OGR1 negatively regulates β-casein and triglyceride synthesis and cell proliferation via the PI3K/AKT/mTOR signaling pathway in goat mammary epithelial cells.
Journal: 2020/March - Animal Biotechnology
ISSN: 1532-2378
Abstract:
Goat milk in some cases is less allergenic than cow milk, therefore, more people drink goat milk in the world, so it is necessary for us to improve the yield and quality of goat milk. Previous studies have shown that some genes are closely related to lactation. Ovarian cancer G protein-coupled 1 (OGR1) is a G protein-coupled receptor discovered recently. OGR1 is widely found in various tissues of organisms and is involved in cell skeleton reorganization, carcinogenesis, cell proliferation, and apoptosis by regulating multiple signaling pathways in cells. However, the modulating effect of OGR1 in lactation is still unknown. Therefore, the objective of this study is to investigate the function of OGR1 in goat mammary epithelial cells (GMECs). Flow cytometry, CCK8, EDU, enzyme-linked immunosorbent assay, and triglyceride test kit assays were performed and we found that OGR1 regulated Bcl-2/Bax ratio, Fas protein expression as well as the phosphorylation of AKT and mammalian target of rapamycin (mTOR). si-OGR1 could enhance the proliferation of GMECs by promoting G1/S phase progression and the synthesis of β-casein and triglyceride. By contrast, OGR1 repressed GMECs proliferation and down-regulated the synthesis of β-casein and triglyceride by blocking the PI3K/AKT/mTOR signaling pathway in GMECs.
Relations:
Diseases
(1)
Conditions
(1)
Drugs
(1)
Chemicals
(3)
Genes
(2)
Processes
(5)
Anatomy
(3)
Affiliates
(2)
Similar articles
Articles by the same authors
Discussion board
Collaboration tool especially designed for Life Science professionals.Drag-and-drop any entity to your messages.