evaluated the relationship between E-cadherin status and gene expression levels. Expression profiles of cell lines with E-cadherin (CDH1) promoter methylation were significantly different from those with CDH1 expression or, surprisingly, those with CDH1 truncating mutations. Furthermore, we found no significant differentially expressed genes between cell lines with wild-type and mutated CDH1. The expression profile complied with the fibroblastic morphology of the cell lines with promoter methylation, suggestive of epithelial-mesenchymal transition (EMT). All other lines, also the cases with CDH1 mutations, had epithelial features. Three non-tumorigenic mammary cell lines derived from normal breast epithelium also showed CDH1 promoter methylation, a fibroblastic phenotype and expression profile. We suggest that CDH1 promoter methylation, but not mutational inactivation, is part of an entire programme, resulting in EMT and increased invasiveness in breast cancer. The molecular events that are part of this programme can be inferred from the differentially expressed genes and include genes from the TGFbeta pathway, transcription factors involved in CDH1 regulation (i.e. ZFHX1B, SNAI2, but not SNAI1, TWIST), annexins, AP1/2 transcription factors and members of the actin and intermediate filament cytoskeleton organisation.
Publication
Journal: Proceedings of the National Academy of Sciences of the United States of America
November/23/2009
Abstract
Ubiquitination by the anaphase-promoting complex (APC/C) is essential for proliferation in all eukaryotes. The human APC/C promotes the degradation of mitotic regulators by assembling K11-linked ubiquitin chains, the formation of which is initiated by its E2 UbcH10. Here, we identify the conserved Ube2S as a K11-specific chain elongating E2 for human and Drosophila APC/C. Ube2S depends on the cell cycle-dependent association with the APC/C activators Cdc20 and Cdh1 for its activity. While depletion of Ube2S already inhibits APC/C in cells, the loss of the complete UbcH10/Ube2S-module leads to dramatic stabilization of APC/C substrates, severe spindle defects, and a strong mitotic delay. Ube2S and UbcH10 are tightly co-regulated in the cell cycle by APC/C-dependent degradation. We conclude that UbcH10 and Ube2S constitute a physiological E2-module for APC/C, the activity of which is required for spindle assembly and cell division.
Publication
Journal: Human Mutation
November/16/1998
Abstract
The cell-cell adhesion molecule E-cadherin is well known to act as a strong invasion suppressor in experimental tumor cell systems. Frequent inactivating mutations have been identified for the E-cadherin gene (CDH1) in diffuse gastric cancers and lobular breast cancers. To date, 69 somatic mutations have been reported comprising, in addition to few missense mutations, mainly splice site mutations and truncation mutations caused by insertions, deletions, and nonsense mutations. Interestingly, there is a major difference in mutation type between diffuse gastric and infiltrative lobular breast cancers. In diffuse gastric tumors, the predominant defects are exon skippings, which cause in-frame deletions. By contrast, most mutations found in infiltrating lobular breast cancers are out-of-frame mutations, which are predicted to yield secreted truncated E-cadherin fragments. In most cases, these mutations do occur in combination with loss of heterozygosity (LOH) of the wild-type allele. Inactivating germline mutations of E-cadherin were recently reported for families with early-onset diffuse gastric cancer. Also, at the early stages of sporadic lobular breast and diffuse gastric cancers, E-cadherin mutations were detected, suggesting loss of growth control by such mutations and defining E-cadherin as a true tumor suppressor for these particular tumor types.
Publication
Journal: Breast Cancer Research
October/31/2001
Abstract
E-cadherin is a cell-cell adhesion protein fulfilling a prominent role in epithelial differentiation. Data from model systems suggest that E-cadherin is a potent invasion/tumor suppressor of breast cancer. Consistent with this role in breast cancer progression, partial or complete loss of E-cadherin expression has been found to correlate with poor prognosis in breast cancer patients. The E-cadherin gene (CDH1) is located on human chromosome 16q22.1, a region frequently affected with loss of heterozygosity in sporadic breast cancer. Invasive lobular breast carcinomas, which are typically completely E-cadherin-negative, often show inactivating mutations in combination with loss of heterozygosity of the wild-type CDH1 allele. Mutations were found at early noninvasive stages, thus associating E-cadherin mutations with loss of cell growth control and defining CDH1 as the tumor suppressor for the lobular breast cancer subtype. Ductal breast cancers in general show heterogeneous loss of E-cadherin expression, associated with epigenetic transcriptional downregulation. It is proposed that the microenvironment at the invasive front is transiently downregulating E-cadherin transcription. This can be associated with induction of nonepithelial cadherins.
