Citations
All
Search in:AllTitleAbstractAuthor name
Publications
(5K+)
Patents
Grants
Pathways
Clinical trials
The language you are using is not recognised as English. To correctly search in your language please select Search and translation language
Publication
Journal: Analytical Chemistry
December/1/2004
Abstract
Human serum contains a complex array of proteolytically derived peptides (serum peptidome) that may provide a correlate of biological events occurring in the entire organism; for instance, as a diagnostic for solid tumors (Petricoin, E. F.; Ardekani, A. M.; Hitt, B. A.; Levine, P. J.; Fusaro, V. A.; Steinberg, S. M.; Mills, G. B.; Simone, C.; Fishman, D. A.; Kohn, E. C.; Liotta, L. Lancet 2002, 359, 572-577). Here, we describe a novel, automated technology platform for the simultaneous measurement of serum peptides that is simple, scalable, and generates highly reproducible patterns. Peptides are captured and concentrated using reversed-phase (RP) batch processing in a magnetic particle-based format, automated on a liquid handling robot, and followed by a MALDI TOF mass spectrometric readout. The protocol is based on a detailed investigation of serum handling, RP ligand and eluant selection, small-volume robotics design, an optimized spectral acquisition program, and consistent peak extraction plus binning across a study set. The improved sensitivity and resolution allowed detection of 400 polypeptides (0.8-15-kDa range) in a single droplet (approximately 50 microL) of serum, and almost 2000 unique peptides in larger sample sets, which can then be analyzed using common microarray data analysis software. A pilot study indicated that sera from brain tumor patients can be distinguished from controls based on a pattern of 274 peptide masses. This, in turn, served to create a learning algorithm that correctly predicted 96.4% of the samples as either normal or diseased.
Publication
Journal: BJU International
March/10/2013
Abstract
OBJECTIVE
To update the 2007 Partin tables in a contemporary patient population.
METHODS
The study population consisted of 5,629 consecutive men who underwent RP and staging lymphadenectomy at the Johns Hopkins Hospital between January 1, 2006 and July 30, 2011 and met inclusion criteria. Polychotomous logistic regression analysis was used to predict the probability of each pathologic stage category: organ-confined disease (OC), extraprostatic extension (EPE), seminal vesicle involvement (SV+), or lymph node involvement (LN+) based on preoperative criteria. Preoperative variables included biopsy Gleason score (6, 3+4, 4+3, 8, and 9-10), serum PSA (0-2.5, 2.6-4.0, 4.1-6.0, 6.1-10.0, greater than 10.0 ng/mL), and clinical stage (T1c, T2c, and T2b/T2c). Bootstrap re-sampling with 1000 replications was performed to estimate 95% confidence intervals for predicted probabilities of each pathologic state.
RESULTS
The median PSA was 4.9 ng/mL, 63% had Gleason 6 disease, and 78% of men had T1c disease. 73% of patients had OC disease, 23% had EPE, 3% had SV+ but not LN+, and 1% had LN+ disease. Compared to the previous Partin nomogram, there was no change in the distribution of pathologic state. The risk of LN+ disease was significantly higher for tumours with biopsy Gleason 9-10 than Gleason 8 (O.R. 3.2, 95% CI 1.3-7.6). The c-indexes for EPE vs. OC, SV+ vs. OC, and LN+ vs. OC were 0.702, 0.853, and 0.917, respectively. Men with biopsy Gleason 4+3 and Gleason 8 had similar predicted probabilities for all pathologic stages. Most men presenting with Gleason 6 disease or Gleason 3+4 disease have <2% risk of harboring LN+ disease and may have lymphadenectomy omitted at RP.
CONCLUSIONS
The distribution of pathologic stages did not change at our institution between 2000-2005 and 2006-2011. The updated Partin nomogram takes into account the updated Gleason scoring system and may be more accurate for contemporary patients diagnosed with prostate cancer.
Publication
Journal: Journal of Clinical Oncology
September/15/2009
Abstract
OBJECTIVE
In search of reliable biologic markers to predict the risk of normal tissue damage by radio(chemo)therapy before treatment, we investigated the association between single nucleotide polymorphisms (SNPs) in the transforming growth factor 1 (TGFbeta1) gene and risk of radiation pneumonitis (RP) in patients with non-small-cell lung cancer (NSCLC).
METHODS
Using 164 available genomic DNA samples from patients with NSCLC treated with definitive radio(chemo)therapy, we genotyped three SNPs of the TGFbeta1 gene (rs1800469:C-509T, rs1800471:G915C, and rs1982073:T869C) by polymerase chain reaction restriction fragment length polymorphism method. We used Kaplan-Meier cumulative probability to assess the risk of grade>> or = 3 RP and Cox proportional hazards analyses to evaluate the effect of TGFbeta1 genotypes on such risk.
