Citations
All
Search in:AllTitleAbstractAuthor name
Publications
(79)
Patents
Grants
Pathways
Clinical trials
Publication
Journal: American Journal of Physiology - Heart and Circulatory Physiology
July/24/2016
Abstract
Mitochondrial dysfunction has been implicated as a cause of energy deprivation in heart failure (HF). Herein, we tested individual and combined effects of two pathogenic factors of nonischemic HF, inhibition of nitric oxide synthesis [with l-N(G)-nitroarginine methyl ester (l-NAME)] and hypertension [with angiotensin II (AngII)], on myocardial mitochondrial function, oxidative stress, and metabolic gene expression. l-NAME and AngII were administered individually and in combination to mice for 5 wk. Although all treatments increased blood pressure and reduced cardiac contractile function, the l-NAME + AngII group was associated with the most severe HF, as characterized by edema, hypertrophy, oxidative stress, increased expression of Nppa and Nppb, and decreased expression of Atp2a2 and Camk2b. l-NAME + AngII-treated mice exhibited robust deterioration of cardiac mitochondrial function, as observed by reduced respiratory control ratios in subsarcolemmal mitochondria and reduced state 3 levels in interfibrillar mitochondria for complex I but not for complex II substrates. Cardiac myofibrils showed reduced ADP-supported and oligomycin-inhibited oxygen consumption. Mitochondrial functional impairment was accompanied by reduced mitochondrial DNA content and activities of pyruvate dehydrogenase and complex I but increased H2O2 production and tissue protein carbonyls in hearts from AngII and l-NAME + AngII groups. Microarray analyses revealed the majority of the gene changes attributed to the l-NAME + AngII group. Pathway analyses indicated significant changes in metabolic pathways, such as oxidative phosphorylation, mitochondrial function, cardiac hypertrophy, and fatty acid metabolism in l-NAME + AngII hearts. We conclude that l-NAME + AngII is associated with impaired mitochondrial respiratory function and increased oxidative stress compared with either l-NAME or AngII alone, resulting in nonischemic HF.
Publication
Journal: Environmental International
December/24/2019
Abstract
Glyphosate-containing herbicides are the most used agrochemicals in the world. Their indiscriminate application raises some concerns regarding the possible health and environmental hazards. In this study, we investigated in human neuroblastoma cell line SH-SY5Y if oxidative stress, altered neurodevelopment and cell death pathways are involved in response to glyphosate and its metabolite aminomethylphosphonic acid (AMPA) exposures. MTT and LDH assays were carried out to assess the glyphosate and AMPA cytotoxicity. Lipid peroxides measured as malondialdehyde (MDA), nitric oxide (NO) and reactive oxygen species (ROS) production, and caspase-Glo 3/7 activity were evaluated. The neuroprotective role of melatonin (MEL), Trolox, N-acetylcysteine (NAC) and Sylibin against glyphosate- and AMPA-induced oxidative stress was examined. Glyphosate and AMPA effects on neuronal development related gene transcriptions, and gene expression profiling of cell death pathways by Real-Time PCR array were also investigated. Glyphosate (5 mM) and AMPA (10 mM) induced a significant increase in MDA levels, NO and ROS production and caspase 3/7 activity. Glyphosate exposure induced up-regulation of Wnt3a, Wnt5a, Wnt7a, CAMK2A, CAMK2B and down-regulation of GAP43 and TUBB3 mRNA expression involved in normal neural cell development. In relation to gene expression profiling of cell death pathways, of the 84 genes examined in cells a greater than 2-fold change was observed for APAF1, BAX, BCL2, CASP3, CASP7, CASP9, SYCP2, TNF, TP53, CTSB, NFκB1, PIK3C3, SNCA, SQSTMT, HSPBAP1 and KCNIPI mRNA expression for glyphosate and AMPA exposures. These gene expression data can help to define neurotoxic mechanisms of glyphosate and AMPA. Our results demonstrated that glyphosate and AMPA induced cytotoxic effects on neuronal development, oxidative stress and cell death via apoptotic, autophagy and necrotic pathways and confirmed that glyphosate environmental exposure becomes a concern. This study demonstrates that SH-SY5Y cell line could be considered an in vitro system for pesticide screening.
Publication
Journal: Journal of Neuroscience
May/8/2019
Abstract
Ca2+/calmodulin-dependent protein kinase II (CAMK2) is a key player in synaptic plasticity and memory formation. Mutations in Camk2a or Camk2b cause intellectual disability in humans, and severe plasticity and learning deficits in mice, indicating unique functions for each isoform. However, considering the high homology between CAMK2A and CAMK2B, it is conceivable that for critical functions, one isoform compensates for the absence of the other, and that the full functional spectrum of neuronal CAMK2 remains to be revealed.Here we show that germline as well as adult deletion of both CAMK2 isoforms in male or female mice is lethal. Moreover, Ca2+-dependent activity as well as autonomous activity of CAMK2 is essential for survival. Loss of both CAMK2 isoforms abolished LTP, whereas synaptic transmission remained intact. The double-mutants showed no gross morphological changes of the brain, and in contrast to the long-considered role for CAMK2 in the structural organization of the postsynaptic density (PSD), deletion of both CAMK2 isoforms did not affect the biochemical composition of the PSD. Together, these results reveal an essential role for CAMK2 signaling in early postnatal development as well as the mature brain, and indicate that the full spectrum of CAMK2 requirements cannot be revealed in the single mutants because of partial overlapping functions of CAMK2A and CAMK2B.SIGNIFICANCE STATEMENT CAMK2A and CAMK2B have been studied for over 30 years for their role in neuronal functioning. However, most studies were performed using single knock-out mice. Because the two isoforms show high homology with respect to structure and function, it is likely that some redundancy exists between the two isoforms, meaning that for critical functions CAMK2B compensates for the absence of CAMK2A and vice versa, leaving these functions to uncover. In this study, we generated Camk2a/Camk2b double-mutant mice, and observed that loss of CAMK2, as well as the loss of Ca2+-dependent and Ca2+-independent activity of CAMK2 is lethal. These results indicate that despite 30 years of research the full spectrum of CAMK2 functioning in neurons remains to be unraveled.
