Citations
All
Search in:AllTitleAbstractAuthor name
Publications
(11K+)
Patents
Grants
Pathways
Clinical trials
Publication
Journal: Journal of Physiology
September/12/1988
Abstract
1. Single-channel currents activated by N-methyl-D-aspartate (NMDA) agonists were analysed in the presence of various extracellular concentrations of divalent cations in outside-out patches from mouse neurones in primary culture. 2. In nominally Mg2+-free solutions the opening and closing of the channels leads to rectangular current pulses, the mean duration of which varies little with membrane potential. After addition of Mg2+, the single-channel currents recorded at negative potentials appear in bursts of short openings separated by brief closures. 3. The duration of the short openings decreases with increasing Mg2+ concentration, while the duration of the short closures is independent of the Mg2+ concentration. Depolarization increases the duration of the short openings and decreases the duration of the short closures. 4. The dependence of the burst structure on the Mg2+ concentration and on membrane potential is compatible to a first approximation with a model in which Mg2+ ions enter the open channel and block it by binding at a deep site. A better approximation requires, however, additional assumptions such as Mg2+ permeation and/or interactions between Ca2+ and Mg2+. 5. Increasing the extracellular Ca2+ concentration from 1 to 100 mM produces three effects on the currents flowing through NMDA channels. It shifts the reversal potential towards a positive value (+30 mV); it reduces the outward current flowing through the NMDA channels at very positive potentials; it reduces the inward current flowing at negative potentials. 6. The interpretation of the effects of Ca2+ appears to require three hypotheses: that Ca2+ permeates the NMDA channel, that there exists a significant surface potential at the entrance of the NMDA channel in physiological solutions and that both Ca2+ and monovalent cations bind to the channel, binding being stronger in the case of Ca2+ ions. 7. While Co2+ and, to a lesser extent, Mn2+ mimic the effects of Mg2+ on the NMDA channel, Ca2+, Ba2+ and Cd2+ do not. The distinction between Mg2+-like and Ca2+-like divalent cations corresponds to a difference in the speed of exchange of the water molecules surrounding the cations in solutions. Thus, it is possible that permeation occurs for all the divalent cations, but is slower for those which are slowly dehydrated.
Publication
Journal: Toxicology
December/23/2003
Abstract
Cadmium is a heavy metal, which is widely used in industry, affecting human health through occupational and environmental exposure. In mammals, it exerts multiple toxic effects and has been classified as a human carcinogen by the International Agency for Research on Cancer. Cadmium affects cell proliferation, differentiation, apoptosis and other cellular activities. Cd2+ does not catalyze Fenton-type reactions because it does not accept or donate electrons under physiological conditions, and it is only weakly genotoxic. Hence, indirect mechanisms are implicated in the carcinogenicity of cadmium. In this review multiple mechanisms are discussed, such as modulation of gene expression and signal transduction, interference with enzymes of the cellular antioxidant system and generation of reactive oxygen species (ROS), inhibition of DNA repair and DNA methylation, role in apoptosis and disruption of E-cadherin-mediated cell-cell adhesion. Cadmium affects both gene transcription and translation. The major mechanisms of gene induction by cadmium known so far are modulation of cellular signal transduction pathways by enhancement of protein phosphorylation and activation of transcription and translation factors. Cadmium interferes with antioxidant defense mechanisms and stimulates the production of reactive oxygen species, which may act as signaling molecules in the induction of gene expression and apoptosis. The inhibition of DNA repair processes by cadmium represents a mechanism by which cadmium enhances the genotoxicity of other agents and may contribute to the tumor initiation by this metal. The disruption of E-cadherin-mediated cell-cell adhesion by cadmium probably further stimulates the development of tumors. It becomes clear that there exist multiple mechanisms which contribute to the carcinogenicity of cadmium, although the relative weights of these contributions are difficult to estimate.
Publication
Journal: Cell
October/4/1998
Abstract
Recognition of antigen by T cells requires the formation of a specialized junction between the T cell and the antigen-presenting cell. This junction is generated by the recruitment and the exclusion of specific proteins from the contact area. The mechanisms that regulate these events are unknown. Here we demonstrate that ligand engagement of the adhesion molecule, CD2, initiates a process of protein segregation, CD2 clustering, and cytoskeletal polarization. Although protein segregation was not dependent on the cytoplasmic domain of CD2, CD2 clustering and cytoskeletal polarization required an interaction of the CD2 cytoplasmic domain with a novel SH3-containing protein. This novel protein, called CD2AP, is likely to facilitate receptor patterning in the contact area by linking specific adhesion receptors to the cytoskeleton.
