Yan Zhang
Citations
All
Search in:AllTitleAbstractAuthor name
Publications
(8K+)
Patents
Grants
Pathways
Clinical trials
Publication
Journal: Cell Research
December/4/2008
Abstract
Dysregulated expression of microRNAs (miRNAs) in various tissues has been associated with a variety of diseases, including cancers. Here we demonstrate that miRNAs are present in the serum and plasma of humans and other animals such as mice, rats, bovine fetuses, calves, and horses. The levels of miRNAs in serum are stable, reproducible, and consistent among individuals of the same species. Employing Solexa, we sequenced all serum miRNAs of healthy Chinese subjects and found over 100 and 91 serum miRNAs in male and female subjects, respectively. We also identified specific expression patterns of serum miRNAs for lung cancer, colorectal cancer, and diabetes, providing evidence that serum miRNAs contain fingerprints for various diseases. Two non-small cell lung cancer-specific serum miRNAs obtained by Solexa were further validated in an independent trial of 75 healthy donors and 152 cancer patients, using quantitative reverse transcription polymerase chain reaction assays. Through these analyses, we conclude that serum miRNAs can serve as potential biomarkers for the detection of various cancers and other diseases.
Pulse
Views:
9
Posts:
No posts
Rating:
Not rated
Publication
Journal: Autophagy
October/18/2016
Pulse
Views:
120
Posts:
No posts
Rating:
Not rated
Publication
Journal: Nature
October/25/2015
Abstract
Structural variants are implicated in numerous diseases and make up the majority of varying nucleotides among human genomes. Here we describe an integrated set of eight structural variant classes comprising both balanced and unbalanced variants, which we constructed using short-read DNA sequencing data and statistically phased onto haplotype blocks in 26 human populations. Analysing this set, we identify numerous gene-intersecting structural variants exhibiting population stratification and describe naturally occurring homozygous gene knockouts that suggest the dispensability of a variety of human genes. We demonstrate that structural variants are enriched on haplotypes identified by genome-wide association studies and exhibit enrichment for expression quantitative trait loci. Additionally, we uncover appreciable levels of structural variant complexity at different scales, including genic loci subject to clusters of repeated rearrangement and complex structural variants with multiple breakpoints likely to have formed through individual mutational events. Our catalogue will enhance future studies into structural variant demography, functional impact and disease association.
Publication
Journal: Nucleic Acids Research
March/16/2014
Abstract
The Pathosystems Resource Integration Center (PATRIC) is the all-bacterial Bioinformatics Resource Center (BRC) (http://www.patricbrc.org). A joint effort by two of the original National Institute of Allergy and Infectious Diseases-funded BRCs, PATRIC provides researchers with an online resource that stores and integrates a variety of data types [e.g. genomics, transcriptomics, protein-protein interactions (PPIs), three-dimensional protein structures and sequence typing data] and associated metadata. Datatypes are summarized for individual genomes and across taxonomic levels. All genomes in PATRIC, currently more than 10,000, are consistently annotated using RAST, the Rapid Annotations using Subsystems Technology. Summaries of different data types are also provided for individual genes, where comparisons of different annotations are available, and also include available transcriptomic data. PATRIC provides a variety of ways for researchers to find data of interest and a private workspace where they can store both genomic and gene associations, and their own private data. Both private and public data can be analyzed together using a suite of tools to perform comparative genomic or transcriptomic analysis. PATRIC also includes integrated information related to disease and PPIs. All the data and integrated analysis and visualization tools are freely available. This manuscript describes updates to the PATRIC since its initial report in the 2007 NAR Database Issue.
Publication
Journal: Proceedings of the National Academy of Sciences of the United States of America
March/30/2008
Abstract
Humans have evolved intimate symbiotic relationships with a consortium of gut microbes (microbiome) and individual variations in the microbiome influence host health, may be implicated in disease etiology, and affect drug metabolism, toxicity, and efficacy. However, the molecular basis of these microbe-host interactions and the roles of individual bacterial species are obscure. We now demonstrate a"transgenomic" approach to link gut microbiome and metabolic phenotype (metabotype) variation. We have used a combination of spectroscopic, microbiomic, and multivariate statistical tools to analyze fecal and urinary samples from seven Chinese individuals (sampled twice) and to model the microbial-host metabolic connectivities. At the species level, we found structural differences in the Chinese family gut microbiomes and those reported for American volunteers, which is consistent with population microbial cometabolic differences reported in epidemiological studies. We also introduce the concept of functional metagenomics, defined as "the characterization of key functional members of the microbiome that most influence host metabolism and hence health." For example, Faecalibacterium prausnitzii population variation is associated with modulation of eight urinary metabolites of diverse structure, indicating that this species is a highly functionally active member of the microbiome, influencing numerous host pathways. Other species were identified showing different and varied metabolic interactions. Our approach for understanding the dynamic basis of host-microbiome symbiosis provides a foundation for the development of functional metagenomics as a probe of systemic effects of drugs and diet that are of relevance to personal and public health care solutions.
