Citations
All
Search in:AllTitleAbstractAuthor name
Publications
(303)
Patents
Grants
Pathways
Clinical trials
Publication
Journal: PLoS ONE
April/1/2013
Abstract
BACKGROUND
Pathogenesis and factors for determining progression of alcoholic and non-alcoholic steatosis to steatohepatitis with risk of further progression to liver cirrhosis and cancer are poorly understood. In the present study, we aimed to identify potential molecular signatures for discrimination of steatohepatitis from steatosis.
RESULTS
Global microarray gene expression analysis was applied to unravel differentially expressed genes between steatohepatitis compared to steatosis and control samples. For functional annotation as well as the identification of disease-relevant biological processes of the differentially expressed genes the gene ontology (GO) database was used. Selected candidate genes (n = 46) were validated in 87 human liver samples from two sample cohorts by quantitative real-time PCR (qRT-PCR). The GO analysis revealed that genes down-regulated in steatohepatitis were mainly involved in metabolic processes. Genes up-regulated in steatohepatitis samples were associated with cancer progression and proliferation. In surgical liver resection samples, 39 genes and in percutaneous liver biopsies, 30 genes were significantly up-regulated in steatohepatitis. Furthermore, immunohistochemical investigation of human liver tissue revealed a significant increase of AKR1B10 protein expression in steatohepatitis.
CONCLUSIONS
The development of steatohepatitis is characterized by distinct molecular changes. The most striking examples in this respect were KRT23 and AKR1B10, which we found to be highly differentially expressed in steatohepatitis compared to steatosis and normal liver. We propose that KRT23 and AKR1B10 may serve as future potential biomarkers for steatohepatitis as well as markers for progression to HCC.
Publication
Journal: Biochemical Journal
April/8/2012
Abstract
AKR1B10 (aldo-keto reductase 1B10) is overexpressed in liver and lung cancer, and plays a critical role in tumour development and progression through promoting lipogenesis and eliminating cytotoxic carbonyls. AKR1B10 is a secretory protein and potential tumour marker; however, little is known about the regulatory mechanism of AKR1B10 expression. The present study showed that AKR1B10 is induced by mitogen EGF (epidermal growth factor) and insulin through the AP-1 (activator protein-1) signalling pathway. In human HCC (hepatocellular carcinoma) cells (HepG2 and Hep3B), EGF (50 ng/ml) and insulin (10 nM) stimulated endogenous AKR1B10 expression and promoter activity. In the AKR1B10 promoter, a putative AP-1 element was found at bp -222 to -212. Deletion or mutation of this AP-1 element abrogated the basal promoter activity and response to EGF and AP-1 proteins. This AP-1 element bound to nuclear proteins extracted from HepG2 cells, and this binding was stimulated by EGF and insulin in a dose-dependent manner. Chromatin immunoprecipitation showed that the AP-1 proteins c-Fos and c-Jun were the predominant factors bound to the AP-1 consensus sequence, followed by JunD and then JunB. The same order was followed in the stimulation of endogenous AKR1B10 expression by AP-1 proteins. Furthermore, c-Fos shRNA (short hairpin RNA) and AP-1 inhibitors/antagonists (U0126 and Tanshinone IIA) inhibited endogenous AKR1B10 expression and promoter activity in HepG2 cells cultured in vitro or inoculated subcutaneously in nude mice. U0126 also inhibited AKR1B10 expression induced by EGF. Taken together, these results suggest that AKR1B10 is up-regulated by EGF and insulin through AP-1 mitogenic signalling and may be implicated in hepatocarcinogenesis.
Publication
Journal: International Journal of Cancer
March/10/2013
Abstract
Aldo-keto reductase 1B10 (AKR1B10) is a secretory protein that is upregulated with tumorigenic transformation of human mammary epithelial cells. This study demonstrated that AKR1B10 was overexpressed in 20 (71.4%) of 28 ductal carcinomas in situ, 184 (83.6%) of 220 infiltrating carcinomas and 28 (87.5%) of 32 recurrent tumors. AKR1B10 expression in breast cancer was correlated positively with tumor size (p = 0.0012) and lymph node metastasis (p = 0.0123) but inversely with disease-related survival (p = 0.0120). Univariate (p = 0.0077) and multivariate (p = 0.0192) analyses both suggested that AKR1B10, alone or together with tumor size and node status, is a significant prognostic factor for breast cancer. Silencing of AKR1B10 in BT-20 human breast cancer cells inhibited cell growth in culture and tumorigenesis in female nude mice. Importantly, AKR1B10 in the serum of breast cancer patients was significantly increased to 15.18 ± 9.08 ng/ml [n = 50; 95% confidence interval (CI), 12.60-17.76], with a high level up to 58.4 ng/ml, compared to 3.34 ± 2.27 ng/ml in healthy donors (n = 60; 95% CI, 2.78-3.90). In these patients, AKR1B10 levels in serum were correlated with its expression in tumors (r = 0.8066; p < 0.0001). Together our data suggests that AKR1B10 is overexpressed in breast cancer and may be a novel prognostic factor and serum marker for this deadly disease.