Publication
Journal: Frontiers in Behavioral Neuroscience
November/9/2011
Abstract
Suicide is a serious public health issue that results from an interaction between multiple risk factors including individual vulnerabilities to complex feelings of hopelessness, fear, and stress. Although kinase genes have been implicated in fear and stress, including the consolidation and extinction of fearful memories, expression profiles of those genes in the brain of suicide victims are less clear. Using gene expression microarray data from the Online Stanley Genomics Database and a quantitative PCR, we investigated the expression profiles of multiple kinase genes including the calcium calmodulin-dependent kinase (CAMK), the cyclin-dependent kinase, the mitogen-activated protein kinase (MAPK), and the protein kinase C (PKC) in the prefrontal cortex (PFC) of mood disorder patients died with suicide (N = 45) and without suicide (N = 38). We also investigated the expression pattern of the same genes in the PFC of developing humans ranging in age from birth to 49 year (N = 46). The expression levels of CAMK2B, CDK5, MAPK9, and PRKCI were increased in the PFC of suicide victims as compared to non-suicide controls (false discovery rate, FDR-adjusted p < 0.05, fold change >1.1). Those genes also showed changes in expression pattern during the postnatal development (FDR-adjusted p < 0.05). These results suggest that multiple kinase genes undergo age-dependent changes in normal brains as well as pathological changes in suicide brains. These findings may provide an important link to protein kinases known to be important for the development of fear memory, stress associated neural plasticity, and up-regulation in the PFC of suicide victims. More research is needed to better understand the functional role of these kinase genes that may be associated with the pathophysiology of suicide.
Publication
Journal: NeuroToxicology
February/4/2014
Abstract
OBJECTIVE
Although inhibition of histone deacetylases (HDACs) has been shown to protect against cisplatin-induced hearing loss, the underlying mechanism is still poorly understood. In the present study, we aim to investigate the protective effect of trichostatin A (TSA), a specific inhibitor of HDACs, on cisplatin-induced ototoxicity and to determine the differentially expressed genes involved in this process.
METHODS
The basilar membrane of the cochlea was isolated from 3-day newborn Wistar rats. Organotypic cultures were treated with 150 μM cisplatin or 200 nM TSA. For combination treatment, cells were pre-incubated with TSA for 1h, followed by TSA plus cisplatin treatment. Rhodamine-phalloidin staining was used to label hair cells, and immunocytochemistry with an anti-neurofilament-200 antibody was applied to label spiral ganglion neurons (SGNs). Global expression profile microarray analysis was used to identify differentially expressed genes. Molecular function and signal pathway analysis were performed using a protein analysis through evolutionary relationships (PANTHER) classification system. Real-time quantitative PCR (qPCR) was carried out for data validation.
RESULTS
Severe loss of hair cells and SGNs occurred after 48 h of cisplatin incubation, while TSA significantly increased the number of hair cells and SGNs in the combination treatment group (P<0.05). Compared with control, expression of 71 genes were up-regulated and 383 genes were down-regulated upon cisplatin treatment. Addition of TSA induced the up-regulation of 1387 genes and down-regulation of 1226 genes as compared with cisplatin administration alone. After cisplatin treatment, we observed significant down-regulation of mRNA for several genes related to synaptic function genes, including Camk2a, Camk2b, Vglut1, Snap25 and Rab3b, whereas pretreatment with TSA elevated mRNA levels of these genes. TSA greatly decreased expression of genes related to the calcium signaling pathway (Capn1 and Capn2) and apoptosis signaling pathway (Tnfrsf1a and Tp53), while addition of TSA significantly reduced levels of Tnfrsf1a and Tp53 compared with cisplatin alone (P<0.01).
CONCLUSIONS
Our results suggested that TSA might protect against cisplatin-induced ototoxicity via mediating expression of genes responsible for regulating apoptosis, intracellular calcium homeostasis, neurotransmitter synthesis and release, and synaptic plasticity.
Publication
Journal: EMBO Journal
January/13/2020
Abstract
Degradation of endoplasmic reticulum (ER) by selective autophagy (ER-phagy) is crucial for ER homeostasis. However, it remains unclear how ER scission is regulated for subsequent autophagosomal sequestration and lysosomal degradation. Here, we show that oligomerization of ER-phagy receptor FAM134B (also referred to as reticulophagy regulator 1 or RETREG1) through its reticulon-homology domain is required for membrane fragmentation in vitro and ER-phagy in vivo. Under ER-stress conditions, activated CAMK2B phosphorylates the reticulon-homology domain of FAM134B, which enhances FAM134B oligomerization and activity in membrane fragmentation to accommodate high demand for ER-phagy. Unexpectedly, FAM134B G216R, a variant derived from a type II hereditary sensory and autonomic neuropathy (HSAN) patient, exhibits gain-of-function defects, such as hyperactive self-association and membrane scission, which results in excessive ER-phagy and sensory neuron death. Therefore, this study reveals a mechanism of ER membrane fragmentation in ER-phagy, along with a signaling pathway in regulating ER turnover, and suggests a potential implication of excessive selective autophagy in human diseases.