Publication
Journal: Nucleic Acids Research
October/24/2018
Abstract
The accurate identification and description of the genes in the human and mouse genomes is a fundamental requirement for high quality analysis of data informing both genome biology and clinical genomics. Over the last 15 years, the GENCODE consortium has been producing reference quality gene annotations to provide this foundational resource. The GENCODE consortium includes both experimental and computational biology groups who work together to improve and extend the GENCODE gene annotation. Specifically, we generate primary data, create bioinformatics tools and provide analysis to support the work of expert manual gene annotators and automated gene annotation pipelines. In addition, manual and computational annotation workflows use any and all publicly available data and analysis, along with the research literature to identify and characterise gene loci to the highest standard. GENCODE gene annotations are accessible via the Ensembl and UCSC Genome Browsers, the Ensembl FTP site, Ensembl Biomart, Ensembl Perl and REST APIs as well as https://www.gencodegenes.org.
Publication
Journal: Nature
July/1/2010
Abstract
Lung cancer is the leading cause of cancer-related mortality worldwide, with non-small-cell lung carcinomas in smokers being the predominant form of the disease. Although previous studies have identified important common somatic mutations in lung cancers, they have primarily focused on a limited set of genes and have thus provided a constrained view of the mutational spectrum. Recent cancer sequencing efforts have used next-generation sequencing technologies to provide a genome-wide view of mutations in leukaemia, breast cancer and cancer cell lines. Here we present the complete sequences of a primary lung tumour (60x coverage) and adjacent normal tissue (46x). Comparing the two genomes, we identify a wide variety of somatic variations, including >50,000 high-confidence single nucleotide variants. We validated 530 somatic single nucleotide variants in this tumour, including one in the KRAS proto-oncogene and 391 others in coding regions, as well as 43 large-scale structural variations. These constitute a large set of new somatic mutations and yield an estimated 17.7 per megabase genome-wide somatic mutation rate. Notably, we observe a distinct pattern of selection against mutations within expressed genes compared to non-expressed genes and in promoter regions up to 5 kilobases upstream of all protein-coding genes. Furthermore, we observe a higher rate of amino acid-changing mutations in kinase genes. We present a comprehensive view of somatic alterations in a single lung tumour, and provide the first evidence, to our knowledge, of distinct selective pressures present within the tumour environment.
Pulse
Views:
1
Posts:
No posts
Rating:
Not rated
Publication
Journal: Science
May/4/2011
Abstract
The growth factor progranulin (PGRN) has been implicated in embryonic development, tissue repair, tumorigenesis, and inflammation, but its receptors remain unidentified. We report that PGRN bound directly to tumor necrosis factor receptors (TNFRs) and disturbed the TNFα-TNFR interaction. PGRN-deficient mice were susceptible to collagen-induced arthritis, and administration of PGRN reversed inflammatory arthritis. Atsttrin, an engineered protein composed of three PGRN fragments, exhibited selective TNFR binding. PGRN and Atsttrin prevented inflammation in multiple arthritis mouse models and inhibited TNFα-activated intracellular signaling. Collectively, these findings demonstrate that PGRN is a ligand of TNFR, an antagonist of TNFα signaling, and plays a critical role in the pathogenesis of inflammatory arthritis in mice. They also suggest new potential therapeutic interventions for various TNFα-mediated pathologies and conditions, including rheumatoid arthritis.