RESULTS
There were 90 men and 74 women in the study, with median age of 63 years. Radiation doses ranging from 60 to 70 Gy (median = 63 Gy) in 30 to 58 fractions were given to 158 patients (96.3%) and platinum-based chemotherapy to 147 (89.6%). Grade>> or = 2 and grade>> or = 3 RP were observed in 74 (45.1%) and 36 patients (22.0%), respectively. Multivariate analysis found CT/CC genotypes of TGFbeta1 rs1982073:T869C to be associated with a statistically significantly lower risk of RP grades>> or = 2 (hazard ratio [HR] = 0.489; 95% CI, 0.227 to 0.861; P = .013) and grades>> or = 3 (HR = 0.390; 95% CI, 0.197 to .774; P = 0.007), respectively, compared with the TT genotype, after adjustment for Karnofsky performance status, smoking status, pulmonary function, and dosimetric parameters.
CONCLUSIONS
Our results showed that CT/CC genotypes of TGFbeta1 rs1982073:T869C gene were associated with lower risk of RP in patients with NSCLC treated with definitive radio(chemo)therapy and thus may serve as a reliable predictor of RP.
Publication
Journal: European Urology
February/22/2015
Abstract
BACKGROUND
Few data exist regarding the impact on survival of definitive treatment of the prostate in men diagnosed with metastatic prostate cancer (mPCa).
OBJECTIVE
To evaluate the survival of men diagnosed with mPCa based on definitive treatment of the prostate.
METHODS
Men with documented stage IV (M1a-c) PCa at diagnosis identified using Surveillance Epidemiology and End Results (SEER) (2004-2010) and divided based on definitive treatment of the prostate (radical prostatectomy [RP] or brachytherapy [BT]) or no surgery or radiation therapy (NSR).
METHODS
Kaplan-Meier methods were used to calculate overall survival (OS). Multivariable competing risks regression analysis was used to calculate disease-specific survival (DSS) probability and identify factors associated with cause-specific mortality (CSM).
CONCLUSIONS
A total of 8185 patients were identified: NSR (n=7811), RP (n=245), and BT (n=129). The 5-yr OS and predicted DSS were each significantly higher in patients undergoing RP (67.4% and 75.8%, respectively) or BT (52.6 and 61.3%, respectively) compared with NSR patients (22.5% and 48.7%, respectively) (p<0.001). Undergoing RP or BT was each independently associated with decreased CSM (p<0.01). Similar results were noted regardless of the American Joint Committee on Cancer (AJCC) M stage. Factors associated with increased CSM in patients undergoing local therapy included AJCC T4 stage, high-grade disease, prostate-specific antigen ≥20 ng/ml, age ≥70 yr, and pelvic lymphadenopathy (p<0.05). The major limitation of this study was the lack of variables from SEER known to influence survival of patients with mPCa, including treatment with systemic therapy.
CONCLUSIONS
Definitive treatment of the prostate in men diagnosed with mPCa suggests a survival benefit in this large population-based study. These results should serve as a foundation for future prospective trials.
RESULTS
We used a large population-based cancer database to examine survival in men diagnosed with metastatic prostate cancer (mPCa) undergoing definitive therapy for the prostate. Local therapy (LT) appeared to confer a survival benefit. Therefore, we conclude that prospective trials are needed to further evaluate the role of LT in mPCa.
Publication
Journal: Journal of Clinical Microbiology
September/21/1995
Abstract
The genetic homogeneity of nine commensal and infecting populations of Candida albicans has been assessed by fingerprinting multiple isolates from each population by Southern blot hybridization first with the Ca3 probe and then with the 0.98-kb CCa3 probe. The isolates from each population were highly related, demonstrating the clonal origin of each population, but each population contained minor variants, demonstrating microevolution. Variation in each case was limited to bands of the Ca3 fingerprint pattern which hybridized with the 0.98-kb CCRPS repetitive element. The CRPS element. These results, therefore, demonstrate that most colonizing C. albicans populations in nonimmuno-suppressed patients are clonal, that microevolution can be detected in every colonizing population by CCRPS element.
Publication
Journal: Investigative Ophthalmology and Visual Science
March/6/1994
Abstract
OBJECTIVE
To test rigorously the hypothesis that the a-wave of the electroretinogram (ERG) is proportional to the rod photocurrent by examining the applicability to a-waves of a recent model of the activation steps in the G-protein cascade of phototransduction.
METHODS
ERGs were recorded in response to flashes of graded intensity, from six dark-adapted normal subjects and from two patients, one with retinitis pigmentosa (RP) and one with cone retinal dystrophy with rod involvement (CRD). The a-wave portions of the responses were analyzed with a model of the activation steps of the G-protein cascade. The model is characterized by a parameter, A, the amplification constant, with units of s-2 (per photoisomerization), which may be expressed as the product of physical and biochemical parameters of the transduction cascade.