Publication
Journal: Toxicology and Applied Pharmacology
May/29/2017
Abstract
The detection of developmental neurotoxicity (DNT) of chemicals has high relevance for protection of human health. However, DNT of many pesticides is only little known. Furthermore, validated in vitro systems for assessment of DNT are not well established. Here we employed the rat phaeochromocytoma cell line PC-12 to evaluate DNT of 18 frequently used pesticides of different classes, including neonicotinoids, pyrethroids, organophosphates, organochlorines, as well as quaternary ammonium compounds, the organic compound used in pesticides, piperonyl butoxide, as well as the insect repellent diethyltoluamide (DEET). We determined the outgrowth of neurites in PC-12 cells co-treated with nerve growth factor and different concentrations of biocides for 5days. Furthermore, we determined transcriptional alterations of selected genes that may be associated with DNT, such as camk2α and camk2β, gap-43, neurofilament-h, tubulin-α and tubulin-β. Strong and dose- dependent inhibition of neurite outgrowth was induced by azamethiphos and chlorpyrifos, and dieldrin and heptachlor, which was correlated with up-regulation of gap-43. No or only weak effects on neurite outgrowth and transcriptional alterations occurred for neonicotinoids acetamiprid, clothianidin, imidacloprid and thiamethoxam, the pyrethroids λ-cyhalothrin, cyfluthrin, deltamethrin, and permethrin, the biocidal disinfectants C12-C14-alkyl(ethylbenzyl)dimethylammonium (BAC), benzalkonium chloride and barquat (dimethyl benzyl ammonium chloride), and piperonyl butoxide and DEET. Our study confirms potential developmental neurotoxicity of some pesticides and provides first evidence that azamethiphos has the potential to act as a developmental neurotoxic compound. We also demonstrate that inhibition of neurite outgrowth and transcriptional alterations of gap-43 expression correlate, which suggests the employment of gap-43 expression as a biomarker for detection and initial evaluation of potential DNT of chemicals.
Publication
Journal: American journal of physiology. Renal physiology
October/25/2017
Abstract
Mineralocorticoids trigger a profibrotic process in the kidney. In mouse cortical collecting duct cells, the present study addressed two main questions: 1) what are microRNAs (miRNAs) and their target genes that are changed by aldosterone? and 2) what do miRNAs, in response to aldosterone, regulate regarding signaling pathways related to fibrosis? A microarray chip assay was done in cells in the absence or presence of aldosterone treatment (10-6 M; 3 days). The candidate miRNAs were identified by the criteria of >30% of fold change among the significantly changed miRNAs ( P < 0.05). Twenty-nine miRNAs were upregulated (>1.3-fold), and 27 miRNAs were downregulated (<0.7-fold). Putative target genes of identified miRNAs were associated with 74 Kyoto Encyclopedia of Genes and Genomes pathways. Among them, the wingless-related integration site (Wnt) signaling pathway was highly ranked, where 15 mature miRNAs were observed. These miRNAs were further analyzed by real-time quantitative PCR, and among them, miR-130b-3p, miR-34c-5p, and miR-146a-5p were selected. Through the identification of putative target genes of these three miRNAs, mRNA and protein expression of the Ca2+/calmodulin-dependent protein kinase type II β-chain ( Camk2b) gene (a target gene of miR-34c-5p) were found to be increased significantly in aldosterone-treated cells, where fibronectin (FN) and α-smooth muscle actin were induced. When CaMKIIβ small interfering RNA or the miR-34c-5p mimic was transfected, aldosterone-induced FN expression was significantly attenuated, along with reduced CaMKIIβ protein expression. A luciferase reporter assay revealed a decrease of CaMKIIβ translation in cells transfected with miRNA mimics of miR-34c-5p. In conclusion, aldosterone-induced downregulation of miR-34c-5p in the Wnt signaling pathway and a consequent increase of CaMKIIβ expression are likely to be involved in aldosterone-induced fibrosis.
Publication
Journal: Developmental Biology
February/7/2021
Abstract
Muscle development requires myoblast differentiation and muscle fiber formation. Myod family inhibitor (Mdfi) inhibits myogenic regulatory factors in NIH3T3 cells, but how Mdfi regulates myoblast myogenic development is still unclear. In the present study, we constructed an Mdfi-overexpression (Mdfi-OE) C2C12 cell line by the CRISPR/Cas9 system and performed RNA-seq on Mdfi-OE and wild-type (WT) C2C12 cells. The RNA-seq results showed that the calcium signaling pathway was the most significant. We also established the regulatory networks of Mdfi-OE on C2C12 cell differentiation and muscle fiber type transformation and identified hub genes. Further, both RNA-seq and experimental verification demonstrated that Mdfi promoted C2C12 cell differentiation by upregulating the expression of Myod, Myog, and Myosin. We also found that the positive regulation of Mdfi on fast-to-slow-twitch muscle fiber transformation is mediated by Myod, Camk2b, and its downstream genes, such as Pgc1a, Pdk4, Cs, Cox4, Acadm, Acox1, Cycs, and Atp5a1. In conclusion, our results demonstrated that Mdfi promotes C2C12 cell differentiation and positively modulates fast-to-slow-twitch muscle fiber transformation. These findings further our understanding of the regulatory mechanisms of Mdfi in myogenic development and muscle fiber type transformation. Our results suggest potential therapeutic targets for muscle- and metabolic-related diseases.