Publication
Journal: Science
April/25/2010
Abstract
Arsenic, an ancient drug used in traditional Chinese medicine, has attracted worldwide interest because it shows substantial anticancer activity in patients with acute promyelocytic leukemia (APL). Arsenic trioxide (As2O3) exerts its therapeutic effect by promoting degradation of an oncogenic protein that drives the growth of APL cells, PML-RARalpha (a fusion protein containing sequences from the PML zinc finger protein and retinoic acid receptor alpha). PML and PML-RARalpha degradation is triggered by their SUMOylation, but the mechanism by which As2O3 induces this posttranslational modification is unclear. Here we show that arsenic binds directly to cysteine residues in zinc fingers located within the RBCC domain of PML-RARalpha and PML. Arsenic binding induces PML oligomerization, which increases its interaction with the small ubiquitin-like protein modifier (SUMO)-conjugating enzyme UBC9, resulting in enhanced SUMOylation and degradation. The identification of PML as a direct target of As2O3 provides new insights into the drug's mechanism of action and its specificity for APL.
Publication
Journal: Journal of Pharmacology and Experimental Therapeutics
April/21/2003
Abstract
We showed previously that cAMP response element-binding protein (CREB) within the nucleus accumbens (NAc) of rats regulates immobility in the forced swim test (FST), an assay used to study depression. Because CREB regulates expression of dynorphin (which acts at kappa-opioid receptors) in NAc neurons, these findings raised the possibility that kappa-receptors mediate immobility behaviors in the FST. Here, we report that i.c.v. administration of the kappa-antagonist nor-binaltorphimine dose dependently decreased immobility in the FST, suggesting that it has antidepressant-like effects. Implicating a specific effect at kappa-receptors, similar antidepressant-like effects were seen after treatment with either of two novel, structurally dissimilar kappa-antagonists: 5'-guanidinonaltrindole, which was effective after i.c.v. but not systemic treatment, and 5'-acetamidinoethylnaltrindole (ANTI), which was potent and effective after systemic treatment. The behavioral effects of the kappa-antagonists resembled those of tricyclic antidepressants (desipramine) and selective serotonin reuptake inhibitors (fluoxetine and citalopram). Conversely, systemic administration of the kappa-agonist [5alpha,7alpha,8beta]-N-methyl-N-[7-[1-pyrrolidinyl]-1-oxaspiro[4.5]dec8-yl]-benzenacetamide (U-69593) dose dependently increased immobility in the FST, consistent with prodepressant-like effects. The effects of the kappa-ligands in the FST were not correlated with nonspecific effects on locomotor activity. Furthermore, the most potent and effective kappa-antagonist (ANTI) did not affect the rewarding impact of lateral hypothalamic brain stimulation at a dose with strong antidepressant-like effects. These findings are consistent with the hypothesis that CREB-mediated induction of dynorphin in the NAc "triggers" immobility behavior in the FST. Furthermore, they raise the possibility that kappa-antagonists may have efficacy as antidepressants, but lack stimulant or reward-related effects.
Publication
Journal: Proceedings of the National Academy of Sciences of the United States of America
December/10/2013
Abstract
Genome engineering in human pluripotent stem cells (hPSCs) holds great promise for biomedical research and regenerative medicine. Recently, an RNA-guided, DNA-cleaving interference pathway from bacteria [the type II clustered, regularly interspaced, short palindromic repeats (CRISPR)-CRISPR-associated (Cas) pathway] has been adapted for use in eukaryotic cells, greatly facilitating genome editing. Only two CRISPR-Cas systems (from Streptococcus pyogenes and Streptococcus thermophilus), each with their own distinct targeting requirements and limitations, have been developed for genome editing thus far. Furthermore, limited information exists about homology-directed repair (HDR)-mediated gene targeting using long donor DNA templates in hPSCs with these systems. Here, using a distinct CRISPR-Cas system from Neisseria meningitidis, we demonstrate efficient targeting of an endogenous gene in three hPSC lines using HDR. The Cas9 RNA-guided endonuclease from N. meningitidis (NmCas9) recognizes a 5'-NNNNGATT-3' protospacer adjacent motif (PAM) different from those recognized by Cas9 proteins from S. pyogenes and S. thermophilus (SpCas9 and StCas9, respectively). Similar to SpCas9, NmCas9 is able to use a single-guide RNA (sgRNA) to direct its activity. Because of its distinct protospacer adjacent motif, the N. meningitidis CRISPR-Cas machinery increases the sequence contexts amenable to RNA-directed genome editing.