RESULTS
Each a-wave family was well described by the model. For the six normal subjects, we obtained A approximately 7 s-2, about 100-fold greater than in isolated amphibian rods at 22 degrees C, but close to the value for isolated primate rods. For the patient with RP, the maximum a-wave amplitude (amax) was considerably reduced, but the amplification constant was normal (A = 7.5 s-2). In contrast, the patient with CRD had a nearly normal amax but had an amplification constant about sixfold lower than normal (A = 1.1 s-2).
CONCLUSIONS
The authors conclude that the a-wave is a direct reflection of the rod photo-current and that the rising phase kinetics are accurately described by a simple model of the G-protein cascade. They show that the small volume of the human rod outer segment is crucial to the achievement of high amplification, and they show how their observations constrain the possible pathologies of phototransduction in patients with retinal disease.
Publication
Journal: Neuron
February/24/2000
Abstract
During spinal cord development, commissural (C) neurons, located near the dorsal midline, send axons ventrally and across the floor plate (FP). The trajectory of these axons toward the FP is guided in part by netrins. The mechanisms that guide the early phase of C axon extension, however, have not been resolved. We show that the roof plate (RP) expresses a diffusible activity that repels C axons and orients their growth within the dorsal spinal cord. Bone morphogenetic proteins (BMPs) appear to act as RP-derived chemorepellents that guide the early trajectory of the axons of C neurons in the developing spinal cord: BMP7 mimics the RP repellent activity for C axons in vitro, can act directly to collapse C growth cones, and appears to serve an essential function in RP repulsion of C axons.
Publication
Journal: Biochemical Journal
February/20/2003
Abstract
Glucagon-like peptide-1 (GLP-1) is a potent regulator of glucose-stimulated insulin secretion whose mechanisms of action are only partly understood. In the present paper, we show that at low (3 mM) glucose concentrations, GLP-1 increases the free intramitochondrial concentrations of both Ca(2+) ([Ca(2+)](m)), and ATP ([ATP](m)) in clonal MIN6 beta-cells. Suggesting that cAMP-mediated release of Ca(2+) from intracellular stores is responsible for these effects, increases in [ATP](m) that were induced by GLP-1 were completely blocked by the Rp isomer of adenosine-3',5'-cyclic monophosphothioate (Rp-cAMPS), or by chelation of intracellular Ca(2+). Furthermore, inhibition of Ins(1,4,5) P (3) (IP(3)) receptors with xestospongin C, or application of ryanodine, partially inhibited GLP-1-induced [ATP](m) increases, and the simultaneous blockade of both IP(3) and ryanodine receptors (RyR) completely eliminated the rise in [ATP](m). GLP-1 appeared to prompt Ca(2+)-induced Ca(2+) release through IP(3) receptors via a protein kinase A (PKA)-mediated phosphorylation event, since ryanodine-insensitive [ATP](m) increases were abrogated with the PKA inhibitor, H89. In contrast, the effects of GLP-1 on RyR-mediated [ATP](m) increases were apparently mediated by the cAMP-regulated guanine nucleotide exchange factor cAMP-GEFII, since xestospongin C-insensitive [ATP](m) increases were blocked by a dominant-negative form of cAMP-GEFII (G114E,G422D). Taken together, these results demonstrate that GLP-1 potentiates glucose-stimulated insulin release in part via the mobilization of intracellular Ca(2+), and the stimulation of mitochondrial ATP synthesis.
Publication
Journal: Molecular and Cellular Biology
July/5/2000
Abstract
The transcription of ribosomal DNA, ribosomal protein (RP) genes, and 5S and tRNA genes by RNA polymerases (Pols) I, II, and III, respectively, is rapidly and coordinately repressed upon interruption of the secretory pathway in Saccharomyces cerevisiae. We find that repression of ribosome and tRNA synthesis in secretion-defective cells involves activation of the cell integrity pathway. Transcriptional repression requires the upstream components of this pathway, including the Wsc family of putative plasma membrane sensors and protein kinase C (PKC), but not the downstream Bck1-Mkk1/2-Slt2 mitogen-activated protein kinase cascade. These findings reveal a novel PKC effector pathway that controls more than 85% of nuclear transcription. It is proposed that the coordination of ribosome and tRNA synthesis with cell growth may be achieved, in part, by monitoring the turgor pressure of the cell.