Publication
Journal: Chemico-Biological Interactions
August/22/2011
Abstract
Aldo-keto reductase family 1 member B1 (AKR1B1, 1B1 in brief) and aldo-keto reductase family 1 member B10 (AKR1B10, 1B10 in brief) are two proteins with high similarities in their amino acid sequences, stereo structures, and substrate specificity. However, these two proteins exhibit distinct tissue distributions; 1B10 is primarily expressed in the gastrointestinal tract and adrenal gland, whereas 1B1 is ubiquitously present in all tissues/organs, suggesting their difference in biological functions. This study evaluated in parallel the enzyme activity of 1B1 and 1B10 toward alpha, beta-unsaturated carbonyl compounds with cellular and dietary origins, including acrolein, crotonaldehyde, 4-hydroxynonenal, trans-2-hexenal, and trans-2,4-hexadienal. Our results showed that 1B10 had much better enzyme activity and turnover rates toward these chemicals than 1B1. By detecting the enzymatic products using high-performance liquid chromatography, we measured their activity to carbonyl compounds at low concentrations. Our data showed that 1B10 efficiently reduced the tested carbonyl compounds at physiological levels, but 1B1 was less effective. Ectopically expressed 1B10 in 293T cells effectively eliminated 4-hydroxynonenal at 5 μM by reducing to 1,4-dihydroxynonene, whereas endogenously expressed 1B1 did not. The 1B1 and 1B10 both showed enzyme activity to glutathione-conjugated carbonyl compounds, but 1B1 appeared more active in general. Together our data suggests that 1B10 is more effectual in eliminating free electrophilic carbonyl compounds, but 1B1 seems more important in the further detoxification of glutathione-conjugated carbonyl compounds.
Publication
Journal: Biochemical and Biophysical Research Communications
August/19/2009
Abstract
Alpha, beta-unsaturated carbonyls are highly reactive mutagens and carcinogens to which humans are exposed on a daily basis. This study demonstrates that aldo-keto reductase family 1 member B10 (AKR1B10) is a critical protein in detoxifying dietary and lipid-derived unsaturated carbonyls. Purified AKR1B10 recombinant protein efficiently catalyzed the reduction to less toxic alcohol forms of crotonaldehyde at 0.90 microM, 4-hydroxynonenal (HNE) at 0.10 microM, trans-2-hexanal at 0.10 microM, and trans-2,4-hexadienal at 0.05 microM, the concentrations at or lower than physiological exposures. Ectopically expressed AKR1B10 in 293T cells eliminated immediately HNE at 1 (subtoxic) or 5 microM (toxic) by converting to 1,4-dihydroxynonene, protecting the cells from HNE toxicity. AKR1B10 protein also showed strong enzymatic activity toward glutathione-conjugated carbonyls. Taken together, our study results suggest that AKR1B10 specifically expressed in the intestine is physiologically important in protecting the host cell against dietary and lipid-derived cytotoxic carbonyls.
Pulse
Views:
1
Posts:
No posts
Rating:
Not rated
Publication
Journal: Journal of Hepatology
April/24/2014
Abstract
OBJECTIVE
To investigate diagnostic and prognostic values of sulfite oxidase (SUOX) in patients with hepatocellular carcinoma (HCC) who underwent curative resection.
METHODS
We investigated immunohistochemically the expression dynamics of SUOX, aldo-ketoreductase family 1 member B10 (AKR1B10) and CD34 at different stages of HCC. The differential diagnostic performance of three markers or their combinations in high-grade dysplastic nodules (HGDNs) and well-differentiated small HCC (WD-sHCC) were investigated by logistic regression models and validated in an independent testing set. Overall survival (OS) and time to recurrence (TTR) were evaluated in 300 patients with HCC as the testing cohort, and validated in 198 patients with HCC.
RESULTS
SUOX was decreased and AKR1B10 and CD34 were increased with the stepwise progression of hepatocarcinogenesis. For differential diagnosis of WD-sHCC from HGDNs, the sensitivity and specificity of the SUOX+AKR1B10+CD34 combination for WD-sHCC detection were 93.8% and 95.2%, respectively, and overall accuracy was much higher than any of the three individual markers and two marker combinations. In addition, SUOX, but not AKR1B10 and CD34, was an independent prognostic factor for OS and TTR, and showed better correlation with OS and TTR if combined with serum α-fetoprotein (AFP) for both the testing and validation cohorts.
CONCLUSIONS
SUOX+AKR1B10+CD34 combination could make a substantial contribution to hepatic immunopathological diagnosis to distinguish WD-sHCC from HGDNs. Meanwhile, SUOX combined with serum AFP may predict postoperative outcome and tumor recurrence risk.