Publication
Journal: Nature
December/8/1993
Abstract
Voltage-gated Ca2+ channels link changes in membrane potential to the delivery of Ca2+, a key second messenger for many cellular responses. Ca2+ channels show selectivity for Ca2+ over more plentiful ions such as Na+ or K+ by virtue of their high-affinity binding of Ca2+ within the pore. It has been suggested that this binding involves four conserved glutamate residues in equivalent positions in the putative pore-lining regions of repeats I-IV in the Ca2+ channel a1 subunit. We have carried out a systematic series of single amino-acid substitutions in each of these positions and find that all four glutamates participate in high-affinity binding of Ca2+ or Cd2+. Each glutamate carboxylate makes a distinct contribution to ion binding, with the carboxylate in repeat III having the strongest effect. Some single glutamate-to-lysine mutations completely abolish micromolar Ca2+ block, indicating that the pore does not possess any high-affinity binding site that acts independently of the four glutamate residues. The prevailing model of Ca2+ permeation must thus be modified to allow binding of two Ca2+ ions in close proximity, within the sphere of influence of the four glutamates. The functional inequality of the glutamates may be advantageous in allowing simultaneous interactions with multiple Ca2+ ions moving single-file within the pore. Competition among Ca2+ ions for individual glutamates, together with repulsive ion-ion electrostatic interaction, may help achieve rapid flux rates through the channel.
Publication
Journal: Annual Review of Microbiology
February/17/1997
Abstract
Bacterial plasmids encode resistance systems for toxic metal ions including Ag+, AsO2-, AsO4(3-), Cd2+, CO2+, CrO4(2-), Cu2+, Hg2+, Ni2+, Pb2+, Sb3+, TeO3(2-), Tl+, and Zn2+. In addition to understanding of the molecular genetics and environmental roles of these resistances, studies during the last few years have provided surprises and new biochemical mechanisms. Chromosomal determinants of toxic metal resistances are known, and the distinction between plasmid resistances and those from chromosomal genes has blurred, because for some metals (notably mercury and arsenic), the plasmid and chromosomal determinants are basically the same. Other systems, such as copper transport ATPases and metallothionein cation-binding proteins, are only known from chromosomal genes. The largest group of metal resistance systems function by energy-dependent efflux of toxic ions. Some of the efflux systems are ATPases and others are chemiosmotic cation/proton antiporters. The CadA cadmium resistance ATPase of gram-positive bacteria and the CopB copper efflux system of Enterococcus hirae are homologous to P-type ATPases of animals and plants. The CadA ATPase protein has been labeled with 32P from gamma-32P-ATP and drives ATP-dependent Cd2+ uptake by inside-out membrane vesicles. Recently isolated genes defective in the human hereditary diseases of copper metabolism, Menkes syndrome and Wilson's disease, encode P-type ATPases that are more similar to the bacterial CadA and CopB ATPases than to eukaryote ATPases that pump different cations. The arsenic resistance efflux system transports arsenite, using alternatively either a two-component (ArsA and ArsB) ATPase or a single polypeptide (ArsB) functioning as a chemiosmotic transporter. The third gene in the arsenic resistance system, arsC, encodes an enzyme that converts intracellular arsenate [As (V)] to arsenite [As (III)], the substrate of the efflux system. The three-component Czc (Cd2+, Zn2+, and CO2+) chemiosmotic efflux pump of soil microbes consists of inner membrane (CzcA), outer membrane (CzcC), and membrane-spanning (CzcB) proteins that together transport cations from the cytoplasm across the periplasmic space to the outside of the cell. Finally, the first bacterial metallothionein (which by definition is a small protein that binds metal cations by means of numerous cysteine thiolates) has been characterized in cyanobacteria.
