Thomas Streichert
Citations
All
Search in:AllTitleAbstractAuthor name
Publications
(89)
Patents
Grants
Pathways
Clinical trials
Publication
Journal: Journal of Bone and Mineral Research
October/7/2010
Abstract
Parathyroid hormone (PTH) is only one measurable index of skeletal health, and we reasoned that a histomorphometric analysis of iliac crest biopsies would be another and even more direct approach to assess bone health and address the required minimum 25-Hydroxyvitamin D [25(OH)D] level. A cohort from the northern European population with its known high prevalence of vitamin D deficiency therefore would be ideal to answer the latter question. We examined 675 iliac crest biopsies from male and female individuals, excluding all patients who showed any signs of secondary bone diseases at autopsy. Structural histomorphometric parameters, including osteoid indices, were quantified using the Osteomeasure System according to ASBMR standards, and serum 25(OH)D levels were measured for all patients. Statistical analysis was performed by Student's t test. The histologic results demonstrate an unexpected high prevalence of mineralization defects, that is, a pathologic increase in osteoid. Indeed, 36.15% of the analyzed patients presented with an osteoid surface per bone surface (OS/BS) of more than 20%. Based on the most conservative threshold that defines osteomalacia at the histomorphometric level with a pathologic increase in osteoid volume per bone volume (OV/BV) greater than 2% manifest mineralization defects were present in 25.63% of the patients. The latter were found independent of bone volume per trabecular volume (BV/TV) throughout all ages and affected both sexes equally. While we could not establish a minimum 25(OH)D level that was inevitably associated with mineralization defects, we did not find pathologic accumulation of osteoid in any patient with circulating 25(OH)D above 75 nmol/L. Our data demonstrate that pathologic mineralization defects of bone occur in patients with a serum 25(OH)D below 75 nmol/L and strongly argue that in conjunction with a sufficient calcium intake, the dose of vitamin D supplementation should ensure that circulating levels of 25(OH)D reach this minimum threshold (75 nmol/L or 30 ng/mL) to maintain skeletal health.
Publication
Journal: BMC Cancer
December/27/2010
Abstract
BACKGROUND
The discovery of small non-coding RNAs and the subsequent analysis of microRNA expression patterns in human cancer specimens have provided completely new insights into cancer biology. Genetic and epigenetic data indicate oncogenic or tumor suppressor function of these pleiotropic regulators. Therefore, many studies analyzed the expression and function of microRNA in human breast cancer, the most frequent malignancy in females. However, nothing is known so far about microRNA expression in male breast cancer, accounting for approximately 1% of all breast cancer cases.
METHODS
The expression of 319 microRNAs was analyzed in 9 primary human male breast tumors and in epithelial cells from 15 male gynecomastia specimens using fluorescence-labeled bead technology. For identification of differentially expressed microRNAs data were analyzed by cluster analysis and selected statistical methods.Expression levels were validated for the most up- or down-regulated microRNAs in this training cohort using real-time PCR methodology as well as in an independent test cohort comprising 12 cases of human male breast cancer.
RESULTS
Unsupervised cluster analysis separated very well male breast cancer samples and control specimens according to their microRNA expression pattern indicating cancer-specific alterations of microRNA expression in human male breast cancer. miR-21, miR519d, miR-183, miR-197, and miR-493-5p were identified as most prominently up-regulated, miR-145 and miR-497 as most prominently down-regulated in male breast cancer.
CONCLUSIONS
Male breast cancer displays several differentially expressed microRNAs. Not all of them are shared with breast cancer biopsies from female patients indicating male breast cancer specific alterations of microRNA expression.
Publication
Journal: Nature Medicine
July/22/2009
Abstract
Activation of osteoclasts and their acidification-dependent resorption of bone is thought to maintain proper serum calcium levels. Here we show that osteoclast dysfunction alone does not generally affect calcium homeostasis. Indeed, mice deficient in Src, encoding a tyrosine kinase critical for osteoclast activity, show signs of osteopetrosis, but without hypocalcemia or defects in bone mineralization. Mice deficient in Cckbr, encoding a gastrin receptor that affects acid secretion by parietal cells, have the expected defects in gastric acidification but also secondary hyperparathyroidism and osteoporosis and modest hypocalcemia. These results suggest that alterations in calcium homeostasis can be driven by defects in gastric acidification, especially given that calcium gluconate supplementation fully rescues the phenotype of the Cckbr-mutant mice. Finally, mice deficient in Tcirg1, encoding a subunit of the vacuolar proton pump specifically expressed in both osteoclasts and parietal cells, show hypocalcemia and osteopetrorickets. Although neither Src- nor Cckbr-deficient mice have this latter phenotype, the combined deficiency of both genes results in osteopetrorickets. Thus, we find that osteopetrosis and osteopetrorickets are distinct phenotypes, depending on the site or sites of defective acidification.