Publication
Journal: Modern Pathology
August/22/2012
Abstract
Aldo-keto reductase family 1B10 (AKR1B10) exhibits more restricted lipid substrate specificity (including farnesal, geranylgeranial, retinal and carbonyls), and metabolizing these lipid substrates has a crucial role in promoting carcinogenesis. Overexpression of AKR1B10 has been identified in smoking-related carcinomas such as lung cancer. As development of pancreatic cancer is firmly linked to smoking, the aim of the present study was to examine the expression and oncogenic role of AKR1B10 in pancreatic adenocarcinoma. AKR1B10 expression was analyzed in 50 paraffin-embedded clinical pancreatic cancer samples using immunohistochemistry. Oncogenic function of AKR1B10 was examined in pancreatic carcinoma cells in vitro using western blotting and siRNA approaches, mainly on cell apoptosis and protein prenylation including KRAS protein and its downstream signals. Immunohistochemistry analysis revealed that AKR1B10 overexpressed in 70% (35/50) of pancreatic adenocarcinomas and majority of pancreatic intraepithelial neoplasia, but not in adjacent morphologically normal pancreatic tissue. Compared with a normal pancreatic ductal epithelial cell (HPDE6E7), all of the six cultured pancreatic adenocarcinoma cell lines had an overexpression of AKR1B10 using immunoblotting, which correlated with increase of enzyme activity. siRNA-mediated silencing of AKR1B10 expression in pancreatic cancer cells resulted in (1) increased cell apoptosis, (2) increased non-farnesyled HDJ2 protein and (3) decreased membrane-bound prenylated KRAS protein and its downstream signaling molecules including phosphorylated ERK and MEK and membrane-bound E-cadherin. Our findings provide first time evidence that AKR1B10 is a unique enzyme involved in pancreatic carcinogenesis possibly via modulation of cell apoptosis and protein prenylation.
Publication
Journal: Chest
January/12/2011
Abstract
BACKGROUND
The aldo-keto reductase (AKR) gene superfamily codes for monomeric, soluble reduced nicotinamide adenine dinucleotide phosphate-dependent oxidoreductases that mediate elimination reactions. AKR1B10, an AKR that eliminates retinals, has been observed as upregulated in squamous metaplasia and non-small cell lung cancer and has been suggested as a diagnostic marker specific to tobacco-related carcinogenesis. We hypothesized that upregulation of AKR1B10 expression may be initiated in healthy smokers prior to the development of evidence of lung cancer.
METHODS
Expression of AKR1B10 was assessed at the mRNA level using microarrays with TaqMan confirmation in the large airway epithelium (21 healthy nonsmokers, 31 healthy smokers) and small airway epithelium (51 healthy nonsmokers, 58 healthy smokers) obtained by fiberoptic bronchoscopy and brushing.
RESULTS
Compared with healthy nonsmokers, AKR1B10 mRNA levels were significantly upregulated in both large and small airway epithelia of healthy smokers. Consistent with the mRNA data, AKR1B10 protein was significantly upregulated in the airway epithelium of healthy smokers as assessed by Western blot analysis and immunohistochemistry, with AKR1B10 expressed in both differentiated and basal cells. Finally, cigarette smoke extract mediated upregulation of AKR1B10 in airway epithelial cells in vitro, and transfection of AKR1B10 into airway epithelial cells enhanced the conversion of retinal to retinol.
CONCLUSIONS
Smoking per se mediates upregulation of AKR1B10 expression in the airway epithelia of healthy smokers with no evidence of lung cancer. In the context of these observations and the link of AKR1B10 to the metabolism of retinals and to lung cancer, the smoking-induced upregulation of AKR1B10 may be an early process in the multiple events leading to lung cancer.
Publication
Journal: Chemico-Biological Interactions
February/26/2009
Abstract
NADP(H)-dependent cytosolic aldo-keto reductases (AKRs) have been added to the group of enzymes which contribute to oxidoreductive conversions of retinoids. Recently, we found that two members from the AKR1B subfamily (AKR1B1 and AKRB10) were active in the reduction of all-trans- and 9-cis-retinaldehyde, with K(m) values in the micromolar range, but with very different k(cat) values. With all-trans-retinaldehyde, AKR1B10 shows a much higher k(cat) value than AKR1B1 (18 min(-1)vs. 0.37 min(-1)) and a catalytic efficiency comparable to that of the best retinaldehyde reductases. Structural, molecular dynamics and site-directed mutagenesis studies on AKR1B1 and AKR1B10 point that subtle differences at the entrance of their retinoid-binding site, especially at position 125, are determinant for the all-trans-retinaldehyde specificity of AKR1B10. Substitutions in the retinoid cyclohexene ring, analyzed here further, also influence such specificity. Overall it is suggested that the rate-limiting step in the reaction mechanism with retinaldehyde differs between AKR1B1 and AKR1B10. In addition, we demonstrate here that enzymatic activity of AKR1B1 and AKR1B10 lowers all-trans- and 9-cis-retinoic acid-dependent trans-activation in living cells, indicating that both enzymes may contribute to pre-receptor regulation of retinoic acid and retinoid X nuclear receptors. This result supports that overexpression of AKR1B10 in cancer (an updated review on this topic is included) may contribute to dedifferentiation and tumor development.