Publication
Journal: Nature Genetics
October/8/2012
Abstract
Domestic yaks (Bos grunniens) provide meat and other necessities for Tibetans living at high altitude on the Qinghai-Tibetan Plateau and in adjacent regions. Comparison between yak and the closely related low-altitude cattle (Bos taurus) is informative in studying animal adaptation to high altitude. Here, we present the draft genome sequence of a female domestic yak generated using Illumina-based technology at 65-fold coverage. Genomic comparisons between yak and cattle identify an expansion in yak of gene families related to sensory perception and energy metabolism, as well as an enrichment of protein domains involved in sensing the extracellular environment and hypoxic stress. Positively selected and rapidly evolving genes in the yak lineage are also found to be significantly enriched in functional categories and pathways related to hypoxia and nutrition metabolism. These findings may have important implications for understanding adaptation to high altitude in other animal species and for hypoxia-related diseases in humans.
Publication
Journal: Journal of Clinical Investigation
October/29/2006
Abstract
While memory T cells are maintained by continuous turnover, it is not clear how human regulatory CD4+ CD45RO+ CD25hi Foxp3+ T lymphocyte populations persist throughout life. We therefore used deuterium labeling of cycling cells in vivo to determine whether these cells could be replenished by proliferation. We found that CD4+ CD45RO+ Foxp3+ CD25hi T lymphocytes were highly proliferative, with a doubling time of 8 days, compared with memory CD4+ CD45RO+ Foxp3- CD25- (24 days) or naive CD4+ CD45RA+ Foxp3- CD25- populations (199 days). However, the regulatory population was susceptible to apoptosis and had critically short telomeres and low telomerase activity. It was therefore unlikely to be self regenerating. These data are consistent with continuous production from another population source. We found extremely close TCR clonal homology between regulatory and memory CD4+ T cells. Furthermore, antigen-related expansions within certain TCR Vbeta families were associated with parallel numerical increases of CD4+ CD45RO+ CD25hi Foxp3+ Tregs with the same Vbeta usage. It is therefore unlikely that all human CD4+ CD25+ Foxp3+ Tregs are generated as a separate functional lineage in the thymus. Instead, our data suggest that a proportion of this regulatory population is generated from rapidly dividing, highly differentiated memory CD4+ T cells; this has considerable implications for the therapeutic manipulation of these cells in vivo.
Publication
Journal: Virology Journal
September/6/2010
Abstract
Hand, foot and mouth disease (HFMD), a common contagious disease that usually affects children, is normally mild but can have life-threatening manifestations. It can be caused by enteroviruses, particularly Coxsackieviruses and human enterovirus 71 (HEV71) with highly variable clinical manifestations. In the spring of 2008, a large, unprecedented HFMD outbreak in Fuyang city of Anhui province in the central part of southeastern China resulted in a high aggregation of fatal cases. In this study, epidemiologic and clinical investigations, laboratory testing, and genetic analyses were performed to identify the causal pathogen of the outbreak. Of the 6,049 cases reported between 1 March and 9 May of 2008, 3023 (50%) were hospitalized, 353 (5.8%) were severe and 22 (0.36%) were fatal. HEV71 was confirmed as the etiological pathogen of the outbreak. Phylogenetic analyses of entire VP1 capsid protein sequence of 45 Fuyang HEV71 isolates showed that they belong to C4a cluster of the C4 subgenotype. In addition, genetic recombinations were found in the 3D region (RNA-dependent RNA polymerase, a major component of the viral replication complex of the genome) between the Fuyang HEV71 strain and Coxsackievirus A16 (CV-A16), resulting in a recombination virus. In conclusion, an emerging recombinant HEV71 was responsible for the HFMD outbreak in Fuyang City of China, 2008.
Publication
Journal: Diabetes Care
June/5/2013
Abstract
OBJECTIVE
There has been growing evidence that inflammatory markers play a role in the development of type 2 diabetes. We aimed to systematically review prospective studies on the associations of elevated levels of interleukin-6 (IL-6) and C-reactive protein (CRP) with increased risk of type 2 diabetes by conducting a meta-analysis.
METHODS
A systematic search of the PubMed, EMBASE, ISI Web of Knowledge, and Cochrane Library databases up until 10 February 2012 was conducted to retrieve prospective studies matched to search terms. We used generalized least-squares trend estimation to assess dose-response relationships. The summary risk estimates were pooled using either fixed-effects or random-effects models to incorporate between-study variation.