Publication
Journal: Nature Genetics
February/11/2010
Abstract
The epicardial epithelial-mesenchymal transition (EMT) is hypothesized to generate cardiovascular progenitor cells that differentiate into various cell types, including coronary smooth muscle and endothelial cells, perivascular and cardiac interstitial fibroblasts and cardiomyocytes. Here we show that an epicardial-specific knockout of the gene encoding Wilms' tumor-1 (Wt1) leads to a reduction in mesenchymal progenitor cells and their derivatives. We show that Wt1 is essential for repression of the epithelial phenotype in epicardial cells and during embryonic stem cell differentiation through direct transcriptional regulation of the genes encoding Snail (Snai1) and E-cadherin (Cdh1), two of the major mediators of EMT. Some mesodermal lineages do not form in Wt1-null embryoid bodies, but this effect is rescued by the expression of Snai1, underscoring the importance of EMT in generating these differentiated cells. These new insights into the molecular mechanisms regulating cardiovascular progenitor cells and EMT will shed light on the pathogenesis of heart diseases and may help the development of cell-based therapies.
Publication
Journal: Genes and Development
October/9/2002
Abstract
The mitotic kinase Aurora A (Aur-A) is required for formation of a bipolar mitotic spindle and accurate chromosome segregation. In somatic cells, Aur-A protein and kinase activity levels peak during mitosis, and Aur-A is degraded during mitotic exit. Here, we investigated how Aur-A protein and kinase activity levels are regulated, taking advantage of the rapid synchronous cell division cycles of Xenopus eggs and cell-free systems derived from them. Aur-A kinase activity oscillates in the early embryonic cell cycles, just as in somatic cells, but Aur-A protein levels are constant, indicating that regulated activation and inactivation, instead of periodic proteolysis, is the dominant mode of Aur-A regulation in these cell cycles. Cdh1, the APC/C activator that targets many mitotic proteins for ubiquitin-dependent proteolysis during late mitosis and G1 in somatic cells, is missing in Xenopus eggs and early embryos. We find that addition of Cdh1 to egg extracts undergoing M phase exit is sufficient to induce rapid degradation of Aur-A. Aur-A contains both of the two known APC/C recognition signals, (1) a C-terminal D box similar to those required for ubiquitin-dependent destruction of cyclin B and several other mitotic proteins, and (2) an N-terminal KEN box similar to that found on cdc20, which is ubiquitinated in response to APC/C(Cdh1). The D box is required for Cdh1-induced destruction of Aur-A but the KEN box is not. Destruction also requires a short region in the N terminus, which contains a newly identified recognition signal, the A box. The A box is conserved in vertebrate Aur-As and contains serine 53, which is phosphorylated during M phase. Mutation of serine 53 to aspartic acid, which can mimic the effect of phosphorylation, completely blocks Cdh1-dependent destruction of Aur-A. These results suggest that dephosphorylation of serine 53 during mitotic exit could control the timing of Aur-A destruction, allowing recognition of both the A box and D box by Cdh1-activated APC/C.
Publication
Journal: Nature
August/15/2006
Abstract
In the developing nervous system, Id2 (inhibitor of DNA binding 2, also known as inhibitor of differentiation 2) enhances cell proliferation, promotes tumour progression and inhibits the activity of neurogenic basic helix-loop-helix (bHLH) transcription factors. The anaphase promoting complex/cyclosome and its activator Cdh1 (APC/C(Cdh1)) restrains axonal growth but the targets of APC/C(Cdh1) in neurons are unknown. Id2 and other members of the Id family are very unstable proteins that are eliminated as cells enter the quiescent state, but how they are targeted for degradation has remained elusive. Here we show that Id2 interacts with the core subunits of APC/C and Cdh1 in primary neurons. APC/C(Cdh1) targets Id2 for degradation through a destruction box motif (D box) that is conserved in Id1 and Id4. Depletion of Cdh1 stabilizes Id proteins in neurons, whereas Id2 D-box mutants are impaired for Cdh1 binding and remain stable in cells that exit from the cell cycle and contain active APC/C(Cdh1). Mutants of the Id2 D box enhance axonal growth in cerebellar granule neurons in vitro and in the context of the cerebellar cortex, and overcome the myelin inhibitory signals for growth. Conversely, activation of bHLH transcription factors induces a cluster of genes with potent axonal inhibitory functions including the gene coding for the Nogo receptor, a key transducer of myelin inhibition. Degradation of Id2 in neurons permits the accumulation of the Nogo receptor, thereby linking APC/C(Cdh1) activity with bHLH target genes for the inhibition of axonal growth. These findings indicate that deregulated Id activity might be useful to reprogramme quiescent neurons into the axonal growth mode.
load more...