Publication
Journal: Learning and Memory
November/20/2000
Abstract
Long-term habituation to a novel environment is one of the most elementary forms of nonassociative learning. Here we studied the effect of pre- or posttraining intrahippocampal administration of drugs acting on specific molecular targets on the retention of habituation to a 5-min exposure to an open field measured 24 h later. We also determined whether the exposure to a novel environment resulted in the activation of the same intracellular signaling cascades previously shown to be activated during hippocampal-dependent associative learning. The immediate posttraining bilateral infusion of CNQX (1 microg/side), an AMPA/kainate glutamate receptor antagonist, or of muscimol (0.03 microg/side), a GABA(A) receptor agonist, into the CA1 region of the dorsal hippocampus impaired long-term memory of habituation. The NMDA receptor antagonist AP5 (5 microg/side) impaired habituation when infused 15 min before, but not when infused immediately after, the 5-min training session. In addition, KN-62 (3.6 ng/side), an inhibitor of calcium calmodulin-dependent protein kinase II (CaMKII), was amnesic when infused 15 min before or immediately and 3 h after training. In contrast, the cAMP-dependent protein kinase (PKA) inhibitor Rp-cAMPS, the mitogen-activated protein kinase kinase (MAPKK) inhibitor PD098059, and the protein synthesis inhibitor anisomycin, at doses that fully block memory formation of inhibitory avoidance learning, did not affect habituation to a novel environment. The detection of spatial novelty is associated with a sequential activation of PKA, ERKs (p44 and p42 MAPKs) and CaMKII and the phosphorylation of c-AMP responsive element-binding protein (CREB) in the hippocampus. These findings suggest that memory formation of spatial habituation depends on the functional integrity of NMDA and AMPA/kainate receptors and CaMKII activity in the CA1 region of the hippocampus and that the detection of spatial novelty is accompanied by the activation of at least three different hippocampal protein kinase signaling cascades.
Publication
Journal: BJU International
July/15/2007
Abstract
OBJECTIVE
To assess the value of positron emission tomography (PET)/computed tomography (CT) with either (18)F-choline and/or (11)C-acetate, of residual or recurrent tumour after radical prostatectomy (RP) in patients with a prostate-specific antigen (PSA) level of <1 ng/mL and referred for adjuvant or salvage radiotherapy.
METHODS
In all, 22 PET/CT studies were performed, 11 with (18)F-choline (group A) and 11 with (11)C-acetate (group B), in 20 consecutive patients (two undergoing PET/CT scans with both tracers). The median (range) PSA level before PET/CT was 0.33 (0.08-0.76) ng/mL. Endorectal-coil magnetic resonance imaging (MRI) was used in 18 patients. Nineteen patients were eligible for evaluation of biochemical response after salvage radiotherapy.
RESULTS
There was abnormal local tracer uptake in five and six patients in group A and B, respectively. Except for a single positive obturator lymph node, there was no other site of metastasis. In the two patients evaluated with both tracers there was no pathological uptake. Endorectal MRI was locally positive in 15 of 18 patients; 12 of 19 responded with a marked decrease in PSA level (half or more from baseline) 6 months after salvage radiotherapy.
CONCLUSIONS
Although (18)F-choline and (11)C-acetate PET/CT studies succeeded in detecting local residual or recurrent disease in about half the patients with PSA levels of <1 ng/mL after RP, these studies cannot yet be recommended as a standard diagnostic tool for early relapse or suspicion of subclinical minimally persistent disease after surgery. Endorectal MRI might be more helpful, especially in patients with a low likelihood of distant metastases. Nevertheless, further research with (18)F-choline and/or (11)C-acetate PET with optimal spatial resolution might be needed for patients with a high risk of distant relapse after RP even at low PSA values.
Publication
Journal: CNS Neuroscience and Therapeutics
January/2/2013
Abstract
OBJECTIVE
To determine the extent to which autophagy contributes to neuronal death in cerebral hypoxia and ischemia.
METHODS
We performed immunocytochemistry, western blot, cell viability assay, and electron microscopy to analyze autophagy activities in vitro and in vivo.
RESULTS
In both primary cortical neurons and SH-SY5Y cells exposed to oxygen and glucose deprivation (OGD)for 6 h and reperfusion (RP) for 24, 48, and 72 h, respectively, an increase of autophagy was observed as determined by the increased ratio of LCCCN1) expression. Using Fluoro-Jade C and monodansylcadaverine double-staining, and electron microscopy we found the increment in autophagy after OGD/RP was accompanied by increased autophagic cell death, and this increased cell death was inhibited by the specific autophagy inhibitor, 3-methyladenine. The presence of large autolysosomes and numerous autophagosomes in cortical neurons were confirmed by electron microscopy. Autophagy activities were increased dramatically in the ischemic brains 3-7 days postinjury from a rat model of neonatal cerebral hypoxia/ischemia as shown by increased punctate LCCN1 expression.
CONCLUSIONS
Excessive activation of autophagy contributes to neuronal death in cerebral ischemia.