Keywords: C2C12 cells; CRISPR/Cas9 system; Mdfi; RNA-seq; differentiation; muscle fiber type transformation.
Publication
Journal: International Journal of Molecular Sciences
April/24/2019
Abstract
Cancer cachexia is a multifactorial syndrome that leads to significant weight loss. Cachexia affects 50%-80% of cancer patients, depending on the tumor type, and is associated with 20%-40% of cancer patient deaths. Besides the efforts to identify molecular mechanisms of skeletal muscle atrophy-a key feature in cancer cachexia-no effective therapy for the syndrome is currently available. MicroRNAs are regulators of gene expression, with therapeutic potential in several muscle wasting disorders. We performed a meta-analysis of previously published gene expression data to reveal new potential microRNA-mRNA networks associated with muscle atrophy in cancer cachexia. We retrieved 52 differentially expressed genes in nine studies of muscle tissue from patients and rodent models of cancer cachexia. Next, we predicted microRNAs targeting these differentially expressed genes. We also include global microRNA expression data surveyed in atrophying skeletal muscles from previous studies as background information. We identified deregulated genes involved in the regulation of apoptosis, muscle hypertrophy, catabolism, and acute phase response. We further predicted new microRNA-mRNA interactions, such as miR-27a/Foxo1, miR-27a/Mef2c, miR-27b/Cxcl12, miR-27b/Mef2c, miR-140/Cxcl12, miR-199a/Cav1, and miR-199a/Junb, which may contribute to muscle wasting in cancer cachexia. Finally, we found drugs targeting MSTN, CXCL12, and CAMK2B, which may be considered for the development of novel therapeutic strategies for cancer cachexia. Our study has broadened the knowledge of microRNA-regulated networks that are likely associated with muscle atrophy in cancer cachexia, pointing to their involvement as potential targets for novel therapeutic strategies.
Publication
Journal: Acta Pharmacologica Sinica
June/13/2010
Abstract
OBJECTIVE
Dilated cardiomyopathy (DCM) is the most common cause of heart failure, and pharmacological intervention is not currently available. Here we investigate the effect of tetramethylpyrazine phosphate (TMPP) on the progression of DCM in the cTnT(R141W) transgenic mouse model.
METHODS
The cTnT(R141W) transgenic mice aged 2 months were divided into model group and TMPP group, whereas age-matched nontransgenic mice were used as wild-type control. TMPP 45 mg.kg(-1).d(-1) was administered for 7 months. Following assessment of cardiac function by echocardiography, cardiac tissues were prepared for histology and electron microscopy. Levels of molecular markers for cardiomyocyte hypertrophy and fibrosis were detected by RT-PCR. Expression of structural proteins of the sarcomere and intercalated disc was determined by Western blot.
RESULTS
TMPP significantly prevented cardiac dilatation and dysfunction with the development of DCM, and decreased mortality by 54%. TMPP decreased HW/BW ratios and expression of hypertrophic markers BNP and ACTA1, as well as reduced interstitial collagen deposition and expression of profibrotic markers Col1a1 and Col3a1. TMPP attenuated ultrastructural disruption caused by cTnT(R141W) expression and decreased expression of structural proteins myotilin and E-cadherin which were up-regulated in the cTnT(R141W) heart. Moreover, TMPP reduced the mRNA expression of Calm1 and Camk2b in the cTnT(R141W) heart.
CONCLUSIONS
Our results suggest that TMPP could be a promising drug for prevention and treatment of DCM.
Publication
Journal: Human Brain Mapping
August/8/2016
Abstract
While detecting genetic variations underlying brain structures helps reveal mechanisms of neural disorders, high data dimensionality poses a major challenge for imaging genomic association studies. In this work, we present the application of a recently proposed approach, parallel independent component analysis with reference (pICA-R), to investigate genomic factors potentially regulating gray matter variation in a healthy population. This approach simultaneously assesses many variables for an aggregate effect and helps to elicit particular features in the data. We applied pICA-R to analyze gray matter density (GMD) images (274,131 voxels) in conjunction with single nucleotide polymorphism (SNP) data (666,019 markers) collected from 1,256 healthy individuals of the Brain Imaging Genetics (BIG) study. Guided by a genetic reference derived from the gene GNA14, pICA-R identified a significant SNP-GMD association (r=-0.16, P=2.34×10(-8)), implying that subjects with specific genotypes have lower localized GMD. The identified components were then projected to an independent dataset from the Mind Clinical Imaging Consortium (MCIC) including 89 healthy individuals, and the obtained loadings again yielded a significant SNP-GMD association (r=-0.25, P=0.02). The imaging component reflected GMD variations in frontal, precuneus, and cingulate regions. The SNP component was enriched in genes with neuronal functions, including synaptic plasticity, axon guidance, molecular signal transduction via PKA and CREB, highlighting the GRM1, PRKCH, GNA12, and CAMK2B genes. Collectively, our findings suggest that GNA12 and GNA14 play a key role in the genetic architecture underlying normal GMD variation in frontal and parietal regions.