Publication
Journal: American Heart Journal
September/21/2006
Abstract
BACKGROUND
Asymmetric dimethylarginine (ADMA) plasma levels have been shown to be elevated in diseases related to endothelial dysfunction such as hypertension, hyperlipidemia, diabetes mellitus, and others. It has been shown that ADMA predicts cardiovascular mortality in patients who have coronary heart disease (CHD). However, the question whether ADMA is an independent risk factor for CHD still remains unresolved.
METHODS
The CARDIAC study is a multicenter case-control study, designed to detect differences in ADMA plasma levels between patients with CHD and controls from the general population. We included in our analysis 131 cases and 131 controls, matched for age, sex, and body mass index.
RESULTS
We found that cases had higher ADMA plasma levels than controls (0.70 micromol/L [0.59-0.87 micromol/L] vs 0.60 micromol/L [0.54-0.69 micromol/L], P < .001). To evaluate the predictive power of ADMA regarding CHD, we calculated 2 multivariate logistic regression models including laboratory parameters and traditional risk factors. The odds ratio for ADMA in the multivariate model including the laboratory characteristics was 2.59 (1.61-4.17; P < .001); the odds ratio for the multivariate model including other risk factors was 6.04 (2.56-14.25; P < .001) for the third tertile (>0.72 micromol/L) versus the first (<0.58 micromol/L).
CONCLUSIONS
We conclude from the results of our study that ADMA is an independent risk factor for CHD.
Publication
Journal: PLoS ONE
August/19/2012
Abstract
Cell morphology determines cell behavior, signal transduction, protein-protein interaction, and responsiveness to external stimuli. In cancer, these functions profoundly contribute to resistance mechanisms to radio- and chemotherapy. With regard to this aspect, this study compared the genome wide gene expression in exponentially growing cell lines from different tumor entities, lung carcinoma and squamous cell carcinoma, under more physiological three-dimensional (3D) versus monolayer cell culture conditions. Whole genome cDNA microarray analysis was accomplished using the Affymetrix HG U133 Plus 2.0 gene chip. Significance analysis of microarray (SAM) and t-test analysis revealed significant changes in gene expression profiles of 3D relative to 2D cell culture conditions. These changes affected the extracellular matrix and were mainly associated with biological processes like tissue development, cell adhesion, immune system and defense response in contrast to terms related to DNA repair, which lacked significant alterations. Selected genes were verified by semi-quantitative RT-PCR and Western blotting. Additionally, we show that 3D growth mediates a significant increase in tumor cell radio- and chemoresistance relative to 2D. Our findings show significant gene expression differences between 3D and 2D cell culture systems and indicate that cellular responsiveness to external stress such as ionizing radiation and chemotherapeutics is essentially influenced by differential expression of genes involved in the regulation of integrin signaling, cell shape and cell-cell contact.
Publication
Journal: Journal of Cell Biology
May/15/2011
Abstract
Although Wnt signaling in osteoblasts is of critical importance for the regulation of bone remodeling, it is not yet known which specific Wnt receptors of the Frizzled family are functionally relevant in this process. In this paper, we show that Fzd9 is induced upon osteoblast differentiation and that Fzd9(-/-) mice display low bone mass caused by impaired bone formation. Our analysis of Fzd9(-/-) primary osteoblasts demonstrated defects in matrix mineralization in spite of normal expression of established differentiation markers. In contrast, we observed a reduced expression of chemokines and interferon-regulated genes in Fzd9(-/-) osteoblasts. We also identified the ubiquitin-like modifier Isg15 as one potential downstream mediator of Fzd9 in these cells. Importantly, our molecular analysis further revealed that canonical Wnt signaling is not impaired in the absence of Fzd9, thus explaining the absence of a bone resorption phenotype. Collectively, our results reveal a previously unknown function of Fzd9 in osteoblasts, a finding that may have therapeutic implications for bone loss disorders.