Publication
Journal: American Journal of Human Genetics
December/21/2009
Abstract
Mutations in genes associated with the U4/U6-U5 small nuclear ribonucleoprotein (snRNP) complex of the spliceosome are implicated in autosomal-dominant retinitis pigmentosa (adRP), a group of progressive retinal degenerative disorders leading to visual impairment, loss of visual field, and even blindness. We recently assigned a locus (RPRP to 2cen-q12.1, a region that harbors the SNRNP200 gene encoding hBrr2, another U4/U6-U5 snRNP component that is required for unwinding of U4/U6 snRNAs during spliceosome activation and for disassembly of the spliceosome. Here, we report the identification of a missense mutation, c.3260C>T (p.S1087L), in exon 25 of the SNRNP200 gene in an RPc.3260C>T substitution showed complete cosegregation with the retinitis pigmentosa (RP) phenotype over four generations, but was absent in a panel of 400 controls. The p.S1087L mutation and p.R1090L, another adRP-associated allele, reside in the "ratchet" helix of the first of two Seccated in the directionality and processivity of nucleic acid unwinding. Indeed, marked defects in U4/U6 unwinding, but not U4/U6-U5 snRNP assembly, were observed in budding yeast for the analogous mutations (N1104L and R1107L) of the corresponding Brr2p residues. The linkage of hBrr2 to adRP suggests that the mechanism of pathogenesis for splicing-factor-related RP may fundamentally derive from a defect in hBrr2-dependent RNA unwinding and a consequent defect in spliceosome activation.
Publication
Journal: Neurochemical Research
April/7/1992
Abstract
In this study, we describe the lipoperoxidative effect of quinolinic acid (QUIN) in vitro. The formation of thiobarbituric acid reactive products (TBA-RP), an index of lipid peroxidation, was measured in rat brain homogenates after incubation at 37 degrees C for 30 min in the presence of QUIN and some structurally and metabolically related compounds such as Kynurenine, Kynurenic acid, Glutamate, Aspartate and Kainate. Concentrations of QUIN in the range of 20 to 80 microM increased lipid peroxidation in a concentration-dependent manner from about 15% to about 50%. Kynurenic acid, a compound metabollically related to QUIN that can block its neurotoxic actions in vivo, also inhibited completely the QUIN-induced TBA-RP formation in our system. Lipid fluorescent material, another index of lipid peroxidation was also found increased by 49% after incubation with 40 microM QUIN. It is concluded that lipid peroxidation may be a damaging process involved in the neurotoxicity of QUIN.
Publication
Journal: PLoS ONE
September/2/2014
Abstract
Retinitis pigmentosa (RP) and Leber congenital amaurosis (LCA) are major causes of blindness. They result from mutations in many genes which has long hampered comprehensive genetic analysis. Recently, targeted next-generation sequencing (NGS) has proven useful to overcome this limitation. To uncover "hidden mutations" such as copy number variations (CNVs) and mutations in non-coding regions, we extended the use of NGS data by quantitative readout for the exons of 55 RP and LCA genes in 126 patients, and by including non-coding 5' exons. We detected several causative CNVs which were key to the diagnosis in hitherto unsolved constellations, e.g. hemizygous point mutations in consanguineous families, and CNVs complemented apparently monoallelic recessive alleles. Mutations of non-coding exon 1 of EYS revealed its contribution to disease. In view of the high carrier frequency for retinal disease gene mutations in the general population, we considered the overall variant load in each patient to assess if a mutation was causative or reflected accidental carriership in patients with mutations in several genes or with single recessive alleles. For example, truncating mutations in RPRP, were causative in biallelic constellations, unrelated to disease when heterozygous on a biallelic mutation background of another gene, or even non-pathogenic if close to the C-terminus. Patients with mutations in several loci were common, but without evidence for di- or oligogenic inheritance. Although the number of targeted genes was low compared to previous studies, the mutation detection rate was highest (70%) which likely results from completeness and depth of coverage, and quantitative data analysis. CNV analysis should routinely be applied in targeted NGS, and mutations in non-coding exons give reason to systematically include 5'-UTRs in disease gene or exome panels. Consideration of all variants is indispensable because even truncating mutations may be misleading.