Publication
Journal: Journal of Immunology
May/7/2002
Abstract
We show in this study that human T cells purified from peripheral blood, T cell clones, and Jurkat T cells release microvesicles in the culture medium. These microvesicles have a diameter of 50-100 nm, are delimited by a lipidic bilayer membrane, and bear TCR beta, CD3epsilon, and zeta. This microvesicle production is regulated because it is highly increased upon TCR activation, whereas another mitogenic signal, such as PMA and ionomycin, does not induce any release. T cell-derived microvesicles also contain the tetraspan protein CD63, suggesting that they originate from endocytic compartments. They contain adhesion molecules such as <em>CD2</em> and LFA-1, MHC class I and class II, and the chemokine receptor CXCR4. These transmembrane proteins are selectively sorted in microvesicles because <em>CD2</em>8 and CD45, which are highly expressed at the plasma membrane, are not found. The presence of phosphorylated zeta in these microvesicles suggests that the CD3/TCR found in the microvesicles come from the pool of complexes that have been activated. Proteins of the transduction machinery, tyrosine kinases of the Src family, and c-Cbl are also observed in the T cell-derived microvesicles. Our data demonstrate that T lymphocytes produce, upon TCR triggering, vesicles whose morphology and phenotype are reminiscent of vesicles of endocytic origin produced by many cell types and called exosomes. Although the exact content of T cell-derived exosomes remains to be determined, we suggest that the presence of TCR/CD3 at their surface makes them powerful vehicles to specifically deliver signals to cells bearing the right combination of peptide/MHC complexes.
Publication
Journal: Blood
March/24/1991
Abstract
Acute promyelocytic leukemia (APL) is a well-defined entity among acute leukemia, cytogenetically characterized by a t(15;17) (q22;q11-12) translocation. In vitro and in vivo studies suggest that all-trans retinoic acid (RA) treatment restores cell maturation. We have isolated the first permanent cell line with t(15;17), derived from the marrow of a patient with APL in relapse. The establishment of the cell line, its morphologic, karyotypic, and immunohistochemical features are reported. RA induced cell line maturation. Cells strongly expressed myeloid markers, but also some T-cell markers. Additional karyotypic abnormalities, a 12p rearrangement and the possible presence of a homogeneous staining region (HSR) on 19q+ are discussed both in relation to T-cell (CD2, CD4) and monocyte (CD9) markers, and to the acquired cell growth autonomy. The cell line represents a remarkable tool for biomolecular studies.
Publication
Journal: Journal of Physiology
November/15/1987
Abstract
1. The Na-Ca exchange current was investigated in single ventricular cells from guinea-pig hearts by combining the techniques of whole-cell voltage clamp and intracellular perfusion. 2. The membrane conductance was minimized by blocking Ca and K channels as well as the Na-K pump. Under these conditions, when Ca2+ was loaded internally by a pipette solution containing 430 nM-Ca2+, changing the Li+-rich external solution to a Na+-rich one induced a significant inward current. Applying external Na+ in the absence of internal Ca2+ did not appreciably change the current. 3. In contrast, perfusing 1 mM-external Ca2+ in the presence of internal Na+ which was loaded by a 20 mM-Na+ pipette solution, induced a marked outward current. Ca2+ superfusion in the absence of internal Na+ caused only a small current change. 4. The current-voltage relation of external-Ca2+- and external-Na+-induced current showed almost exponential voltage dependence as given by the equation i = a exp (rEF/RT), where a is a scaling factor that determines the magnitude of the current and r is a partition parameter used in the rate theory and represents the position of the energy barrier in the electrical field, which indicates the steepness of the voltage dependence of the current. E, F, R and T have their usual meanings. The value of a was 1-2 microA/microF and r about 0.35 for the Ca2+-induced outward current. At very positive or negative potentials, the current magnitude became smaller than expected from an exponential relation. 5. The current was blocked by heavy metal cations, such as La3+, Cd2+, Mn2+ and Ni2+ and partially blocked by amiloride and D600. 6. The temperature coefficient (Q10) value of the Ca2+-induced outward current was 3.6 +/- 0.4 (n = 4) at 0 mV and 4.0 +/- 0.9 at 50 mV in the range between 21 and 36 degrees C. 7. The outward current magnitude showed a sigmoidal dependence upon the external Ca2+ concentration with a half-maximum concentration, K1/2 of 1.38 mM and a Hill coefficient of 0.9 +/- 0.2 (n = 5). 8. Sr2+ could replace Ca2+ with K1/2 of 7 mM. Mg2+ and Ba2+, however, did not replace Ca2+. 9. The inward current component also showed a sigmoidal external Na+ dependence with K1/2 of 87.5 +/- 10.7 mM and a Hill coefficient of 2.9 +/- 0.4 (n = 6). 10. The reversal potential of the current was obtained near the values expected for 3 Na+:1 Ca2+ exchange.(ABSTRACT TRUNCATED AT 400 WORDS)