Publication
Journal: American Journal of Pathology
December/16/2004
Abstract
Expression of the cell adhesion molecule CEACAM1 in melanomas is an independent factor for the risk of metastasis with a predictive value superior to that of tumor thickness. We have previously shown that CEACAM1 co-localizes at the tumor-stroma interface of invading melanoma masses with integrin beta(3) and that these two adhesion molecules interact via the CEACAM1 cytoplasmic domain. To address the functional consequences of CEACAM1 expression, we investigated invasion and migration of melanocytic and melanoma cells that stably express CEACAM1 using two different in vitro systems. Here, we demonstrate that CEACAM1 expression markedly enhances cell invasion and migration. The enhanced invasion and migration of CEACAM1-transfected cells was dependent on the presence of Tyr-488 within the full-length cytoplasmic CEACAM1 domain. Treatment with anti-CEACAM monoclonal antibodies blocked CEACAM1-enhanced cell invasion and cell migration in a dose-dependent manner. Furthermore, the enhanced invasion and migration of CEACAM1-transfected melanoma cells was blocked by integrin-antagonizing RGD peptides. Expression of integrin beta(3) induces the up-regulation of CEACAM1 in melanocytic MEL6 cells. These results strengthen the view that CEACAM1 and alpha(v)beta(3) integrin are functionally interconnected with respect to the invasive growth of melanomas.
Publication
Journal: Clinical Cancer Research
April/13/2009
Abstract
OBJECTIVE
Bone marrow is a common homing organ for early disseminated tumor cells (DTC) and their presence can predict the subsequent occurrence of overt metastasis and survival in lung cancer. It is still unclear whether the shedding of DTC from the primary tumor is a random process or a selective release driven by a specific genomic pattern.
METHODS
DTCs were identified in bone marrow from lung cancer patients by an immunocytochemical cytokeratin assay. Genomic aberrations and expression profiles of the respective primary tumors were assessed by microarrays and fluorescence in situ hybridization analyses. The most significant results were validated on an independent set of primary lung tumors and brain metastases.
RESULTS
Combination of DNA copy number profiles (array comparative genomic hybridization) with gene expression profiles identified five chromosomal regions differentiating bone marrow-negative from bone marrow-positive patients (4q12-q32, 10p12-p11, 10q21-q22, 17q21, and 20q11-q13). Copy number changes of 4q12-q32 were the most prominent finding, containing the highest number of differentially expressed genes irrespective of chromosomal size (P=0.018). Fluorescence in situ hybridization analyses on further primary lung tumor samples confirmed the association between loss of 4q and bone marrow-positive status. In bone marrow-positive patients, 4q was frequently lost (37% versus 7%), whereas gains could be commonly found among bone marrow-negative patients (7% versus 17%). The same loss was also found to be common in brain metastases from both small and non-small cell lung cancer patients (39%).
CONCLUSIONS
Thus, our data indicate, for the first time, that early hematogenous dissemination of tumor cells might be driven by a specific pattern of genomic changes.
Publication
Journal: FASEB Journal
July/20/2010
Abstract
Targeting of genes in mice, a key approach to study development and disease, often leaves a neo cassette, loxP, or FRT sites inserted in the mouse genome. Insertion of neo can influence the expression of neighboring genes, but similar effects have not been reported for loxP sites. We therefore performed microarray analyses of mice in which the Ncam or the Tnr gene were targeted either by insertion of neo or loxP/FRT sites. In the case of Ncam, neo, but not loxP/FRT insertion, led to a 2-fold reduction in mRNA levels of 3 genes located at distances between 0.2 and 3.1 Mb from the target. In contrast, after introduction of loxP/FRT sites into introns of Tnr, we observed a 2.5- to 4-fold reduction in the transcript level of the Gas5 gene, 1.1 Mb away from Tnr, most probably due to disruption of a conserved regulatory element in Tnr. Insertion of short DNA sequences such as loxP/FRT can thus influence off-target mRNA levels if these sites are accidentally placed into regulatory elements. Our results imply that conditional knockout mice should be analyzed for genomic positional side effects that may influence the animals' phenotypes.