Publication
Journal: Journal of Neurochemistry
February/6/2006
Abstract
Repeated cocaine administration to rats outside their home cages sensitizes the behavioral effects of the drug, and enhances induction of the immediate early gene product Fos in nucleus accumbens. We hypothesized that the same treatment regimen would also enhance cocaine-induced activation of intracellular signaling kinases that phosphorylate cyclic AMP-regulated element-binding protein (CREB), an important mediator of c-fos transcription. Phosphorylation levels of extracellular signal-regulated kinase (ERK)/mitogen-activated protein kinase (MAPK), calcium/calmodulin kinases (CaMKs) II and IV, and CREB were used to assess endogenous functional activity of these signaling molecules in rats behaviorally sensitized outside their home cages. Protein kinase A (PKA)-specific phosphorylation of Ser845 in the alpha-amino-3-hydroxy-5-methylisoxazole-4-propionate (AMPA) receptor subunit GluR1 was used to assess endogenous functional activity of PKA. Using western blots and immunohistochemistry, we detected cocaine-induced CREB phosphorylation after repeated cocaine administration, but not after repeated saline administration. Using western blots and MAPK activity assays, we found that cocaine-induced phosphorylation and activation of ERK, but not of CaMKs II or IV or GluR1, was augmented in nucleus accumbens of cocaine-sensitized rats. Unilateral infusions of the MAPK kinase inhibitor U0126 into nucleus accumbens attenuated cocaine-induced ERK and CREB phosphorylation in cocaine-sensitized rats. In contrast, unilateral infusions of the PKA inhibitor Rp-isomer of adenosine-3',5'-cyclicmonophosphorothioate (Rp-cAMPs) did not affect cocaine-induced CREB phosphorylation. Therefore, enhanced activation of ERK, but not PKA, enables and mediates cocaine-induced CREB phosphorylation in nucleus accumbens of rats that are sensitized by repeated cocaine administration outside their home cages.
Publication
Journal: Nature Genetics
February/23/1998
Abstract
A recessive mutation in the tub gene causes obesity, deafness and retinal degeneration in tubby mice. The tub gene is a member of a family of tubby-like genes (TULPs) that encode proteins of unknown function. Members of this family have been identified in plants, vertebrates and invertebrates. The TULP proteins share a conserved carboxy-terminal region of approximately 200 amino-acid residues. Here we report the analysis of the human gene TULP1, which is expressed specifically in the retina. Upon analysing 162 patients with nonsyndromic recessive retinitis pigmentosa (RP) and 374 simplex cases of RP, we found two who were compound heterozygotes for mutations that cosegregated with disease in the respective families. Three of the mutations are missense changes affecting the conserved C-terminal region; the fourth mutation affects a splice donor site upstream of this region. Our data suggest that mutations in TULP1 are a rare cause of recessive RP and indicate that TULP1 has an essential role in the physiology of photoreceptors.
Publication
Journal: British Journal of Ophthalmology
June/16/2013
Abstract
BACKGROUND
Retinal prosthesis systems (RPS) are a novel treatment for profound vision loss in outer retinal dystrophies. Ideal prostheses would offer stable, long-term retinal stimulation and reproducible spatial resolution in a portable form appropriate for daily life.
METHODS
We report a prospective, internally controlled, multicentre trial of the Argus II system. Twenty-eight subjects with light perception vision received a retinal implant. Controlled, closed-group, forced-choice letter identification, and, open-choice two-, three- and four-letter word identification tests were carried out.
RESULTS
The mean±SD percentage correct letter identification for 21 subjects tested were: letters L, T, E, J, F, H, I, U, 72.3±24.6% system on and 17.7±12.9% system off; letters A, Z, Q, V, N, W, O, C, D, M, 55.0±27.4% system on and 11.8%±10.7% system off, and letters K, R, G, X, B, Y, S, P, 51.7±28.9% system on and 15.3±7.4% system off. (p<0.001 for all groups). A subgroup of six subjects was able to consistently read letters of reduced size, the smallest measuring 0.9 cm (1.7°) at 30 cm, and four subjects correctly identify unrehearsed two-, three- and four-letter words. Average implant duration was 19.9 months.
CONCLUSIONS
Multiple blind subjects fitted with the Argus II system consistently identified letters and words using the device, indicating reproducible spatial resolution. This, in combination with stable, long-term function, represents significant progress in the evolution of artificial sight.
Publication
Journal: Biochemistry
June/19/1991
Abstract
Although melittin's hemolytic activity has been extensively studied, the orientation of membrane-bound melittin remains uncertain. We have investigated the effect of individually omitted amino acid residues on melittin's activity and related these results to the existing models of melittin-membrane interaction. The extent of hemolysis of the omission analogues closely followed the four known conformational regions of melittin: omission of any of the residues making up the two alpha-helical regions decreased the hemolytic activity relative to melittin, while omission of any of the residues making up the "hinge" or the C-terminal regions had little or no effect. Our results correlate best with a proposed model in which melittin initially forms "holes" in the membrane, resulting in an initial rapid loss of hemoglobin; the membrane-bound melittin is then internalized into the membrane, resulting in a later slow phase of hemoglobin loss. It was also found that induced structural effects caused by peptide-lipid interactions could be studied by using RP-HPLC, with an excellent correlation found between the retention times of the individual omission analogues and their hemolytic activities.