Publication
Journal: Liver International
October/6/2011
Abstract
OBJECTIVE
The detoxification enzyme AKR1B10, a member of the aldo-keto reductase superfamily, is discussed as a new biomarker candidate for hepatocellular carcinoma (HCC). Only rare clinicopathological data on AKRB1B10 in HCC exist. This retrospective study determines the diagnostic and prognostic relevance of AKR1B10 expression in HCC and its relationship to a series of clinicopathological parameters including underlying aetiological factors.
METHODS
A series of 168 patients with HCCs treated either by surgical resection (n=92) or liver transplantation (n=76) were investigated after construction of a tissue micro-array. Immunohistochemically confirmed AKR1B10 expression was correlated with clinicopathologically relevant parameters as well as proliferative activity (indicated by Ki-67 immunostaining) and apoptosis (terminal deoxyribonucleotide transferase-mediated dUTP nick-end labelling).
RESULTS
AKR1B10 overexpression is significantly associated with lower pT-classification (P=0.030) and highly statistically associated with an underlying viral hepatitis (P<0.001) and the presence of cirrhosis (P<0.001). In addition, loss of AKR1B10 expression correlates with increased proliferative activity (Ki-67, P=0.001). Kaplan-Meier survival analysis of the resection group reveals a poorer prognosis in patients with AKR1B10-negative HCCs compared with patients with strongly positive HCCs (P=0.046).
CONCLUSIONS
This study confirms and expands data on the expression of AKR1B10 in HCC, suggesting that this enzyme is a valuable novel biomarker candidate for staging of HCC, especially in patients with underlying virus hepatitis or cirrhosis, and may present a new therapeutic target for multimodal therapy concepts. We confirm its prognostic value and conclude that high expression of AKR1B10 reflects a less aggressive tumour behaviour.
Publication
Journal: Frontiers in Pharmacology
October/1/2012
Abstract
The human aldo-keto reductase AKR1B10, originally identified as an aldose reductase-like protein and human small intestine aldose reductase, is a cytosolic NADPH-dependent reductase that metabolizes a variety of endogenous compounds, such as aromatic and aliphatic aldehydes and dicarbonyl compounds, and some drug ketones. The enzyme is highly expressed in solid tumors of several tissues including lung and liver, and as such has received considerable interest as a relevant biomarker for the development of those tumors. In addition, AKR1B10 has been recently reported to be significantly up-regulated in some cancer cell lines (medulloblastoma D341 and colon cancer HT29) acquiring resistance toward chemotherapeutic agents (cyclophosphamide and mitomycin c), suggesting the validity of the enzyme as a chemoresistance marker. Although the detailed information on the AKR1B10-mediated mechanisms leading to the drug resistance process is not well understood so far, the enzyme has been proposed to be involved in functional regulations of cell proliferation and metabolism of drugs and endogenous lipids during the development of chemoresistance. This article reviews the current literature focusing mainly on expression profile and roles of AKR1B10 in the drug resistance of cancer cells. Recent developments of AKR1B10 inhibitors and their usefulness in restoring sensitivity to anticancer drugs are also reviewed.
Publication
Journal: International Journal of Gynecological Cancer
January/15/2008
Abstract
Aldo-keto reductase family 1, member B10 (AKR1B10), an enzyme that converts retinals into retinols is known to detect in non-small cell lung carcinoma (squamous cell- and adeno-carcinomas), but is barely expressed in normal tissues. Since these types of carcinoma occur frequently in the uterus (like in the lung), AKR1B10 may also be overexpressed in two major types of uterine cancer, cervical cancer (CC), and endometrial cancer (EMC). The objective of this study is to investigate AKR1B10 expression in uterine cancer and to analyze its clinical significance. In samples from uterine cancer patients, AKR1B10 was detected in 6 out of 30 (20.0%) CC cases and 6 out of 38 (15.8%) EMC cases. Statistical analysis indicated that AKR1B10 expression was associated with tumor recurrence after surgery and keratinization of squamous cell carcinoma only in CC. Although retinol (a metabolic product by AKR1B10) was observed in the normal epithelium, the molecule was not observed in cancer cells of AKR1B10-positive CC samples suggesting that the recurrence in CC may not depend on the convert of retinals into retinols via AKR1B10, a potential indicator in the management of patients with CC.