RESULTS
The meta-analysis, including 10 prospective studies, with a total of 19,709 participants and 4,480 cases, detected a significant dose-response association of IL-6 levels with type 2 diabetes risk (relative risk [RR] 1.31 [95% CI 1.17-1.46]). For CRP, the meta-analysis involving 22 cohorts, with a total of 40,735 participants and 5,753 cases, showed that elevated CRP levels were significantly associated with increased risk of type 2 diabetes (1.26 [1.16-1.37]), with the absence of publication bias. Sensitivity and subgroup analyses further supported the associations.
CONCLUSIONS
This meta-analysis provides further evidence that elevated levels of IL-6 and CRP are significantly associated with increased risk of type 2 diabetes.
Pulse
Views:
2
Posts:
No posts
Rating:
Not rated
Publication
Journal: PLoS Genetics
May/2/2010
Abstract
Systemic lupus erythematosus is a complex and potentially fatal autoimmune disease, characterized by autoantibody production and multi-organ damage. By a genome-wide association study (320 patients and 1,500 controls) and subsequent replication altogether involving a total of 3,300 Asian SLE patients from Hong Kong, Mainland China, and Thailand, as well as 4,200 ethnically and geographically matched controls, genetic variants in ETS1 and WDFY4 were found to be associated with SLE (ETS1: rs1128334, P = 2.33x10(-11), OR = 1.29; WDFY4: rs7097397, P = 8.15x10(-12), OR = 1.30). ETS1 encodes for a transcription factor known to be involved in a wide range of immune functions, including Th17 cell development and terminal differentiation of B lymphocytes. SNP rs1128334 is located in the 3'-UTR of ETS1, and allelic expression analysis from peripheral blood mononuclear cells showed significantly lower expression level from the risk allele. WDFY4 is a conserved protein with unknown function, but is predominantly expressed in primary and secondary immune tissues, and rs7097397 in WDFY4 changes an arginine residue to glutamine (R1816Q) in this protein. Our study also confirmed association of the HLA locus, STAT4, TNFSF4, BLK, BANK1, IRF5, and TNFAIP3 with SLE in Asians. These new genetic findings may help us to gain a better understanding of the disease and the functions of the genes involved.
Publication
Journal: Nature Genetics
February/21/2013
Abstract
Watermelon, Citrullus lanatus, is an important cucurbit crop grown throughout the world. Here we report a high-quality draft genome sequence of the east Asia watermelon cultivar 97103 (2n = 2× = 22) containing 23,440 predicted protein-coding genes. Comparative genomics analysis provided an evolutionary scenario for the origin of the 11 watermelon chromosomes derived from a 7-chromosome paleohexaploid eudicot ancestor. Resequencing of 20 watermelon accessions representing three different C. lanatus subspecies produced numerous haplotypes and identified the extent of genetic diversity and population structure of watermelon germplasm. Genomic regions that were preferentially selected during domestication were identified. Many disease-resistance genes were also found to be lost during domestication. In addition, integrative genomic and transcriptomic analyses yielded important insights into aspects of phloem-based vascular signaling in common between watermelon and cucumber and identified genes crucial to valuable fruit-quality traits, including sugar accumulation and citrulline metabolism.
Pulse
Views:
1
Posts:
No posts
Rating:
Not rated
Publication
Journal: Proceedings of the National Academy of Sciences of the United States of America
June/15/2014
Abstract
As an economic crop, pepper satisfies people's spicy taste and has medicinal uses worldwide. To gain a better understanding of Capsicum evolution, domestication, and specialization, we present here the genome sequence of the cultivated pepper Zunla-1 (C. annuum L.) and its wild progenitor Chiltepin (C. annuum var. glabriusculum). We estimate that the pepper genome expanded ∼0.3 Mya (with respect to the genome of other Solanaceae) by a rapid amplification of retrotransposons elements, resulting in a genome comprised of ∼81% repetitive sequences. Approximately 79% of 3.48-Gb scaffolds containing 34,476 protein-coding genes were anchored to chromosomes by a high-density genetic map. Comparison of cultivated and wild pepper genomes with 20 resequencing accessions revealed molecular footprints of artificial selection, providing us with a list of candidate domestication genes. We also found that dosage compensation effect of tandem duplication genes probably contributed to the pungent diversification in pepper. The Capsicum reference genome provides crucial information for the study of not only the evolution of the pepper genome but also, the Solanaceae family, and it will facilitate the establishment of more effective pepper breeding programs.