Publication
Journal: Journal of Cardiovascular Pharmacology
September/17/2012
Abstract
Ginsenoside-Rb1 (Rb1) is known to be partially associated with the inhibition of heparin-binding epidermal growth factor-like growth factor (HB-EGF). Tetramethylpyrazine phosphate (TMPP) inhibits the activation of the calcium/calmodulin/calmodulin-dependent protein kinase (Ca²⁺/CaM/CaMKII) pathway. The α-myosin heavy chain cTnT(R141W) transgenic mouse was previously reported as a model for dilated cardiomyopathy (DCM), and it was used to test the effects of combinations of Rb1 and TMPP in reversing the progression of DCM and the potential mechanism. Survival, echocardiography, histologic features assessed the effectiveness of Rb1 and TMPP treatments. Western blot and reverse transcription polymerase chain reactions were used to determine expression levels of certain genes. This study clearly demonstrated that treatment with a combination of Rb1 and TMPP could inhibit the expression of HB-EGF, calmodulin1 (Calm1), and calcium/calmodulin-dependent protein kinase II beta (Camk2b). Rb1 alone mainly reduced the expression of HB-EGF, and TMPP alone mainly reduced the expression of Calm1 and Camk2b. Treatment with Rb1 and TMPP had synergistic effects on the amelioration of chamber dilation, contractile dysfunction, interstitial fibrosis, and ultrastructural degeneration in cTnT(R141W) mice when compared with the results of treatment with Rb1 or TMPP alone, and those were probably due to the inhibition of both HB-EGF and the Ca²⁺/CaM/CaMKII pathway.
Publication
Journal: Mammalian Genome
July/27/2000
Abstract
In mammals, during fetal development, the eyelids grow and flatten over the eyes and temporarily fuse closed. Failure of this normal developmental process in mice leads to the defect, open-eyelids-at-birth. Nearly all newborns of the GP/Bc strain, homozygous for the spontaneous recessive mutation, gaping lids (gp), have bilateral open eyelids at birth, with essentially no fusion between the upper and lower eyelids. Histological sections and scanning electron microscopy of GP/Bc eyes during the normal period of eyelid growth and fusion indicate that gp/gp mutant fetuses have deficient upper and lower eyelids; surface periderm cells that appear to have some role in eyelid growth and fusion are present, but lack a normal "streaming pattern toward the fusion zone. No other defects due to the gaping lids mutation were detected. A genetic analysis based on outcrosses of GP/Bc to various linkage marker stocks and to CBA/J and ICR/Bc normal strains was done. Penetrance in F(2) segregants, but not in BC1 segregants, was usually significantly less than 100%, was strongly affected by the identity of the normal strain used, ranging from 44% to 92%, and indicated a potential complexity of modifiers. Forty-one affected F(2) and 120 BC(1) segregants from the outcross of GP/Bc to CBA/J, and 23 affected F(2) segregants from the outcross to ICR/Bc, were used to map gp to proximal Chr 11 between the centromere and D11Dal1 (Camk2b), an interval previously defined as less than 1 cM. Sets of whole F(2) litters from the crosses to CBA/J (n = 106) and ICR/Bc (n = 65) strains were typed for informative SSLPs near gp (D11Mit62 and D11Mit74, respectively) and demonstrated that the segregation ratios in the region are Mendelian. The known genes in the interval, Nf2 and Lif, do not seem to be obvious candidate genes for gp. An Egfr-null allele was used to confirm the previously reported map position of the potential candidate locus, Egfr, to a more distal interval, between D11Mit62/226 and D11Mit151, from which gp had been excluded. Tests for allelism showed that the Egfr mutation and the gp mutation complement each other, and therefore also indicate that they are at different gene loci. Open-eyelids-at-birth is associated with several mutations at other loci with variable penetrance owing to modifiers and in other more complex genetic liabilities in inbred strains, and the genetics of this trait is a model for other genetically complex developmental threshold traits. The gaping lids mutation identifies a previously unknown locus on proximal Chromosome (Chr) 11 that has a strong role in fetal eyelid growth.
Publication
Journal: Human Mutation
December/6/2018
Abstract
The abundantly expressed calcium/calmodulin-dependent protein kinase II (CAMK2), alpha (CAMK2A), and beta (CAMK2B) isoforms are essential for learning and memory formation. Recently, a de novo candidate mutation (p.Arg292Pro) in the gamma isoform of CAMK2 (CAMK2G) was identified in a patient with severe intellectual disability (ID), but the mechanism(s) by which this mutation causes ID is unknown. Here, we identified a second, unrelated individual, with a de novo CAMK2G p.Arg292Pro mutation, and used in vivo and in vitro assays to assess the impact of this mutation on CAMK2G and neuronal function. We found that knockdown of CAMK2G results in inappropriate precocious neuronal maturation. We further found that the CAMK2G p.Arg292Pro mutation acts as a highly pathogenic gain-of-function mutation, leading to increased phosphotransferase activity and impaired neuronal maturation as well as impaired targeting of the nuclear CAMK2G isoform. Silencing the catalytic site of the CAMK2G p.Arg292Pro protein reversed the pathogenic effect of the p.Arg292Pro mutation on neuronal maturation, without rescuing its nuclear targeting. Taken together, our results reveal an indispensable function of CAMK2G in neurodevelopment and indicate that the CAMK2G p.Arg292Pro protein acts as a pathogenic gain-of-function mutation, through constitutive activity toward cytosolic targets, rather than impaired targeting to the nucleus.