Publication
Journal: Archives of Biochemistry and Biophysics
July/1/2009
Abstract
A human member of the aldo-keto reductase (AKR) superfamily, AKR1B10, was identified as a biomarker of lung cancer, exhibiting high sequence identity with human aldose reductase (AKR1B1). Using recombinant AKR1B10 and AKR1B1, we compared their substrate specificity for biogenic compounds and inhibition by endogenous compounds and found the following unique features of AKR1B10. AKR1B10 efficiently reduced long-chain aliphatic aldehydes including farnesal and geranylgeranial, which are generated from degradation of prenylated proteins and metabolism of farnesol and geranylgeraniol derived from the mevalonate pathway. The enzyme oxidized aliphatic and aromatic alcohols including 20alpha-hydroxysteroids. In addition, AKR1B10 was inhibited by steroid hormones, bile acids and their metabolites, showing IC(50) values of 0.03-25 microM. Kinetic analyses of the alcohol oxidation and inhibition by the steroids and tolrestat, together with the docked model of AKR1B10-inhibitor complex, suggest that the inhibitory steroids and tolrestat bind to overlapping sites within the active site of the enzyme-coenzyme complex. Thus, we propose a novel role of AKR1B10 in controlling isoprenoid homeostasis that is important in cholesterol synthesis and cell proliferation through salvaging isoprenoid alcohols, as well as its metabolic regulation by endogenous steroids.
Publication
Journal: Toxicology and Applied Pharmacology
September/28/2011
Abstract
Daunorubicin, idarubicin, doxorubicin and epirubicin are anthracyclines widely used for the treatment of lymphoma, leukemia, and breast, lung, and liver cancers, but tumor resistance limits their clinical success. Aldo-keto reductase family 1 B10 (AKR1B10) is an NADPH-dependent enzyme overexpressed in liver and lung carcinomas. This study was aimed to determine the role of AKR1B10 in tumor resistance to anthracyclines. AKR1B10 activity toward anthracyclines was measured using recombinant protein. Cell resistance to anthracycline was determined by ectopic expression of AKR1B10 or inhibition by epalrestat. Results showed that AKR1B10 reduces C13-ketonic group on side chain of daunorubicin and idarubicin to hydroxyl forms. In vitro, AKR1B10 converted daunorubicin to daunorubicinol at V(max) of 837.42±81.39nmol/mg/min, K(m) of 9.317±2.25mM and k(cat)/K(m) of 3.24. AKR1B10 showed better catalytic efficiency toward idarubicin with V(max) at 460.23±28.12nmol/mg/min, K(m) at 0.461±0.09mM and k(cat)/K(m) at 35.94. AKR1B10 was less active toward doxorubicin and epirubicin with a C14-hydroxyl group. In living cells, AKR1B10 efficiently catalyzed reduction of daunorubicin (50nM) and idarubicin (30nM) to corresponding alcohols. Within 24h, approximately 20±2.7% of daunorubicin (1μM) or 23±2.3% of idarubicin (1μM) was converted to daunorubicinol or idarubicinol in AKR1B10 expression cells compared to 7±0.9% and 5±1.5% in vector control. AKR1B10 expression led to cell resistance to daunorubicin and idarubicin, but inhibitor epalrestat showed a synergistic role with these agents. Together our data suggest that AKR1B10 participates in cellular metabolism of daunorubicin and idarubicin, resulting in drug resistance. These data are informative for the clinical use of idarubicin and daunorubicin.
Publication
Journal: Frontiers in Pharmacology
October/1/2012
Abstract
The American Cancer Society estimates that there will be more than 1.5 million new cases of cancer in 2011, underscoring the need for identification of new therapeutic targets and development of novel cancer therapies. Previous studies have implicated the human aldo-ketoreductases AKR1B1 and AKR1B10 in cancer, and therefore we examined AKR1B1 and AKR1B10 expression across all major human cancer types using the Oncomine cancer gene expression database (Compendia Biosciences, www.oncomine.com). Using this database, we found that expression of AKR1B1 and AKR1B10 varies greatly by cancer type and tissue of origin, including agreement with previous reports that AKR1B10 is significantly over-expressed in cancers of the lungs and liver. AKR1B1 is more broadly over-expressed in human cancers than AKR1B10, albeit at a generally lower magnitude. AKR1B1 over-expression was found to be associated with shortened patient survival in acute myelogenous leukemias and multiple myelomas. High AKR1B10 expression tends to predict less aggressive clinical course generally, notably within lung cancers, where it tends to be highly over-expressed compared to normal tissue. These findings suggest that AKR1B1 inhibitors in particular hold great potential as novel cancer therapeutics.