Publication
Journal: Biochimie
February/5/2007
Abstract
Over the past 200 years emissions of toxic heavy metals have risen tremendously and significantly exceed those from natural sources for practically all metals. Uptake and accumulation by crop plants represents the main entry pathway for potentially health-threatening toxic metals into human and animal food. Of major concern are the metalloids arsenic (As) and selenium (Se), and the metals cadmium (Cd), mercury (Hg), and lead (Pb). This review discusses the molecular mechanisms of toxic metal accumulation in plants and algae, the responses to metal exposure, as well as our understanding of metal tolerance and its evolution. The main emphasis will be on cadmium, which is by far the most widely studied of the non-essential toxic metals/metalloids. Entry via Zn2+, Fe2+, and Ca2+ transporters is the molecular basis of Cd2+ uptake into plant cells. Much less is known about the partitioning of non-essential metals and about the genes underlying the enormous diversity among plants with respect to Cd accumulation in different tissues. Numerous studies have described symptoms and responses of plants upon toxic metal exposure. Mysterious are primary targets of toxicity, the degree of specificity of responses, the sensing and the signaling events that lead to transcriptional activation. All plants apparently possess a basal tolerance of toxic non-essential metals. For Cd and As, this is largely dependent on the phytochelatin pathway. Not understood is the molecular biology of Cd hypertolerance in certain plant species such as the metallophytes Arabidopsis halleri or Thlaspi caerulescens.
Authors
Publication
Journal: Biophysical Journal
October/19/1997
Abstract
The high-conductance Ca2+-activated K+ channel (mSlo) plays a vital role in regulating calcium entry in many cell types. mSlo channels behave like voltage-dependent channels, but their voltage range of activity is set by intracellular free calcium. The mSlo subunit has two parts: a "core" resembling a subunit from a voltage-dependent K+ channel, and an appended "tail" that plays a role in calcium sensing. Here we present evidence for a site on the tail that interacts with calcium. This site, the "calcium bowl," is a novel calcium-binding motif that includes a string of conserved aspartate residues. Mutations of the calcium bowl fall into two categories: 1) those that shift the position of the G-V relation a similar amount at all [Ca2+], and 2) those that shift the position of the G-V relation only at low [Ca2+]. None of these mutants alters the slope of the G-V curve. These mutant phenotypes are apparent in calcium ion, but not in cadmium ion, where mutant and wild type are indistinguishable. This suggests that the calcium bowl is sensitive to calcium ion, but insensitive to cadmium ion. The presence and independence of a second calcium-binding site is inferred because channels still respond to increasing levels of [Ca2+] or [Cd2+], even when the calcium bowl is mutationally deleted. Thus a low level of activation in the absence of divalent cations is identical in mutant and wild-type channels, possibly because of activation of this second Ca2+-binding site.
Publication
Journal: EMBO Journal
September/27/2000
Abstract
CD147 is a broadly expressed plasma membrane glycoprotein containing two immunoglobulin-like domains and a single charge-containing transmembrane domain. Here we use co-immunoprecipitation and chemical cross-linking to demonstrate that CD147 specifically interacts with MCT1 and MCT4, two members of the proton-linked monocarboxylate (lactate) transporter family that play a fundamental role in metabolism, but not with MCT2. Studies with a CD2-CD147 chimera implicate the transmembrane and cytoplasmic domains of CD147 in this interaction. In heart cells, CD147 and MCT1 co-localize, concentrating at the t-tubular and intercalated disk regions. In mammalian cell lines, expression is uniform but cross-linking with anti-CD147 antibodies caused MCT1, MCT4 and CD147, but not GLUT1 or MCT2, to redistribute together into 'caps'. In MCT-transfected cells, expressed protein accumulated in a perinuclear compartment, whereas co-transfection with CD147 enabled expression of active MCT1 or MCT4, but not MCT2, in the plasma membrane. We conclude that CD147 facilitates proper expression of MCT1 and MCT4 at the cell surface, where they remain tightly bound to each other. This association may also be important in determining their activity and location.