Publication
Journal: Food and Chemical Toxicology
February/6/2020
Abstract
We attempted to identify cellular mechanisms as an approach to screen chemicals for the potential to cause developmental neurotoxicity. We examine, in SH-SY5Y cells, whether apoptosis and oxidative stress via reactive oxygen species (ROS) generation, caspase 3/7 activation, gene expression (Bax, Bcl-2, Casp-3, BNIP3, p53 and Nrf2) alterations and necrosis by release of cytosolic adenylate kinase (AK), underlie direct effects of the pyrethroids cyfluthrin and alpha-cypermethrin. We also determined transcriptional alterations of genes (TUBB3, NEFL, NEFH, GAP43, CAMK2A, CAMK2B, WNT3A, WNT5A, WNT7A, SYN1 and PIK3C3) linked to neuronal development and maturation. Our results indicate that cyfluthrin and alpha-cypermethrin have the ability to elicit concentration-dependent increases in AK release, cellular ROS production, caspase 3/7 activity and gene expression of apoptosis and oxidative stress mediators. Both pyrethroids caused changes in mRNA expression of key target genes linked to neuronal development. These changes might reflect in a subsequent neuronal dysfunction. Our study shows that SH-SY5Y cell line is a valuable in vitro model for predicting development neurotoxicity. Our research provides evidence that cyfluthrin and alpha-cypermethrin have the potential to act as developmental neurotoxic compounds. Additional information is needed to improve the utility of this in vitro model and/or better understand its predictive capability.
Publication
Journal: Scientific Reports
November/13/2018
Abstract
The loss of skeletal muscle mass is a major cause of falls and fractures in the elderly, leading to compromised independence and a decrease in the quality of life. However, only a few therapeutic interventions leading to marginal clinical benefits in patients with this condition are currently available. Therefore, the demand to further understand the pathology of muscle atrophy and establish a treatment modality for patients with muscle atrophy is significant. p38α mitogen-activated protein kinase (p38α MAPK) is a ubiquitous signaling molecule that is implicated in various cellular functions, including cell proliferation, differentiation, and senescence. In the present study, we generated a mutant line in which p38α MAPK is specifically abrogated in muscle tissues. Compared with the control mice, these mutant mice are significantly resistant to denervation-induced muscle atrophy, suggesting that p38α MAPK positively regulates muscle atrophy. We also identified CAMK2B as a potential downstream target of p38α MAPK and found that the pharmacological inhibition of CAMK2B activity suppresses denervation-induced muscle atrophy. Altogether, our findings identify p38α MAPK as a novel regulator of muscle atrophy and suggest that the suppression of intracellular signaling mediated by p38α MAPK serves as a potential target for the treatment of muscle atrophy.
Publication
Journal: International Journal of Molecular Medicine
August/2/2018
Abstract
The present study aimed to perform microRNA (miRNA/miR) expression profiling of the thalamus (T), the anterior cingulate (AC), the dorsal horn of the spinal cord (DHSC) and the blood (B) in post‑complete brachial plexus avulsion (CBPA) pain model, and analyze biological functions. Neuropathic pain was induced in Sprague‑Dawley rats by CBPA. Animal behavioral tests were performed to differentiate the pain and control groups. DHSC, T, AC and B tissues were collected from the two groups for miRNA array analysis. The predicted mRNA targets were investigated by Gene Ontology analysis and pathway analysis. The results revealed that in the post‑CBPA pain model, there were 10 differentially expressed miRNAs revealed among 4 different tissues. A total of 4 microRNAs in the AC and 3 microRNAs in the T were shown to be significantly upregulated. The functions of the differentially expressed miRNAs in the AC and T were synergetic in the aspect of positive regulation of neuron apoptotic process, inhibition of long‑term potentiation and formation of synapse plasticity. miR‑30c‑1‑3p and its predicted genes [calcium/calmodulin dependent protein kinase IIβ (Camk2b) and protein kinase Cγ (Prkcg)] existed in the AC and T groups with significant changes in expression. There were 2 miRNAs in the DHSC and B groups, respectively, with significant downregulation. The function of the change in miRNAs in the DHSC group was opposite to that in the AC and T groups. The differentially expressed microRNAs in the B group were revealed to be negative for the regulation of cell apoptosis. In conclusion, the central nerve groups (AC and T) and the peripheral nerve group (DHSC) exhibited contrasting effects on synapse plasticity and neuron apoptosis. miR‑30c‑1‑3p and its predicted genes (Camk2b and Prkcg) existed in the AC and T groups with significant changes in expression.
Pulse
Views:
1
Posts:
No posts
Rating:
Not rated
Publication
Journal: International Journal of Clinical and Experimental Medicine
August/14/2014
Abstract
In our previous study using iTRAQ technique we found that the level of calmodulin-dependent protein kinase 2b (Camk2b) was lower in rats with hyperhomocysteinemia. We presumed that Camk2b might be involved in homocysteine-induced apoptosis and tried to explore its role in this study through the transfection with Camk2b gene. Results showed that neurons of HHcy group had lower activity measured by MTT, higher percentage of apoptotic neurons, lower expression levels of Camk2b mRNA and protein than those in normal group. Neurons with overexpression of Camk2b (Camk2b group) had lower percentage of apoptosis and higher activity than those in control group. After exposure to 2-Methoxyestradiol, the activity of neurons with overexpression of Camk2b was suppressed with more apoptotic cells observed. The expressions of BCL2, eNOS, EP300 and EPO were all elevated at both mRNA and protein levels in neurons of CamK2b group compared with other three groups. Thus, Camk2b protects neurons from Homocysteine-induced apoptosis with the involvement of HIF-1α signal pathway.