Publication
Journal: Biochimica et Biophysica Acta - General Subjects
July/1/2008
Abstract
Hepatocellular carcinoma (HCC) is one of the most common and aggressive human malignancies. Although several major risks related to HCC, e.g., hepatitis B and/or hepatitis C virus infection, aflatoxin B1 exposure, alcohol drinking and genetic defects have been revealed, the molecular mechanisms leading to the initiation and progression of HCC have not been clarified. To reduce the mortality and improve the effectiveness of therapy, it is important to detect the proteins which are associated with tumor progression and may be useful as potential therapeutic or diagnosis targets. However, previous studies have not yet revealed the associations among HCC cells, histological grade and AFP. Here, we performed two-dimensional difference gel electrophoresis (2D-DIGE) combined with MS for 18 HCC patients. To focus not on individual proteins but on multiple proteins associated with pathogenesis, we introduce the supervised feature selection based on stochastic gradient boosting (SGB) for identifying protein spots that discriminate HCC/non HCC, histological grade of moderate/well and high alpha-fetoprotein (AFP)/low AFP level without arbitrariness. We detected 18, 25 and 27 protein spots associated with HCC, histological grade and AFP level, respectively. We confirmed that SGB is able to identify the known HCC-related proteins, e.g., heat shock proteins, carbonic anhydrase 2. Moreover, we identified the differentially expressed proteins associated with histological grade of HCC and AFP level and found that aldo-keto reductase 1B10 (AKR1B10) is related to well differentiated HCC, keratin 8 (KRT8) is related to both histological grade and AFP level and protein disulfide isomerase-associated 3 (PDIA3) is associated with both HCC and AFP level. Our pilot study provides new insights on understanding the pathogenesis of HCC, histological grade and AFP level.
Publication
Journal: Frontiers in Pharmacology
October/1/2012
Abstract
Several aldo-keto reductase (AKR) enzymes from subfamilies 1B and 1C show retinaldehyde reductase activity, having low K(m) and k(cat) values. Only AKR1B10 and 1B12, with all-trans-retinaldehyde, and AKR1C3, with 9-cis-retinaldehyde, display high catalytic efficiency. Major structural determinants for retinaldehyde isomer specificity are located in the external loops (A and C for AKR1B10, and B for AKR1C3), as assessed by site-directed mutagenesis and molecular dynamics. Cellular models have shown that AKR1B and 1C enzymes are well suited to work in vivo as retinaldehyde reductases and to regulate retinoic acid (RA) biosynthesis at hormone pre-receptor level. An additional physiological role for the retinaldehyde reductase activity of these enzymes, consistent with their tissue localization, is their participation in β-carotene absorption. Retinaldehyde metabolism may be subjected to subcellular compartmentalization, based on enzyme localization. While retinaldehyde oxidation to RA takes place in the cytosol, reduction to retinol could take place in the cytosol by AKRs or in the membranes of endoplasmic reticulum by microsomal retinaldehyde reductases. Upregulation of some AKR1 enzymes in different cancer types may be linked to their induction by oxidative stress and to their participation in different signaling pathways related to cell proliferation. AKR1B10 and AKR1C3, through their retinaldehyde reductase activity, trigger a decrease in the RA biosynthesis flow, resulting in RA deprivation and consequently lower differentiation, with an increased cancer risk in target tissues. Rational design of selective AKR inhibitors could lead to development of novel drugs for cancer treatment as well as reduction of chemotherapeutic drug resistance.
Publication
Journal: Human Pathology
May/11/2014
Abstract
Hepatocellular carcinoma (HCC) is one of the most common highly aggressive malignant tumors worldwide. Aldoketoreductase 1B10 (AKR1B10) was first isolated from HCC and further identified to be over-expressed in many cancers from various organs. AKR1B10 contributes to detoxification of xenobiotics by lipid peroxidation and metabolizes physiological substrates such as farnesal, retinal, and carbonyls. Metabolizing these lipid substrates plays a crucial role in promoting carcinogenesis. In the present study, immunohistochemical analysis was performed to determine the prevalence/pattern of AKR1B10 expression in HCC and its usefulness to differentiate benign liver lesions from HCC. Oncogenic function of AKR1B10 was examined in hepatocellular carcinoma cells in vitro using Western blotting and shRNA knockdown approaches, with emphasis on cell apoptosis and response to chemotherapy. Immunohistochemistry analysis revealed AKR1B10 was overexpressed in 97% (86/89) of hepatocellular carcinomas, with minimal to no expression in adjacent hepatic tissue, while hepatic adenomas and focal nodular hyperplasia did not exhibit expression of AKR1B10. shRNA-mediated silencing of AKR1B10 expression in hepatocellular carcinoma cells resulted in (1) increased cell apoptosis, (2) decreased colony formation and size, and (3) enhanced cytoreductive response following exposure to doxorubicin chemotherapy. Our findings provide first time evidence that AKR1B10 is a unique biomarker involved in hepatocellular carcinogenesis via modulation of proliferation, cell apoptosis and chemoresistance and is a potential promising biomarker to differentiate HCCs from benign hepatic lesions.