Publication
Journal: Virology
April/7/2005
Abstract
The HIV-1 viral accessory protein Vif prevents the encapsidation of the antiviral cellular cytidine deaminases APOBEC3F and APOBEC3G by inducing their proteasomal degradation. In the absence of Vif, APOBEC3G is encapsidated and blocks virus replication by deaminating cytosines of the viral cDNA. APOBEC3G encapsidation has been recently shown to depend on the viral nucleocapsid protein; however, the role of RNA remains unclear. Using APOBEC3G deletion and point mutants, we mapped the encapsidation determinant to the Zn(2+) coordination residues of the N-terminal catalytic domain (CD1). Notably, these residues were also required for RNA binding. Mutations in the two aromatic residues of CD1 but not CD2, which are conserved in cytidine deaminase core domains and are required for RNA binding, prevented encapsidation into HIV-1, HTLV-I and MLV. The Zn(2+) coordination residues of the C-terminal catalytic domain (CD2) were not required for encapsidation but were essential for cytidine deaminase activity and the antiviral effect. These findings suggest a model in which CD1 mediates encapsidation and RNA binding while CD2 mediates cytidine deaminase activity. Interestingly, HTLV-I was relatively resistant to the antiviral effects of encapsidated APOBEC3G.
Publication
Journal: European Journal of Immunology
February/8/1989
Abstract
High levels of interleukin 6 (IL 6/B cell stimulatory factor-2) were detected in synovial fluids from the joints of patients with active rheumatoid arthritis (RA). The cells found in freshly isolated synovial fluid constitutively expressed IL 6 mRNA. The synovial tissues obtained by joint biopsy were also found to produce IL 6 in vitro. Immunohistochemical analysis demonstrated that <em>CD2</em>+ T cells as well as <em>CD2</em>0+ blastoid B cells in the synovial tissues produce IL 6. The data indicate that IL 6 is generated constitutively in RA and its overproduction may explain the local as well as the generalized symptoms of RA, since IL 6 can function as B cell growth and differentiation factor as well as hepatocyte-stimulating factor.
Publication
Journal: Science
June/4/2003
Abstract
Loss of CD2-associated protein (CD2AP), a component of the filtration complex in the kidney, causes death in mice at 6 weeks of age. Mice with CD2AP haploinsufficiency developed glomerular changes at 9 months of age and had increased susceptibility to glomerular injury by nephrotoxic antibodies or immune complexes. Electron microscopic analysis of podocytes revealed defects in the formation of multivesicular bodies, suggesting an impairment of the intracellular degradation pathway. Two human patients with focal segmental glomerulosclerosis had a mutation predicted to ablate expression of one CD2AP allele, implicating CD2AP as a determinant of human susceptibility to glomerular disease.
Publication
Journal: Annual Review of Immunology
August/26/2003
Abstract
Over the past decade, key protein interactions contributing to T cell antigen recognition have been characterized in molecular detail. These have included interactions involving the T cell antigen receptor (TCR) itself, its coreceptors CD4 and CD8, the accessory molecule <em>CD2</em>, and the costimulatory receptors <em>CD2</em>8 and CTLA-4. A clear view is emerging of how these molecules interact with their ligands at the cell-cell interface. Structural and binding studies have confirmed that the proteins span small but comparable distances and that, overall, they interact very weakly. However, there have been important surprises as well: that TCR interactions with peptide-MHC are topologically constrained and characterized by considerable conformational flexibility at the binding interface; that coreceptors engage peptide-MHC with extraordinarily fast kinetics and at angles apparently precluding direct interactions with the TCR bound to the same peptide-MHC; that the structural mechanisms allowing recognition by costimulatory and accessory molecules to be weak and yet specific are very heterogeneous; and that because of differences in both binding affinity and stoichiometry, there is enormous variation in the stability of the various costimulatory receptor/ligand complexes. These studies provide the necessary framework for exploring how these molecular interactions initiate T cell activation.