Publication
Journal: Journal of Molecular Biology
July/9/2002
Abstract
The kinetics of interaction of Esigma(70) RNA polymerase (R) with the lambdaP(R) promoter (P) were investigated by filter binding over a broad range of temperatures (7.3-42 degrees C) and concentrations of RNA polymerase (1-123 nM) in large excess over promoter DNA. Under all conditions examined, the kinetics of formation of competitor-resistant complexes (I(2), RP(o)) are single-exponential with first order rate constant beta(CR). Interpretation of the polymerase concentration dependence of beta(CR) in terms of the three step mechanism of open complex formation yields the equilibrium constant K(1) for formation of the first kinetically significant intermediate (I(1)) and the forward rate constant (k(2)) for the conformational change converting I(1) to the second kinetically significant intermediate I(2): R + P->>(K(1))<--I(1)(k(2))->>I(2). Use of rapid quench mixing allows K(1) and k(2) to be individually determined over the entire temperature range investigated, previously not possible at this promoter using manual mixing. Given the large (>60 bp) interface formed in I(1), its relatively small binding constant K(1) at 37 degrees C at this [salt] (approximately 6 x 10(6) M(-1)) strongly argues that binding free energy is used to drive large-scale structural changes in polymerase and/or promoter DNA or other coupled processes. Evidence for coupling of protein folding is provided by the large and negative activation heat capacity of k(a)[DeltaC(o,++)(a)= -1.5(+/-0.2)kcal K(-1)], now shown to originate directly from formation of I(1) [DeltaC(o)(1)= -1.4(+/-0.3)kcal K(-1)] rather than from the formation of I(2) as previously proposed. The isomerization I(1)->>I(2) exhibits relatively slow kinetics and has a very large temperature-independent Arrhenius activation energy [E(act)(2)= 34(+/-2)kcal]. This kinetic signature suggests that formation of the transition state (I(1)-I(2)++ involves large conformational changes dominated by changes in the exposure of polar and/or charged surface to water. Structural and biochemical data lead to the following hypotheses to interpret these results. We propose that formation of I(1) involves coupled folding of unstructured regions of polymerase (beta, beta' and sigma(70)) and bending of promoter DNA (in the -10 region). We propose that interactions with region 2 of sigma(70) and possibly domain 1 of beta induce a kink at the -11/-12 base pairs of the lambdaP(R) promoter which places the downstream DNA (-5 to +20) in the jaws of the beta and beta' subunits of polymerase in I(1). These early interactions of beta and beta' with the DNA downstream of position -5 trigger jaw closing (with coupled folding) and subsequent steps of DNA opening.
Publication
Journal: Journal of Proteome Research
January/1/2008
Abstract
MALDI imaging mass spectrometry represents a new analytical tool to directly provide the spatial distribution and relative abundance of proteins in tissue. Twenty-five ovary carcinomas (stages III and IV) and 23 benign ovaries were directly analyzed using MALDI-TOF MS. The biomarker with the major prevalence (80%) has been fully identified using MALDI MS and nanoESI MS and MS/MS after separation by RP-HPLC and trypsin enzymatic digestion. This marker with an m/z of 9744 corresponds to 84 amino acid residues from the 11S proteasome activator complex, named PA28 or Reg-alpha. Validation of this marker has been performed using MALDI imaging, classical immunocytochemistry with an antibody raised against the C-terminal part of the protein, specific MALDI imaging, and Western blot analysis. The validation, using immunocytochemistry, confirmed the epithelial localization of this fragment with nucleus localization in benign epithelial cells and a cytoplasmic localization in carcinoma cells. This indicates that this antibody could be used to discriminate the borderline tumor cases. At this point, a multicentric study needs to be conducted in order to clearly establish the potential of this biomarker. Taken together these studies reflect that direct tissue analysis and specific MALDI imaging strategies facilitate biomarker hunting and validation which can be named pathological proteomics.