Publication
Journal: Chemico-Biological Interactions
August/22/2011
Abstract
Aldo-keto reductase 1B10 (AKR1B10) is an aldose reductase-like oxidoreductase of human origin. The expression of AKR1B10 is highly induced in the cells of various cancers such as lung non-small-cell carcinoma and hepatocellular carcinoma. Since the enzyme exhibits broad substrate specificities toward various xenobiotics such as anti-tumor drugs or various endogenous compounds such as retinaldehyde, AKR1B10 may play an important role in tumor progression or drug resistance. However, very little is known about its gene regulation. In this study, we investigated the regulation of AKR1B10 expression. A -3282bp of the 5'-flanking fragment of AKR1B10 gene was isolated from A549 lung carcinoma cells. This region contains several putative regulatory motifs such as AP-1, NF-κB and antioxidant response element. In addition, a complex polymorphic microsatellite with repetitive sequences enriched with C and T was found. However, luciferase reporter assay revealed that the microsatellite polymorphism did not influence the basal promoter activity. We found that an antioxidant ethoxyquin induced the AKR1B10 expression based on RT-PCR analysis and luciferase reporter assay. Since ethoxyquin is known to activate the gene expression mediated through transcription factor Nrf2, the involvement of Nrf2 was examined. Forced expression of dominant-negative Nrf2 mutant suppressed the ethoxyquin-induced AKR1B10 expression, and co-introduction of Nrf2 expression plasmid into the cells significantly augmented the luciferase reporter activity. Deletion analysis revealed that Nrf2-regulating cis-element(s) lay within -539bp of the 5'-flanking region. These results suggest that Nrf2 is one of the major factors involved in the AKR1B10 gene regulation.
Publication
Journal: PLoS ONE
December/5/2011
Abstract
Esophageal adenocarcinoma (EAC) has become a major concern in Western countries due to rapid rises in incidence coupled with very poor survival rates. One of the key risk factors for the development of this cancer is the presence of Barrett's esophagus (BE), which is believed to form in response to repeated gastro-esophageal reflux. In this study we performed comparative, genome-wide expression profiling (using Illumina whole-genome Beadarrays) on total RNA extracted from esophageal biopsy tissues from individuals with EAC, BE (in the absence of EAC) and those with normal squamous epithelium. We combined these data with publically accessible raw data from three similar studies to investigate key gene and ontology differences between these three tissue states. The results support the deduction that BE is a tissue with enhanced glycoprotein synthesis machinery (DPP4, ATP2A3, AGR2) designed to provide strong mucosal defenses aimed at resisting gastro-esophageal reflux. EAC exhibits the enhanced extracellular matrix remodeling (collagens, IGFBP7, PLAU) effects expected in an aggressive form of cancer, as well as evidence of reduced expression of genes associated with mucosal (MUC6, CA2, TFF1) and xenobiotic (AKR1C2, AKR1B10) defenses. When our results are compared to previous whole-genome expression profiling studies keratin, mucin, annexin and trefoil factor gene groups are the most frequently represented differentially expressed gene families. Eleven genes identified here are also represented in at least 3 other profiling studies. We used these genes to discriminate between squamous epithelium, BE and EAC within the two largest cohorts using a support vector machine leave one out cross validation (LOOCV) analysis. While this method was satisfactory for discriminating squamous epithelium and BE, it demonstrates the need for more detailed investigations into profiling changes between BE and EAC.
Publication
Journal: Cancer Research
August/17/2011
Abstract
Cyclopentenone prostaglandins (cyPG) are reactive eicosanoids that may display anti-inflammatory and antiproliferative actions, possibly offering therapeutic potential. Here we report the identification of members of the aldo-keto reductase (AKR) family as selective targets of the cyPG prostaglandin A(1) (PGA(1)). AKR enzymes metabolize aldehydes and drugs containing carbonyl groups and are involved in inflammation and tumorigenesis. Thus, these enzymes represent a class of targets to develop small molecule inhibitors with therapeutic activity. Molecular modeling studies pointed to the covalent binding of PGA(1) to Cys299, close to the active site of AKR, with His111 and Tyr49, which are highly conserved in the AKR family, playing a role in PGA(1) orientation. Among AKR enzymes, AKR1B10 is considered as a tumor marker and contributes to tumor development and chemoresistance. We validated the direct modification of AKR1B10 by biotinylated PGA(1) (PGA(1)-B) in cells, and confirmed that mutation of Cys299 abolishes PGA(1)-B incorporation, whereas substitution of His111 or Tyr49 reduced the interaction. Modification of AKR1B10 by PGA(1) correlated with loss of enzymatic activity and both effects were increased by depletion of cellular glutathione. Moreover, in lung cancer cells PGA(1) reduced tumorigenic potential and increased accumulation of the AKR substrate doxorubicin, potentiating cell-cycle arrest induced by this chemotherapeutic agent. Our findings define PGA(1) as a new AKR inhibitor and they offer a framework to develop compounds that could counteract cancer chemoresistance.