Publication
Journal: Journal of Bone and Mineral Research
September/1/2011
Abstract
Since the hematopoetic system is located within the bone marrow, it is not surprising that recent evidence has demonstrated the existence of molecular interactions between bone and immune cells. While interleukin 1 (IL-1) and IL-18, two cytokines of the IL-1 family, have been shown to regulate differentiation and activity of bone cells, the role of IL-33, another IL-1 family member, has not been addressed yet. Since we observed that the expression of IL-33 increases during osteoblast differentiation, we analyzed its possible influence on bone formation and observed that IL-33 did not affect matrix mineralization but enhanced the expression of Tnfsf11, the gene encoding RANKL. This finding led us to analyze the skeletal phenotype of Il1rl1-deficient mice, which lack the IL-33 receptor ST2. Unexpectedly, these mice displayed normal bone formation but increased bone resorption, thereby resulting in low trabecular bone mass. Since this finding suggested a negative influence of IL-33 on osteoclastogenesis, we next analyzed osteoclast differentiation from bone marrow precursor cells and observed that IL-33 completely abolished the generation of TRACP(+) multinucleated osteoclasts, even in the presence of RANKL and macrophage colony-stimulating factor (M-CSF). Although our molecular studies revealed that IL-33 treatment of bone marrow cells caused a shift toward other hematopoetic lineages, we further observed a direct negative influence of IL-33 on the osteoclastogenic differentiation of RAW264.7 macrophages, where IL-33 repressed the expression of Nfatc1, which encodes one of the key transciption factors of osteoclast differentiation. Taken together, these findings have uncovered a previously unknown function of IL-33 as an inhibitor of bone resorption.
Publication
Journal: Nature Communications
February/21/2016
Abstract
The hormone calcitonin (CT) is primarily known for its pharmacologic action as an inhibitor of bone resorption, yet CT-deficient mice display increased bone formation. These findings raised the question about the underlying cellular and molecular mechanism of CT action. Here we show that either ubiquitous or osteoclast-specific inactivation of the murine CT receptor (CTR) causes increased bone formation. CT negatively regulates the osteoclast expression of Spns2 gene, which encodes a transporter for the signalling lipid sphingosine 1-phosphate (S1P). CTR-deficient mice show increased S1P levels, and their skeletal phenotype is normalized by deletion of the S1P receptor S1P3. Finally, pharmacologic treatment with the nonselective S1P receptor agonist FTY720 causes increased bone formation in wild-type, but not in S1P3-deficient mice. This study redefines the role of CT in skeletal biology, confirms that S1P acts as an osteoanabolic molecule in vivo and provides evidence for a pharmacologically exploitable crosstalk between osteoclasts and osteoblasts.
Publication
Journal: Journal of Bone and Mineral Research
June/6/2005
Abstract
ApoE is a plasma protein that plays a major role in lipoprotein metabolism. Here we describe that ApoE expression is strongly induced on mineralization of primary osteoblast cultures. ApoE-deficient mice display an increased bone formation rate compared with wildtype controls, thereby showing that ApoE has a physiologic function in bone remodeling.
BACKGROUND
Apolipoprotein E (ApoE) is a protein component of lipoproteins and facilitates their clearance from the circulation. This is confirmed by the phenotype of ApoE-deficient mice that have high plasma cholesterol levels and spontaneously develop atherosclerotic lesions. The bone phenotype of these mice has not been analyzed to date, although an association between certain ApoE alleles and BMD has been reported.
METHODS
Primary osteoblasts were isolated from newborn mouse calvariae and mineralized ex vivo. A genome-wide expression analysis was performed during the course of differentiation using the Affymetrix gene chip system. Bones from ApoE-deficient mice and wildtype controls were analyzed using radiography, micro CT imaging, and undecalcified histology. Cellular activities were assessed using dynamic histomorphometry and by measuring urinary collagen degradation products. Lipoprotein uptake assays were performed with (125)I-labeled triglyceride-rich lipoprotein-remnants (TRL-R) using primary osteoblasts from wildtype and ApoE-deficient mice. Serum concentrations of osteocalcin were determined by radioimmunoassay after hydroxyapatite chromatography.
RESULTS
ApoE expression is strongly induced on mineralization of primary osteoblast cultures ex vivo. Mice lacking ApoE display a high bone mass phenotype that is caused by an increased bone formation rate, whereas bone resorption is not affected. This phenotype may be explained by a decreased uptake of triglyceride-rich lipoproteins by osteoblasts, resulting in elevated levels of undercarboxylated osteocalcin in the serum of ApoE-deficient mice.
CONCLUSIONS
The specific induction of ApoE gene expression during osteoblast differentiation along with the increased bone formation rate observed in ApoE-deficient mice shows that ApoE has a physiologic role as a regulator of osteoblast function.