Publication
Journal: Nature Genetics
September/12/2004
Abstract
Previous studies have suggested more than 20 genetic intervals that are associated with susceptibility to type 1 diabetes (T1D), but identification of specific genes has been challenging and largely limited to known candidate genes. Here, we report evidence for an association between T1D and multiple single-nucleotide polymorphisms in 197 kb of genomic DNA in the IDDM5 interval. We cloned a new gene (SUMO4), encoding small ubiquitin-like modifier 4 protein, in the interval. A substitution (M55V) at an evolutionarily conserved residue of the crucial CUE domain of SUMO4 was strongly associated with T1D (P = 1.9 x 10(-7)). SUMO4 conjugates to I kappa B alpha and negatively regulates NF kappa B transcriptional activity. The M55V substitution resulted in 5.5 times greater NF kappa B transcriptional activity and approximately 2 times greater expression of IL12B, an NF kappa B-dependent gene. These findings suggest a new pathway that may be implicated in the pathogenesis of T1D.
Publication
Journal: Cancer Research
July/21/2011
Abstract
The microRNA miR-125b is dysregulated in various human cancers but its underlying mechanisms of action are poorly understood. Here, we report that miR-125b is downregulated in invasive breast cancers where it predicts poor patient survival. Hypermethylation of the miR-125b promoter partially accounted for reduction of miR-125b expression in human breast cancer. Ectopic restoration of miR-125b expression in breast cancer cells suppressed proliferation, induced G(1) cell-cycle arrest in vitro, and inhibited tumorigenesis in vivo. We identified the ETS1 gene as a novel direct target of miR-125b. siRNA-mediated ETS1 knockdown phenocopied the effect of miR-125b in breast cell lines and ETS1 overexpression in invasive breast cancer tissues also correlated with poor patient prognosis. Taken together, our findings point to an important role for miR-125b in the molecular etiology of invasive breast cancer, and they suggest miR-125b as a potential theranostic tool in this disease.
Publication
Journal: Nucleic Acids Research
May/22/2008
Abstract
MicroRNAs (miRNAs) have recently been proposed as a versatile class of molecules involved in regulation of a variety of biological processes. However, the role of miRNAs in TGF-beta-regulated biological processes is poorly addressed. In this study, we found that miR-24 was upregulated during myoblast differentiation and could be inhibited by TGF-beta1. Using both a reporter assay and Northern blot analysis, we showed that TGF-beta1 repressed miR-24 transcription which was dependent on the presence of Smad3 and a Smads binding site in the promoter region of miR-24. TGF-beta1 was unable to inhibit miR-24 expression in Smad3-deficient myoblasts, which exhibited accelerated myogenesis. Knockdown of miR-24 led to reduced expression of myogenic differentiation markers in C2C12 cells, while ectopic expression of miR-24 enhanced differentiation, and partially rescued inhibited myogenesis by TGF-beta1. This is the first study demonstrating a critical role for miRNAs in modulating TGF-beta-dependent inhibition of myogenesis, and provides a novel mechanism of the genetic regulation of TGF-beta signaling during skeletal muscle differentiation.
Publication
Journal: Infection and Immunity
December/7/2011
Abstract
Funded by the National Institute of Allergy and Infectious Diseases, the Pathosystems Resource Integration Center (PATRIC) is a genomics-centric relational database and bioinformatics resource designed to assist scientists in infectious-disease research. Specifically, PATRIC provides scientists with (i) a comprehensive bacterial genomics database, (ii) a plethora of associated data relevant to genomic analysis, and (iii) an extensive suite of computational tools and platforms for bioinformatics analysis. While the primary aim of PATRIC is to advance the knowledge underlying the biology of human pathogens, all publicly available genome-scale data for bacteria are compiled and continually updated, thereby enabling comparative analyses to reveal the basis for differences between infectious free-living and commensal species. Herein we summarize the major features available at PATRIC, dividing the resources into two major categories: (i) organisms, genomes, and comparative genomics and (ii) recurrent integration of community-derived associated data. Additionally, we present two experimental designs typical of bacterial genomics research and report on the execution of both projects using only PATRIC data and tools. These applications encompass a broad range of the data and analysis tools available, illustrating practical uses of PATRIC for the biologist. Finally, a summary of PATRIC's outreach activities, collaborative endeavors, and future research directions is provided.