Publication
Journal: Chemico-Biological Interactions
February/26/2009
Abstract
A member of the aldo-keto reductase (AKR) protein superfamily, AKR1B10, is overexpressed in human liver cancers as well as in many adenocarcinoma cases due to smoking. AKR1B10 is also detected in instances of cervical and endometrial cancer in uterine cancer patients. In addition, AKR1B10 has been identified as a biomarker for non-small-cell lung cancer by a combined bioinformatics and clinical analysis. Furthermore, in breast cancer cells, fatty acid biosynthesis is regulated by AKR1B10. AKR1B10 contains 316 residues, shares 70% sequence identity with aldose reductase (AKR1B1) and has the conserved Cys residue at position 299. Carbonyl groups in some anticancer drugs and dl-glyceraldehyde are converted by AKR1B10 to their corresponding alcohols. The anticancer drug daunorubicin, which is currently used in the clinical treatment of various forms of cancer, is converted by AKR1B10 to daunorubicinol with a K(m) and k(cat) of 1.1+/-0.18 mM and 1.4+/-0.16 min(-1), respectively. This carbonyl reducing activity of AKR1B10 decreases the anticancer effectiveness of daunorubicin. Similarly, kinetic parameters K(m) and k(cat) (NADPH, DL-glyceraldehyde) for the reduction of dl-glyceraldehyde by wild-type AKR1B10 are 2.2+/-0.2 mM and 0.71+/-0.05 sec(-1), respectively. Mutation of residue 299 from Cys to Ser in AKR1B10 reduces the protein affinity for dl-glyceraldehyde and enhances AKR1B10's catalytic activity but overall catalytic efficiency is reduced. For dl-glyceraldehyde reduction that is catalyzed by the Cys299Ser mutant AKR1B10, K(m) is 15.8+/-1.0mM and k(cat) (NADPH, DL-glyceraldehyde) is 2.8+/-0.2 sec(-1). This implies that the substrate specificity of AKR1B10 is drastically affected by mutation of residue 299 from Cys to Ser. In the present paper, we use this mutation in AKR1B10 to characterize a library of compounds regarding their different inhibitory potency on the carbonyl reducing activity of wild-type and the Cys299Ser mutant AKR1B10.
Publication
Journal: Journal of Natural Products
August/16/2011
Abstract
A human member of the aldo-keto reductase (AKR) superfamily, AKR1B10, was recently suggested as a therapeutic target in the treatment of several types of cancer. Due to its high sequence identity with human aldose reductase (AKR1B1), selective inhibition of AKR1B10 compared with AKR1B1 is required for the development of anticancer agents. In this study, we have examined AKR1B10 inhibition by seven pentacyclic triterpenes (1-7) that show potential anticancer properties. Among them, oleanolic acid (1) was found to be the most potent competitive inhibitor (inhibition constant, 72 nM) with the highest AKR1B10/AKR1B1 selectivity ratio of 1370. Molecular docking of 1 with AKR1B10 and AKR1B1 and site-directed mutagenesis studies suggested that the nonconserved residues Val301 and Gln303 in AKR1B10 are important for determining its inhibitory potency and selectivity. Oleanolic acid (1) also inhibited the cellular metabolism by AKR1B10 (IC(50), 4 μM) and decreased mitomycin C tolerance of colon cancer HT29 cells. Thus, the selective and potent inhibition of AKR1B10 by 1 may be related to a possible cancer inhibitory role.
Publication
Journal: European Journal of Pharmacology
June/30/2008
Abstract
AKR1B10 is an aldose reductase (AR) homologue overexpressed in liver cancer and various forms of that enzyme in carcinomas catalyze the reduction of anticancer drugs, potential cytostatic drug, and dl-glyceraldehyde but do not catalyze the reduction of glucose. Kinetic parameters for wild-type and C299S mutant AKR1B10 indicate that substitution of serine for cysteine at position 299 reduces the affinity of this protein for dl-glyceraldehyde and enhances its catalytic activity. Fibrates suppress peroxisome proliferation and the development of liver cancer in human. Here we report the potency of fibrate-mediated inhibition of the carbonyl reduction catalyzed by wild-type and C299S mutant AKR1B10 and compare it with known AR inhibitors. Wild-type AKR1B10-catalyzed carbonyl reduction follows pure non-competitive inhibition kinetics using zopolrestat, EBPC or sorbinil, whereas fenofibrate, Wy 14,643, ciprofibrate and fenofibric acid follow mixed non-competitive inhibition kinetics. In contrast, catalysis of reaction by the C299S AKR1B10 mutant is not inhibited by sorbinil and EBPC. Despite these differences, the C299S AKR1B10 mutant still manifests kinetics similar to the wild-type protein with other fibrates including zopolrestat, fenofibrate, Wy 14,346, gemfibrozil and ciprofibrate that show mixed non-competitive inhibition kinetics. The reaction of the mutant AKR1B10 is inhibited by fenofibric acid, but manifests pure non-competitive inhibition kinetics that are different from those demonstrated for the wild-type enzyme.
load more...