Publication
Journal: PLoS ONE
July/12/2015
Abstract
BACKGROUND
Aim of this study was to assess the biological function in tumor progression and metastatic process carcinoembryonic antigen-related cell adhesion molecules (CEACAM) 1, 5 and 6 in pancreatic adenocarcinoma (PDAC).
METHODS
CEACAM knock down cells were established and assessed in vitro and in a subcutaneous and intraperitoneal mouse xenograft model. Tissue and serum expression of patients with PDAC were assessed by immunohistochemistry (IHC) and by enzyme linked immunosorbent assays.
RESULTS
Presence of lymph node metastasis was correlated with CEACAM 5 and 6 expression (determined by IHC) and tumor recurrence exclusively with CEACAM 6. Patients with CEACAM 5 and 6 expression showed a significantly shortened OS in Kaplan-Meier survival analyses. Elevated CEACAM6 serum values showed a correlation with distant metastasis and. Survival analysis revealed a prolonged OS for patients with low serum CEACAM 1 values. In vitro proliferation and migration capacity was increased in CEACAM knock down PDAC cells, however, mice inoculated with CEACAM knock down cells showed a prolonged overall-survival (OS). The number of spontaneous pulmonary metastasis was increased in the CEACAM knock down group.
CONCLUSIONS
The effects mediated by CEACAM expression in PDAC are complex, though overexpression is correlated with loco-regional aggressive tumor growth. However, loss of CEACAM can be considered as a part of epithelial-mesenchymal transition and is therefore of rather importance in the process of distant metastasis.
Publication
Journal: Endocrinology
August/4/2009
Abstract
Carcinoembryonic antigen-related cell adhesion molecule 1 (CC1) is a cell adhesion molecule within the Ig superfamily. The Tyr-phosphorylated isoform of CC1 (CC1-L) plays an important metabolic role in the regulation of hepatic insulin clearance. In this report, we show that CC1-deficient (Cc1(-/-)) mice are prone to hepatic steatosis, as revealed by significantly elevated hepatic triglyceride and both total and esterified cholesterol levels compared with age-matched wild-type controls. Cc1(-/-) mice were also predisposed to lipid-induced hepatic steatosis and dysfunction as indicated by their greater susceptibility to store lipids and express elevated levels of enzymatic markers of liver damage after chronic feeding of a high-fat diet. Hepatic steatosis in the Cc1(-/-) mice was linked to a significant increase in the expression of key lipogenic (fatty acid synthase, acetyl CoA carboxylase) and cholesterol synthetic (3-hydroxy-3-methylglutaryl-coenzyme A reductase) enzymes under the control of sterol regulatory element binding proteins-1c and -2 transcription factors. Cc1(-/-) mice also exhibited impaired insulin clearance, glucose intolerance, liver insulin resistance, and elevated hepatic expression of the key gluconeogenic transcriptional activators peroxisome proliferator-activated receptor-gamma coactivator-1 and Forkhead box O1. Lack of CC1 also exacerbated both glucose intolerance and hepatic insulin resistance induced by high-fat feeding, but insulin clearance was not further deteriorated in the high-fat-fed Cc1(-/-) mice. In conclusion, our data indicate that CC1 is a key regulator of hepatic lipogenesis and that Cc1(-/-) mice are predisposed to liver steatosis, leading to hepatic insulin resistance and liver damage, particularly when chronically exposed to dietary fat.
Publication
Journal: PLoS ONE
June/15/2011
Abstract
Wnt signalling is a key pathway controlling bone formation in mice and humans. One of the regulators of this pathway is Dkk1, which antagonizes Wnt signalling through the formation of a ternary complex with the transmembrane receptors Krm1/2 and Lrp5/6, thereby blocking the induction of Wnt signalling by the latter ones. Here we show that Kremen-2 (Krm2) is predominantly expressed in bone, and that its osteoblast-specific over-expression in transgenic mice (Col1a1-Krm2) results in severe osteoporosis. Histomorphometric analysis revealed that osteoblast maturation and bone formation are disturbed in Col1a1-Krm2 mice, whereas bone resorption is increased. In line with these findings, primary osteoblasts derived from Col1a1-Krm2 mice display a cell-autonomous differentiation defect, impaired canonical Wnt signalling and decreased production of the osteoclast inhibitory factor Opg. To determine whether the observed effects of Krm2 on bone remodeling are physiologically relevant, we analyzed the skeletal phenotype of 24 weeks old Krm2-deficient mice and observed high bone mass caused by a more than three-fold increase in bone formation. Taken together, these data identify Krm2 as a regulator of bone remodeling and raise the possibility that antagonizing KRM2 might prove beneficial in patients with bone loss disorders.