Publication
Journal: Journal of Chromatography A
July/26/2009
Abstract
The chemical analysis and quality control of Ginkgo leaves, extracts, phytopharmaceuticals and some herbal supplements is comprehensively reviewed. The review is an update of a similar, earlier review in this journal [T.A. van Beek, J. Chromatogr. A 967 (2002) 21-55]. Since 2001 over 3000 papers on Ginkgo biloba have appeared, and about 400 of them pertain to chemical analysis in a broad sense and are cited herein. The more important ones are discussed and, where relevant, compared with the best methods published prior to 2002. In the same period over 2500 patents were filed on Ginkgo and the very few related to analysis are mentioned as well. Important constituents include terpene trilactones, i.e. ginkgolide A, B, C, J and bilobalide, flavonol glycosides, biflavones, proanthocyanidins, alkylphenols, simple phenolic acids, 6-hydroxykynurenic acid, 4-O-methylpyridoxine and polyprenols. In the most common so-called "standardised" Ginkgo extracts and phytopharmaceuticals several of these classes are no longer present. About 130 new papers deal with the analysis of the terpene trilactones. They are mostly extracted with methanol or water or mixtures thereof. Supercritical fluid extraction and pressurised water extraction are also possible. Sample clean-up is mostly by liquid-liquid extraction with ethyl acetate although no sample clean-up at all in combination with LC/MS/MS is gaining in importance. Separation and detection can be routinely carried out by RP-HPLC with ELSD, RI or MS, or by GC/FID or GC/MS after silylation. Hydrolysis followed by LC/MS allows the simultaneous analysis of terpene trilactones and flavonol aglycones. No quantitative procedure for all major flavonol glycosides has yet been published because they are not commercially available. The quantitation of a few available glycosides has been carried out but does not serve a real purpose. After acidic hydrolysis to the aglycones quercetin, kaempferol and isorhamnetin and separation by HPLC, quantitation is straightforward and yields by recalculation an estimation of the original total flavonol glycoside content. A profile of the genuine flavonol glycosides can detect poor storage or adulteration. Although the toxicity of Ginkgo alkylphenols upon oral administration has never been undoubtedly proven, most suppliers limit their content in extracts to 5 ppm and dozens of papers on their analysis were published. One procedure in which a methanolic extract is directly injected on a CC column appears superior in terms of sensitivity (<5 ppm), separation, simplicity and validation and will be incorporated in the European Pharmacopoeia. Alternatively GC/MS and ELISA methods can be used. A sharp contrast to the plethora of papers on terpene trilactones, flavonol glycosides, and ginkgolic acids forms the low number of papers on biflavones, proanthocyanidins, simple phenolics, simple acids, and other constituents that make up the remaining 70% of Ginkgo standardised extracts. More research in this direction is clearly needed. For the analysis of Ginkgo proanthocyanidins (7%) for instance, no reliable assays are yet existing. Finally the growing literature on pharmacokinetic and fingerprinting studies of Ginkgo is briefly summarised.
Publication
Journal: Journal of Proteomics
September/18/2014
Abstract
Protein phosphorylation is one of the most common post-translational modifications. It plays key roles in regulating diverse biological processes of liver tissues. To better understand the role of protein phosphorylation in liver functions, it is essential to perform in-depth phosphoproteome analysis of human liver. Here, an enzyme assisted reversed-phase-reversed-phase liquid chromatography (RP-RPLC) approach with both RPLC separations operated with optimized acidic mobile phase was developed. High orthogonal separation was achieved by trypsin digestion of the Glu-C generated peptides in the fractions collected from the first RPLC separation. The phosphoproteome coverage was further improved by using two types of instruments, i.e. TripleTOF 5600 and LTQ Orbitrap Velos. A total of 22,446 phosphorylation sites, corresponding to 6526 nonredundant phosphoproteins were finally identified from normal human liver tissues. Of these sites, 15,229 sites were confidently localized with Ascore≥13. This dataset was the largest phosphoproteome dataset of human liver. It can be a public resource for the liver research community and holds promise for further biology studies.
UNASSIGNED
The enzyme assisted approach enabled the two RPLC separations operated both with optimized acidic mobile phases. The identifications from TripleTOF 5600 and Orbitrap Velos are highly complementary. The largest phosphoproteome dataset of human liver was generated.
Publication
Journal: Biochemistry
June/1/2008
Abstract
The Fc region has two highly conserved methionine residues, Met 33 (C(H)3 domain) and Met 209 (C(H)3 domain), which are important for the Fc's structure and biological function. To understand the effect of methionine oxidation on the structure and stability of the human IgG1 Fc expressed in Escherichia coli, we have characterized the fully oxidized Fc using biophysical (DSC, CD, and NMR) and bioanalytical (SEC and RP-HPLC-MS) methods. Methionine oxidation resulted in a detectable secondary and tertiary structural alteration measured by circular dichroism. This is further supported by the NMR data. The HSQC spectral changes indicate the structures of both C(H)2 and C(H)3 domains are affected by methionine oxidation. The melting temperature (Tm) of the C(H)2 domain of the human IgG1 Fc was significantly reduced upon methionine oxidation, while the melting temperature of the C(H)3 domain was only affected slightly. The change in the C(H)2 domain T m depended on the extent of oxidation of both Met 33 and Met 209. This was confirmed by DSC analysis of methionine-oxidized samples of two site specific methionine mutants. When incubated at 45 degrees C, the oxidized Fc exhibited an increased aggregation rate. In addition, the oxidized Fc displayed an increased deamidation (at pH 7.4) rate at the Asn 67 and Asn 96 sites, both located on the C(H)2 domain, while the deamidation rates of the other residues were not affected. The methionine oxidation resulted in changes in the structure and stability of the Fc, which are primarily localized to the C(H)2 domain. These changes can impact the Fc's physical and covalent stability and potentially its biological functions; therefore, it is critical to monitor and control methionine oxidation during manufacturing and storage of protein therapeutics.
load more...