Publication
Journal: Leukemia
May/9/1994
Abstract
The cell line described here was established for a 50-year-old male patient with rapidly progressive non-Hodgkin's lymphoma whose marrow was diffusely infiltrated with large granular lymphocytes (LGL). Immunophenotyping of marrow blasts and peripheral lymphocytes was positive for CD56, <em>CD2</em> and CD7, and negative for CD3. Cytotoxicity of peripheral blood mononuclear cells at an effector: target (E:T) cell ratio of 50:1 was 79% against K562 cells and 48% against Daudi cells. To establish the line, cells from the peripheral blood were placed into enriched alpha medium containing 12.5% fetal calf serum, 12.5% horse serum, 10(-4) M beta-mercaptoethanol and 10(-6) M hydrocortisone. Growth of the line (termed NK-92) is dependent on the presence of recombinant IL-2 and a dose as low as 10 U/ml is sufficient to maintain proliferation. Conversely, cells die within 72 h when deprived of IL-2; IL-7 and IL-12 do not maintain long-term growth, although IL-7 induces short-term proliferation measured by 3H-thymidine incorporation. None of the other cytokines tested (IL-1 alpha, IL-6, TNF-alpha, IFN-alpha, IFN-gamma) supported growth of NK-92 cells which have the following characteristics: surface marker positive for <em>CD2</em>, CD7, CD11a, <em>CD2</em>8, CD45, CD54, CD56bright; surface marker negative for CD1, CD3, CD4, CD5, CD8, CD10, CD14, CD16, CD19, <em>CD2</em>0, <em>CD2</em>3, CD34, HLA-DR. DNA analysis showed germline configuration for T-cell receptor beta and gamma genes. <em>CD2</em>5 (p55 IL-2 receptor) is expressed on about 50% of all cells when tested at 100 U/ml of IL-2 and its expression correlates inversely with the IL-2 concentration. The p75 IL-2 receptor is expressed on about half of the cells at low density irrespective of the IL-2 concentration. NK-92 cells kill both K562 and Daudi cells very effectively in a 4 h51-chromium release assay (84 and 86% respectively, at an E:T cell ratio of 5:1). The cell line described here thus displays characteristics of activated NK-cells and could be a valuable tool to study their biology.
Publication
Journal: Journal of Physiology
January/10/1988
Abstract
1. Intracellular recording from hippocampal CA1 pyramidal cells in the slice preparation was used to analyse the pharmacological sensitivity of action potential repolarization and the hyperpolarizations that follow the action potential. The Ca2+-activated after-hyperpolarizations (a.h.p.s) could be divided into a fast a.h.p. with a time course of milliseconds, and a slow a.h.p. which lasted for a few seconds at a temperature of 30 degrees C. 2. The repolarization of the action potential is sensitive to the Ca2+ channel blocker Cd2+. This effect is simultaneous with a block of the fast a.h.p. which follows immediately upon the repolarization of the action potential. The slow a.h.p. was also blocked by Cd2+. 3. Low concentrations of the K+ channel blocker, tetraethylammonium (TEA; 200-500 microM), block the fast a.h.p. and slow down action potential repolarization. The slow a.h.p. was not affected by low concentrations of TEA. 4. The action potential repolarization and the fast a.h.p. are also reversibly sensitive to charybdotoxin. This agent had no effect on the slow a.h.p. 5. When EGTA or BAPTA were added to the normal recording electrolyte (KMeSO4), the generation of slow a.h.p.s was prevented. In addition, cells impaled with BAPTA-containing electrodes displayed broader action potentials and much reduced fast a.h.p.s compared to recordings made with electrodes containing KMeSO4 alone or with EGTA. 6. The slow a.h.p. can be eliminated by noradrenaline, 8-bromocyclic AMP or carbachol. Under these conditions there are no effects on the fast a.h.p. or on action potential duration. 7. Block of the fast a.h.p. with TEA or CTX (charybdotoxin) is associated with an increased frequency of the first few action potentials during a depolarization. This is a quite distinct effect from the greatly increased number of action potentials which results from block of the slow a.h.p. 8. The results support a conclusion that the fast a.h.p. is generated by the TEA- and voltage-sensitive Ca2+-activated K+ current, IC. This current is involved in spike repolarization and turns off upon the return to resting potential. Thus block of IC has no effect on the slow a.h.p. which is caused by a separate membrane current.