Publication
Journal: Breast Cancer Research and Treatment
May/5/2008
Abstract
Fra-2 (Fos-related antigen 2) is a member of the Fos family of AP-1 transcription factors which is often up-regulated in mammary carcinomas. Previous results suggested that it might be involved in the regulation of breast cancer invasion and metastasis. In order to analyze the role of Fra-2 in breast cancer cells, it was silenced in the highly invasive MDA-MB231 cells using RNA interference. On the other hand, stable transfectants of the weakly invasive MCF7 cell line were established in order to analyze the effects of Fra-2 overexpression. In both approaches, cell proliferation was not or only weakly influenced by Fra-2. In contrast, the invasive potential of the cells was increased, and a weaker effect on motility was observed. By cDNA microarray analysis of the MCF7 transfectants followed by validation on a protein level, we identified several Fra-2 target genes which might be involved in cell invasion and migration, i.e., ALCAM and connexin 43. Additionally, mRNA expression levels of various genes which are associated with a more malignant behavior of the tumors in vivo were up- or downregulated, i.e., members of the MAGE family, S100P, TIMP2, IL24 etc. These results show that Fra-2 overexpression is associated with a more aggressive tumor phenotype and is probably involved in breast cancer progression in vivo.
Publication
Journal: Journal of Experimental Medicine
December/17/2013
Abstract
Differentiation arrest is a hallmark of acute leukemia. Genomic alterations in B cell differentiation factors such as PAX5, IKZF1, and EBF-1 have been identified in more than half of all cases of childhood B precursor acute lymphoblastic leukemia (ALL). Here, we describe a perturbed epigenetic and transcriptional regulation of ZNF423 in ALL as a novel mechanism interfering with B cell differentiation. Hypomethylation of ZNF423 regulatory sequences and BMP2 signaling result in transactivation of ZNF423α and a novel ZNF423β-isoform encoding a nucleosome remodeling and histone deacetylase complex-interacting domain. Aberrant ZNF423 inhibits the transactivation of EBF-1 target genes and leads to B cell maturation arrest in vivo. Importantly, ZNF423 expression is associated with poor outcome of ETV6-RUNX1-negative B precursor ALL patients. Our work demonstrates that ALL is more than a genetic disease and that epigenetics may uncover novel mechanisms of disease with prognostic implications.
Publication
Journal: BMC Cancer
August/15/2010
Abstract
BACKGROUND
Pancreatic cancer is still associated with devastating prognosis. Real progress in treatment options has still not been achieved. Therefore new models are urgently needed to investigate this deadly disease. As a part of this process we have established and characterized a new human pancreatic cancer cell line.
METHODS
The newly established pancreatic cancer cell line PaCa 5061 was characterized for its morphology, growth rate, chromosomal analysis and mutational analysis of the K-ras, EGFR and p53 genes. Gene-amplification and RNA expression profiles were obtained using an Affymetrix microarray, and overexpression was validated by IHC analysis. Tumorigenicity and spontaneous metastasis formation of PaCa 5061 cells were analyzed in pfp-/-/rag2-/- mice. Sensitivity towards chemotherapy was analysed by MTT assay.
RESULTS
PaCa 5061 cells grew as an adhering monolayer with a doubling time ranging from 30 to 48 hours. M-FISH analyses showed a hypertriploid complex karyotype with multiple numerical and unbalanced structural aberrations. Numerous genes were overexpressed, some of which have previously been implicated in pancreatic adenocarcinoma (GATA6, IGFBP3, IGFBP6), while others were detected for the first time (MEMO1, RIOK3). Specifically highly overexpressed genes (fold change>> 10) were identified as EGFR, MUC4, CEACAM1, CEACAM5 and CEACAM6. Subcutaneous transplantation of PaCa 5061 into pfp-/-/rag2-/- mice resulted in formation of primary tumors and spontaneous lung metastasis.
CONCLUSIONS
The established PaCa 5061 cell line and its injection into pfp-/-/rag2-/- mice can be used as a new model for studying various aspects of the biology of human pancreatic cancer and potential treatment approaches for the disease.
Publication
Journal: Circulation
November/24/2013
Abstract
BACKGROUND
Endogenous arginine homologues, including homoarginine, have been identified as novel biomarkers for cardiovascular disease and outcomes. Our studies of human cohorts and a confirmatory murine model associated the arginine homologue homoarginine and its metabolism with stroke pathology and outcome.