Publication
Journal: Journal of Cell Biology
April/4/2002
Abstract
Extracellular amyloid beta peptides (Abetas) have long been thought to be a primary cause of Alzheimer's disease (AD). Now, detection of intracellular neuronal Abeta1--42 accumulation before extracellular Abeta deposits questions the relevance of intracellular peptides in AD. In the present study, we directly address whether intracellular Abeta is toxic to human neurons. Microinjections of Abeta1--42 peptide or a cDNA-expressing cytosolic Abeta1--42 rapidly induces cell death of primary human neurons. In contrast, Abeta1--40, Abeta40--1, or Abeta42--1 peptides, and cDNAs expressing cytosolic Abeta1--40 or secreted Abeta1--42 and Abeta1--40, are not toxic. As little as a 1-pM concentration or 1500 molecules/cell of Abeta1--42 peptides is neurotoxic. The nonfibrillized and fibrillized Abeta1--42 peptides are equally toxic. In contrast, Abeta1--42 peptides are not toxic to human primary astrocytes, neuronal, and nonneuronal cell lines. Inhibition of de novo protein synthesis protects against Abeta1--42 toxicity, indicating that programmed cell death is involved. Bcl-2, Bax-neutralizing antibodies, cDNA expression of a p53R273H dominant negative mutant, and caspase inhibitors prevent Abeta1--42-mediated human neuronal cell death. Taken together, our data directly demonstrate that intracellular Abeta1--42 is selectively cytotoxic to human neurons through the p53--Bax cell death pathway.
Publication
Journal: JAMA - Journal of the American Medical Association
June/17/2015
Abstract
OBJECTIVE
Uncertainty remains about the efficacy of folic acid therapy for the primary prevention of stroke because of limited and inconsistent data.
OBJECTIVE
To test the primary hypothesis that therapy with enalapril and folic acid is more effective in reducing first stroke than enalapril alone among Chinese adults with hypertension.
METHODS
The China Stroke Primary Prevention Trial, a randomized, double-blind clinical trial conducted from May 19, 2008, to August 24, 2013, in 32 communities in Jiangsu and Anhui provinces in China. A total of 20,702 adults with hypertension without history of stroke or myocardial infarction (MI) participated in the study.
METHODS
Eligible participants, stratified by MTHFR C677T genotypes (CC, CT, and TT), were randomly assigned to receive double-blind daily treatment with a single-pill combination containing enalapril, 10 mg, and folic acid, 0.8 mg (n = 10,348) or a tablet containing enalapril, 10 mg, alone (n = 10,354).
METHODS
The primary outcome was first stroke. Secondary outcomes included first ischemic stroke; first hemorrhagic stroke; MI; a composite of cardiovascular events consisting of cardiovascular death, MI, and stroke; and all-cause death.
RESULTS
During a median treatment duration of 4.5 years, compared with the enalapril alone group, the enalapril-folic acid group had a significant risk reduction in first stroke (2.7% of participants in the enalapril-folic acid group vs 3.4% in the enalapril alone group; hazard ratio [HR], 0.79; 95% CI, 0.68-0.93), first ischemic stroke (2.2% with enalapril-folic acid vs 2.8% with enalapril alone; HR, 0.76; 95% CI, 0.64-0.91), and composite cardiovascular events consisting of cardiovascular death, MI, and stroke (3.1% with enalapril-folic acid vs 3.9% with enalapril alone; HR, 0.80; 95% CI, 0.69-0.92). The risks of hemorrhagic stroke (HR, 0.93; 95% CI, 0.65-1.34), MI (HR, 1.04; 95% CI, 0.60-1.82), and all-cause deaths (HR, 0.94; 95% CI, 0.81-1.10) did not differ significantly between the 2 treatment groups. There were no significant differences between the 2 treatment groups in the frequencies of adverse events.
CONCLUSIONS
Among adults with hypertension in China without a history of stroke or MI, the combined use of enalapril and folic acid, compared with enalapril alone, significantly reduced the risk of first stroke. These findings are consistent with benefits from folate use among adults with hypertension and low baseline folate levels.
BACKGROUND
clinicaltrials.gov Identifier: NCT00794885.
Pulse
Views:
1
Posts:
No posts
Rating:
Not rated
load more...