Publication
Journal: Cytokine
February/3/1998
Abstract
There is now some evidence that major depression is accompanied by an immune response with an increased production of pro-inflammatory cytokines, such as interleukin 1(IL-1), IL-6 and interferon gamma (IFN-gamma). The aims of the present study were to examine serum IL-6, IL-1 receptor antagonist (IL-1Ra), IL-6R, Clara cell protein (CC16) and the soluble CD8 (sCD8) molecule in chronic, treatment resistant depression (TRD) both before and after subchronic treatment with antidepressants. Serum IL-6 and IL-1Ra were significantly higher in subjects with major depression and TRD than in normal controls. Subchronic treatment with antidepressants had no significant effects on serum IL-6, IL-1Ra, CC16 or sCD8, but reduced serum sIL-6R levels significantly. There were significant and positive correlations between serum IL-6, on the one hand, and sIL-6R, IL-1Ra, sCD8, number of peripheral blood leukocytes, neutrophils, CD2(+)T and CD19(+)B cells (all positive) and serum zinc (negative), on the other. These results suggest that: (1) major depression and TRD are accompanied by an activation of the monocytic arm of cell-mediated immunity; (2) the latter may be related to the immune an acute phase response in major depression; and (3) the above disorders may persist despite successful antidepressive treatment.
Publication
Journal: Neuron
October/24/1995
Abstract
The manner in which presynaptic Ca2+ influx controls the release of neurotransmitter was investigated at the granule cell to Purkinje cell synapse in rat cerebellar slices. Excitatory postsynaptic currents were measured using whole-cell voltage clamp, and changes in presynaptic Ca2+ influx were determined with the Ca(2+)-sensitive dye furaptra. We manipulated presynaptic Ca2+ entry by altering external Ca2+ levels and by blocking Ca2+ channels with Cd2+ or with the toxins omega-conotoxin GVIA and omega-Aga-IVA. For all of the manipulations, other than the application of omega-Aga-IVA, the relationship between Ca2+ influx and release was well approximated by a power law, n approximately 2.5. When omega-Aga-IVA was applied, release appeared to be more steeply dependent on Ca2+ (n approximately 4), suggesting that omega-Aga-IVA-sensitive channels are more effective at triggering release. Based on interactive effects of toxins on synaptic currents, we conclude that multiple types of Ca2+ channels synergistically control individual release sites.
Publication
Journal: Nature
August/12/1998
Abstract
Synapses in the central nervous system undergo various short- and long-term changes in their strength, but it is often difficult to distinguish whether presynaptic or postsynaptic mechanisms are responsible for these changes. Using patch-clamp recording from giant synapses in the mouse auditory brainstem, we show here that short-term synaptic depression can be largely attributed to rapid depletion of a readily releasable pool of vesicles. Replenishment of this pool is highly dependent on the recent history of synaptic activity. High-frequency stimulation of presynaptic terminals significantly enhances the rate of replenishment. Broadening the presynaptic action potential with the potassium-channel blocker tetraethylammonium, which increases Ca2+ entry, further enhances the rate of replenishment. As this increase can be suppressed by the Ca2+-channel blocker Cd2+ or by the Ca2+ buffer EGTA, we conclude that Ca2+ influx through voltage-gated Ca2+ channels is the key signal that dynamically regulates the refilling of the releasable pool of synaptic vesicles in response to different patterns of inputs.
Publication
Journal: Journal of Immunology
December/14/1989
Abstract
In the present study we have identified and characterized three subpopulations of peripheral blood NK cells based on the surface expression of CD56 and CD16. We have designated these subsets CD16neg, CD16dim, and CD16bright according to the relative surface density of CD16. The CD16bright subset comprised about 10% to 15% of PBL, whereas the CD16dim and CD16neg subsets comprise less than 1% of the total lymphocytes. A detailed characterization of these subsets revealed both similarities and differences. The three subsets shared a great deal of phenotypic similarity, expressing <em>CD2</em>, CD7, CD11b, CD38, CD45R, CD18, and the p75 IL-2R on the majority of the cells in each subset. There were, however, several prominent phenotypic differences, particularly in the expression of CD57, CD11c, CD44, <em>CD2</em>5, Leu-8, L263, and L265. The CD16neg cells were morphologically large agranular lymphocytes and demonstrated low levels of non-MHC restricted cytolysis of NK-sensitive tumor lines. The CD16dim and CD16bright subsets were large granular lymphocytes and revealed potent cytotoxicity against NK-sensitive targets. All subsets demonstrated IL-2-dependent activation and proliferation; however, the CD16dim and CD16neg subsets were preferentially responsive to very low concentrations of rIL-2. Although rIL-4 effectively inhibited the IL-2-induced cytolytic activation of all three NK cell subsets, only the CD16bright cells showed rIL-4 inhibition of IL-2 dependent proliferation. Cytokine transcription was also differentially regulated in the NK cell subsets after rIL-2 activation. Although TNF-alpha was equally transcribed in each subsets, IFN-gamma and serine protease-HF were preferentially transcribed in the CD16bright NK cells. Based on these results, we propose that these NK cell subsets represent portions of the NK cell differentiation pathway present in the peripheral blood.