RESULTS
Increasing homoarginine levels were independently associated with a reduction in all-cause mortality in patients with ischemic stroke (7.4 years of follow-up; hazard ratio for 1-SD homoarginine, 0.79 [95% confidence interval, 0.64-0.96]; P=0.019; n=389). Homoarginine was also independently associated with the National Institutes of Health Stroke Scale+age score and 30-day mortality after ischemic stroke (P<0.05; n=137). A genome-wide association study revealed that plasma homoarginine was strongly associated with single nucleotide polymorphisms in the L-arginine:glycine amidinotransferase (AGAT) gene (P<2.1 × 10(-8); n=2806), and increased AGAT expression in a cell model was associated with increased homoarginine. Next, we used 2 genetic murine models to investigate the link between plasma homoarginine and outcome after experimental ischemic stroke: (1) an AGAT deletion (AGAT(-/-)) and (2) a guanidinoacetate N-methyltransferase deletion (GAMT(-/-)) causing AGAT upregulation. As suggested by the genome-wide association study, homoarginine was absent in AGAT(-/-) mice and increased in GAMT(-/-) mice. Cerebral damage and neurological deficits in experimental stroke were increased in AGAT(-/-) mice and attenuated by homoarginine supplementation, whereas infarct size in GAMT(-/-) mice was decreased compared with controls.
CONCLUSIONS
Low homoarginine appears to be related to poor outcome after ischemic stroke. Further validation in future trials may lead to therapeutic adjustments of homoarginine metabolism that alleviate stroke and other vascular disorders.
Publication
Journal: Molecular Medicine
August/2/2012
Abstract
Mutations in the CLN3 gene lead to juvenile neuronal ceroid lipofuscinosis, a pediatric neurodegenerative disorder characterized by visual loss, epilepsy and psychomotor deterioration. Although most CLN3 patients carry the same 1-kb deletion in the CLN3 gene, their disease phenotype can be variable. The aims of this study were to (i) study the clinical phenotype in CLN3 patients with identical genotype, (ii) identify genes that are dysregulated in CLN3 disease regardless of the clinical course that could be useful as biomarkers, and (iii) find modifier genes that affect the progression rate of the disease. A total of 25 CLN3 patients homozygous for the 1-kb deletion were classified into groups with rapid, average or slow disease progression using an established clinical scoring system. Genome-wide expression profiling was performed in eight CLN3 patients with different disease progression and matched controls. The study showed high phenotype variability in CLN3 patients. Five genes were dysregulated in all CLN3 patients and present candidate biomarkers of the disease. Of those, dual specificity phosphatase 2 (DUSP2) was also validated in acutely CLN3-depleted cell models and in CbCln3(Δex7/8) cerebellar precursor cells. A total of 13 genes were upregulated in patients with rapid disease progression and downregulated in patients with slow disease progression; one gene showed dysregulation in the opposite way. Among these potential modifier genes, guanine nucleotide exchange factor 1 for small GTPases of the Ras family (RAPGEF1) and transcription factor Spi-B (SPIB) were validated in an acutely CLN3-depleted cell model. These findings indicate that differential perturbations of distinct signaling pathways might alter disease progression and provide insight into the molecular alterations underlying neuronal dysfunction in CLN3 disease and neurodegeneration in general.
Publication
Journal: DMM Disease Models and Mechanisms
March/29/2015
Abstract
The central importance of translational control by post-translational modification has spurred major interest in regulatory pathways that control translation. One such pathway uniquely adds hypusine to eukaryotic initiation factor 5A (eIF5A), and thereby affects protein synthesis and, subsequently, cellular proliferation through an unknown mechanism. Using a novel conditional knockout mouse model and a Caenorhabditis elegans knockout model, we found an evolutionarily conserved role for the DOHH-mediated second step of hypusine synthesis in early embryonic development. At the cellular level, we observed reduced proliferation and induction of senescence in 3T3 Dohh-/- cells as well as reduced capability for malignant transformation. Furthermore, mass spectrometry showed that deletion of DOHH results in an unexpected complete loss of hypusine modification. Our results provide new biological insight into the physiological roles of the second step of the hypusination of eIF5A. Moreover, the conditional mouse model presented here provides a powerful tool for manipulating hypusine modification in a temporal and spatial manner, to analyse both how this unique modification normally functions in vivo as well as how it contributes to different pathological conditions.