Publication
Journal: Scientific Reports
February/19/2017
Abstract
Genetic approaches using temporal and brain region-specific restricted gene deletions have provided a wealth of insight in the brain regions and temporal aspects underlying spatial and associative learning. However, for locomotion such extensive studies are still scarce. Previous studies demonstrated that Camk2b(-/-) mice, which lack the β isoform of Calcium/Calmodulin-dependent protein kinase 2 (CAMK2B), show very severe locomotion deficits. However, where these locomotion deficits originate is unknown. Here we made use of novel Camk2b mutants (Camk2b(f/f) and Camk2b(T287A)), to explore the molecular, temporal and brain region-specific requirements of CAMK2B for locomotion. At the molecular level we found that normal locomotion requires Calcium/Calmodulin mediated activation of CAMK2B, but CAMK2B autonomous activity is largely dispensable. At a systems level, we found that global deletion of Camk2b in the adult mouse causes only mild locomotion deficits, suggesting that the severe locomotion deficits of Camk2b(-/-) mice are largely of developmental origin. However, early onset deletion of Camk2b in cerebellum, striatum or forebrain did not recapitulate the locomotion deficits, suggesting that these deficits cannot be attributed to a single brain area. Taken together, these results provide the first insights into the molecular, temporal and region-specific role of CAMK2B in locomotion.
Publication
Journal: BioImpacts
December/16/2020
Abstract
Learning and memory are among higher-order cognitive functions that are based on numerous molecular processes including changes in the expression of genes. To identify genes associated with learning and memory formation, here, we used the RNA-seq (high-throughput mRNA sequencing) technology to compare hippocampal transcriptomes between mice with high and low Morris water maze (MWM) cognitive performance. We identified 88 differentially expressed genes (DEGs) and 24 differentially alternatively spliced transcripts between the high- and low-MWM-performance mice. Although the sets of DEGs and differentially alternatively spliced transcripts did not overlap, both were found to be enriched with genes related to the same type of biological processes: trans-synaptic signaling, cognition, and glutamatergic transmission. These findings were supported by the results of weighted-gene co-expression network analysis (WGCNA) revealing the enrichment of MWM-cognitive-performance-correlating gene modules with very similar Gene Ontology terms. High-MWM-performance mice manifested mostly higher expression of the genes associated with glutamatergic transmission and long-term potentiation implementation, which are processes necessary for memory acquisition and consolidation. In this set, there were genes participating in the regulation of trans-synaptic signaling, primarily AMPA receptor signaling (Nrn1, Nptx1, Homer3, Prkce, Napa, Camk2b, Syt7, and Nrgn) and calcium turnover (Hpca, Caln1, Orai2, Cpne4, and Cpne9). In high-MWM-performance mice, we also demonstrated significant upregulation of the "flip" splice variant of Gria1 and Gria2 transcripts encoding subunits of AMPA receptor. Altogether, our data helped to identify specific genes in the hippocampus that are associated with learning and long-term memory. We hypothesized that the differences in MWM cognitive performance between the mouse groups are linked with increased long-term potentiation, which is mainly mediated by increased glutamatergic transmission, primarily AMPA receptor signaling.
Publication
Journal: American Journal of Obstetrics and Gynecology
November/24/2018
Abstract
BACKGROUND
Abruptio placentae is a complex multifactorial disease that is associated with maternal and neonatal death and morbidity. Abruptio placentae's high recurrence rate, high prevalence of heritable thrombophilia among women with abruptio placentae, and aggregation of cases in families of women with the disease support the possibility of a genetic predisposition. Previous genome-wide and candidate gene association studies have identified single nucleotide polymorphisms in mitochondrial biogenesis and oxidative phosphorylation genes that potentially are associated with abruptio placentae risk. Perturbations in mitochondrial biogenesis and oxidative phosphorylation, which results in mitochondrial dysfunction, can lead to the impairment of differentiation and invasion of the trophoblast and to several obstetrics complications that include abruptio placentae.
OBJECTIVE
The purpose of this study was to determine whether the results of a candidate genetic association study that indicated a link between DNA variants (implicated in mitochondrial biogenesis and oxidative phosphorylation) and abruptio placentae could be replicated.
METHODS
The study was conducted among participants (507 abruptio placentae cases and 1090 control subjects) of the Placental Abruption Genetic Epidemiology study. Weighted genetic risk scores were calculated with the use of abruptio placentae risk-increasing alleles of 11 single nucleotide polymorphisms in 9 mitochondrial biogenesis and oxidative phosphorylation genes (CAMK2B, NR1H3, PPARG, PRKCA, THRB, COX5A, NDUFA10, NDUFA12, and NDUFC2), which previously was reported in the Peruvian Abruptio Placentae Epidemiology study, a study with similar design and study population to the Placental Abruption Genetic Epidemiology study. Logistic regression models were fit to examine associations of weighted genetic risk scores (quartile 1, <25th percentile; quartile 2, 25-50th percentile; quartile 3, 50-70th percentile, and quartile 4, >75th percentile) with risk of abruptio placentae, adjusted for population admixture (the first 4 principal components), maternal age, infant sex, and preeclampsia. The weighted genetic risk score was also modeled as a continuous predictor. To assess potential effect modification, analyses were repeated among strata that were defined by preeclampsia status, maternal age (≥35 vs 18-34 years), and infant sex.
RESULTS
Abruptio placentae cases were more likely to have preeclampsia, shorter gestational age, and lower infant birthweight. Participants in quartile 2 (score, 12.6-13.8), quartile 3 (score, 13.9-15.0) and quartile 4 (score, ≥15.1) had a genetic risk score of 1.45-fold (95% confidence interval, 1.04-2.02; P=.03), a 1.42-fold (95% confidence interval, 1.02-1.98; P=.04), and a 1.75-fold (95% confidence interval, 1.27-2.42; P=7.0E-04) higher odds of abruptio placentae, respectively, compared with those in quartile 1 (score,<12.6; P-for trend=.0003). The risk of abruptio placentae was 1.12-fold (95% confidence interval, 1.05-1.19; P=3.0×1004) higher per 1-unit increase in the score. Among women with preeclampsia, those in quartile 4 had a 3.92-fold (95% confidence interval, 1.48-10.36; P=.01) higher odds of abruptio placentae compared with women in quartile 1. Among normotensive women, women in quartile 4 had a 1.57-fold (95% confidence interval, 1.11-2.21; P=.01) higher odds of abruptio placentae compared with those in quartile 1 (P-for interaction=.12). We did not observe differences in associations among strata defined by maternal age or infant sex.