Publication
Journal: Cell regulation
February/5/1992
Abstract
A rapid rise in the level of cytosolic free calcium ([Ca2+]i) is believed to be one of several early triggering signals in the activation of T lymphocytes by antigen. Although Ca2+ release from intracellular stores and its contribution to Ca2+ signaling in many cell types is well documented, relatively little is known regarding the role and mechanism of Ca2+ entry across the plasma membrane. We have investigated mitogen-triggered Ca2+ signaling in individual cells of the human T-leukemia-derived line, Jurkat, using fura-2 imaging and patch-clamp recording techniques. Phytohemagglutinin (PHA), a mitogenic lectin, induces repetitive [Ca2+]i oscillations in these cells peaking at micromolar levels with a period of 90-120 s. The oscillations depend critically upon Ca2+ influx across the plasma membrane, as they are rapidly terminated by removal of extracellular Ca2+, addition of Ca(2+)-channel blockers such as Ni2+ or Cd2+, or membrane depolarization. Whole-cell and perforated-patch recording methods were combined with fura-2 measurements to identify the mitogen-activated Ca2+ conductance involved in this response. A small, highly selective Ca2+ conductance becomes activated spontaneously in whole-cell recordings and in response to PHA in perforated-patch experiments. This conductance has properties consistent with a role in T-cell activation, including activation by PHA, lack of voltage-dependent gating, inhibition by Ni2+ or Cd2+, and regulation by intracellular Ca2+. Moreover, a tight temporal correlation between oscillations of Ca2+ conductance and [Ca2+]i suggests a role for the membrane Ca2+ conductance in generating [Ca2+]i oscillations in activated T cells.
Publication
Journal: Biophysical Journal
August/23/1994
Abstract
Substitution of a cysteine in the extracellular mouth of the pore of the Shaker-delta K+ channel permits allosteric inhibition of the channel by Zn2+ or Cd2+ ions at micromolar concentrations. Cd2+ binds weakly to the open state but drives the channel into the slow (C-type) inactivated state, which has a Kd for Cd2+ of approximately 0.2 microM. There is a 45,000-fold increase in affinity when the channel changes from open to inactivated. These results indicate that C-type inactivation involves a structural change in the external mouth of the pore. This structural change is reflected in the T449C mutant as state-dependent metal affinity, which may result either from a change in proximity of the introduced cysteine residues of the four subunits or from a change of the exposure of this residue on the surface of the protein.
Publication
Journal: Nature Genetics
January/4/2010
Abstract
To discover new rheumatoid arthritis (RA) risk loci, we systematically examined 370 SNPs from 179 independent loci with P < 0.001 in a published meta-analysis of RA genome-wide association studies (GWAS) of 3,393 cases and 12,462 controls. We used Gene Relationships Across Implicated Loci (GRAIL), a computational method that applies statistical text mining to PubMed abstracts, to score these 179 loci for functional relationships to genes in 16 established RA disease loci. We identified 22 loci with a significant degree of functional connectivity. We genotyped 22 representative SNPs in an independent set of 7,957 cases and 11,958 matched controls. Three were convincingly validated: <em>CD2</em>-CD58 (rs11586238, P = 1 x 10(-6) replication, P = 1 x 10(-9) overall), <em>CD2</em>8 (rs1980422, P = 5 x 10(-6) replication, P = 1 x 10(-9) overall) and PRDM1 (rs548234, P = 1 x 10(-5) replication, P = 2 x 10(-8) overall). An additional four were replicated (P < 0.0023): TAGAP (rs394581, P = 0.0002 replication, P = 4 x 10(-7) overall), PTPRC (rs10919563, P = 0.0003 replication, P = 7 x 10(-7) overall), TRAF6-RAG1 (rs540386, P = 0.0008 replication, P = 4 x 10(-6) overall) and FCGR2A (rs12746613, P = 0.0022 replication, P = 2 x 10(-5) overall). Many of these loci are also associated to other immunologic diseases.
load more...