Publication
Journal: European Journal of Cancer
October/5/2010
Abstract
The transcription factor Fra-2 (Fos-related antigen-2) has been implicated in invasion of breast cancer cells, but there is only sparse information about its role in clinical tumours. In the present study, we analysed Fra-2 mRNA expression in a cohort of 167 patients, and found significant correlations between high Fra-2 expression and nodal involvement or reduced disease-free survival. To get more information about the underlying mechanisms, we generated stably transfected MDA-MB231 breast cancer cells with increased Fra-2 expression. Compared with the controls, these clones did not differ in proliferation and motility, but had higher invasive potential. By global gene expression analysis and subsequent validation of selected genes, we identified a number of proteins involved in cell-cell or cell-matrix interactions that were up- or down-regulated in Fra-2 overexpressing cells, e.g. connexin 43, ICAM-1, L1-CAM, integrin beta 2, integrin beta 4, and integrin alpha 6. The association of Fra-2 overexpression and high ICAM-1 or L1-CAM levels could also be demonstrated in our clinical cohort of mammary tumours. In both MDA-MB231 and MCF7 cells, we found an increased attachment of Fra-2 transfectants to components of the extracellular matrix. In addition, we could show a striking increase in the number of rolling cells in flow-through assays using E-selectin coated capillaries, which might indicate a higher capacity of extravasation. In conclusion, our data obtained on breast cancer cell lines and clinical tissue samples suggest that overexpression of Fra-2 promotes breast cancer progression and metastasis by deregulation of genes involved in cell-cell and cell-ECM contacts.
Publication
Journal: International Journal of Molecular Medicine
April/21/2008
Abstract
The aim of the present study was to investigate whether endometriosis and cancer share common molecular characteristics. Tissue samples were collected prospectively during diagnostic laparoscopy of patients with primary infertility. Using high-density oligonucleotide microarrays, (Affymetrix Gene Chip HG-U133 Set) the genome-wide gene expression profile of advanced ovarian endometriosis was analyzed compared with matched normal endometrium. Expression of TERT, the gene encoding the telomerase reverse transcriptase subunit, and telomerase activity were analyzed in eutopic and ectopic endometrium. Genome-wide, high-resolution array-CGH was used to screen for genomic aberrations in endometriosis. Expression microarray data were validated quantitatively with RT-PCR. The genes RARRES1 and RARRES2 (retinoic acid receptor responder 1 and 2) were found to be up-regulated in endometriosis, suggesting a high degree of differentiation. Consistently, down-regulated genes included those involved in the cell cycle, cell metabolism and homeostasis. Expression of TERT and telomerase activity were present in eutopic but absent in ectopic endometrium. Array-CGH revealed a normal genomic pattern without gross amplifications and deletions. In conclusion, these data suggest that advanced ovarian endometriosis represents a highly differentiated tissue with minimal or no malignant potential.
Publication
Journal: Journal of Biological Chemistry
August/16/2010
Abstract
Many experimental and clinical studies suggest a relationship between enhanced angiotensin II release by the angiotensin-converting enzyme (ACE) and the pathophysiology of atherosclerosis. The atherosclerosis-enhancing effects of angiotensin II are complex and incompletely understood. To identify anti-atherogenic target genes, we performed microarray gene expression profiling of the aorta during atherosclerosis prevention with the ACE inhibitor, captopril. Atherosclerosis-prone apolipoprotein E (apoE)-deficient mice were used as a model to decipher susceptible genes regulated during atherosclerosis prevention with captopril. Microarray gene expression profiling and immunohistology revealed that captopril treatment for 7 months strongly decreased the recruitment of pro-atherogenic immune cells into the aorta. Captopril-mediated inhibition of plaque-infiltrating immune cells involved down-regulation of the C-C chemokine receptor 9 (CCR9). Reduced cell migration correlated with decreased numbers of aorta-resident cells expressing the CCR9-specific chemoattractant factor, chemokine ligand 25 (CCL25). The CCL25-CCR9 axis was pro-atherogenic, because inhibition of CCR9 by RNA interference in hematopoietic progenitors of apoE-deficient mice significantly retarded the development of atherosclerosis. Analysis of coronary artery biopsy specimens of patients with coronary artery atherosclerosis undergoing bypass surgery also showed strong infiltrates of CCR9-positive cells in atherosclerotic lesions. Thus, the C-C chemokine receptor, CCR9, exerts a significant role in atherosclerosis.
load more...