CONCLUSIONS
In this study, we replicated previous findings and provide strong evidence for DNA variants that encode for genes that are involved in mitochondrial biogenesis and oxidative phosphorylation pathways, which confers risk for abruptio placentae. These results shed light on the mechanisms that implicate DNA variants that encode for proteins in mitochondrial function that are responsible for abruptio placentae risk. Therapeutic efforts to reduce risk of abruptio placentae can be enhanced by improved biologic understanding of maternal mitochondrial biogenesis/oxidative phosphorylation pathways and identification of women who would be at high risk for abruptio placentae.
Publication
Journal: Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie
December/24/2019
Abstract
Acupuncture has long been used for asthma treatment but the underlying mechanism remains unclear. Previous study showed that metallothionein-2 (MT-2) was significantly decreased in asthmatic lung tissue. However, the relationship between acupuncture treatment and MT-2 expression during asthma is still unknown, and the detailed effect analysis of MT-2 on phosphorylation in airway smooth muscle cells (ASMCs) is also unclear.The acupuncture effect on pulmonary resistance (RL) was investigated in a rat model of asthma, and the mRNA and protein levels of MT-2 in lung tissue were detected. Primary ASMCs were isolated and treated with MT-2 recombinant protein to study the MT-2 effects on ASMC relaxation. A Phospho Explorer antibody microarray was applied to detect protein phosphorylation changes associated with MT-2-induced ASMC relaxation. Bioinformatic analysis were performed with PANTHER database, DAVID and STRING. Phosphorylation changes in key proteins were confirmed by Western blot.Acupuncture significantly reduced RL at 2-5 min (P < 0.05 vs asthma) in asthmatic rats. Acupuncture continued to increase MT-2 mRNA expression in lung tissue for up to 14 days (P < 0.05 vs asthma). The MT-2 protein expression was significantly decreased in the asthmatic rats (P < 0.05 vs control), while MT-2 protein expression was significantly increased in the asthmatic model group treated with acupuncture (P < 0.05 vs asthma). Primary ASMCs were successfully isolated and recombinant MT-2 protein (100, 200, 400 ng/ml) significantly relaxed ASMCs (P < 0.05 vs control). MT-2 induced phosphorylation changes in 51 proteins. Phosphorylation of 14 proteins were upregulated while 37 proteins were downregulated. PANTHER classification revealed eleven functional groups, and the phosphorylated proteins were identified as transferases (27.8 %), calcium-binding proteins (11.1 %), etc. DAVID functional classification showed that the phosphorylated proteins could be attributed to eight functions, including protein phosphorylation and regulation of GTPase activity. STRING protein-protein interaction network analysis showed that Akt1 was one of the most important hubs for the phosphorylated proteins. The phosphorylation changes of Akt1 and CaMK2β were consistent in both the Phospho Explorer antibody microarray and Western blot.Acupuncture can significantly ameliorate RL, and the MT-2 mRNA and protein levels in lung tissue are increased during treatment. MT-2 significantly relaxes ASMCs and induces a series of protein phosphorylation. These phosphorylation changes, including Akt1 and CaMK2β, may play important roles in the therapeutic effects of acupuncture on asthma.
Publication
Journal: Progress in Neuro-Psychopharmacology and Biological Psychiatry
June/22/2020
Abstract
The neurodevelopmental hypothesis of schizophrenia has been widely accepted. In light of our previous microarray data, two neurodevelopment-related genes were focused on inclduing the N-acylsphingosine amidohydrolase 1 gene (ASAH1) and the nerve growth factor gene (NGF). The evidence that ASAH1 and NGF are associated with schizophrenia is far from conclusive. Furthermore, their interactions in schizophrenia have not been investigated. Total 413 patients and 578 controls were included. Eleven single-nucleotide polymorphisms (SNPs) in ASAH1 and NGF were selected. A multifactor dimensionality reduction (MDR) was applied to investigate gene-gene interactions in schizophrenia, and the traditional odds ratio methods was applied to validate it. The effects of ASAH1, NGF and their interaction on the severity of the disease were analyzed by 3 × 3 covariance analysis of (ANCOVA). The biological interaction between ASAH1 and NGF was examined. KEGG was used to identify the related signaling pathways. After correction by Bonferroni, there were no differences in the genotypic, allelic, or haplotypic frequencies of 11 SNPs between patients and controls. However, the interaction of certain SNPs had effect on susceptibility to schizophrenia, including two high-risk and one low-risk genotypic combinations (OR = 1.49 [1.11-2.00]; OR = 1.45 [1.09-1.92], and OR = 0.64 [0.41-0.98]). ASAH1-rs7830490 and its interaction with NGF-rs4332358 were associated with the general psychopathological subscale score (F adjusted = 3.94, p adjusted = 0.01; F adjusted = 2.36, p adjusted = 0.03). We also found that ASAH1 and NGF interacted with CaMK2B involving in the neurotrophin signaling pathway. Our results suggest that the interaction of ASAH1 and NGF with CaMK2B involved in neurotrophin signaling pathway may contribute to schizophrenia susceptibility and psychopathology.
Keywords: ASAH1; Interaction; NGF; Schizophrenia.
load more...