Genus Boswellia as a new candidate for neurodegenerative disorders
Journal: 2020/May - Iranian Journal of Basic Medical Sciences
Abstract:
Neurodegenerative diseases, characterized by progressive loss of neurons, share common mechanisms such as apoptotic cell death, mitochondrial dysfunction, inflammation, and oxidative stress. Genus Boswellia is a genus in the Burseraceae family. It comprises several species traditionally used for treatment of chronic inflammatory diseases, cerebral edema, chronic pain syndrome, gastrointestinal diseases, tumors, as well as enhancing intelligence. Many studies have been carried out to discover therapeutic approaches for neurodegenerative diseases such as Alzheimer's diseases, Parkinson's disease, Huntington's disease, multiple sclerosis and amyotrophic lateral sclerosis, stroke, and concomitant cognitive deficits. However, no curative treatment has been developed. This paper provides an overview of evidence about the potential of the Boswellia species and their main constituents, boswellic acids, as modulators of several mechanisms involved in the pathology of the neurodegenerative diseases. In vitro, animal, and clinical studies have confirmed that Boswellia species contain bioactive components that may enhance cognitive activity and protect against neurodegeneration. They exert the beneficial effects via targeting multiple pathological causes by antioxidative, anti-inflammatory, antiamyloidogenic, and anti-apoptotic properties. The Boswellia species, having neuroprotective potential, makes them a promising candidate to cure or prevent the neurodegenerative disorders.
Keywords: Alzheimer’s diseases; Boswellia; Cognitive; Neurodegenerative; diseases Neuroprotection.
Relations:
Content
Citations
(4)
References
(80)
Diseases
(8)
Conditions
(2)
Organisms
(2)
Processes
(3)
Anatomy
(1)
Similar articles
Articles by the same authors
Discussion board
Iran J Basic Med Sci 23(3): 277-286

Genus <em>Boswellia</em> as a new candidate for neurodegenerative disorders

Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran
Department of Pharmacology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
Division of Neurocognitive Sciences, Psychiatry and Behavioral Sciences Research Center, Mashhad University of Medical Sciences, Mashhad
Corresponding author: Azar Hosseini. Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran. Tel: +98-38002283; Email: hoseiniaz@mums.ac.ir
Received 2018 Jun 6; Accepted 2019 Sep 28.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License, (http://creativecommons.org/licenses/by/3.0/) which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

Neurodegenerative diseases, characterized by progressive loss of neurons, share common mechanisms such as apoptotic cell death, mitochondrial dysfunction, inflammation, and oxidative stress. Genus Boswellia is a genus in the Burseraceae family. It comprises several species traditionally used for treatment of chronic inflammatory diseases, cerebral edema, chronic pain syndrome, gastrointestinal diseases, tumors, as well as enhancing intelligence. Many studies have been carried out to discover therapeutic approaches for neurodegenerative diseases such as Alzheimer’s diseases, Parkinson’s disease, Huntington’s disease, multiple sclerosis and amyotrophic lateral sclerosis, stroke, and concomitant cognitive deficits. However, no curative treatment has been developed. This paper provides an overview of evidence about the potential of the Boswellia species and their main constituents, boswellic acids, as modulators of several mechanisms involved in the pathology of the neurodegenerative diseases. In vitro, animal, and clinical studies have confirmed that Boswellia species contain bioactive components that may enhance cognitive activity and protect against neurodegeneration. They exert the beneficial effects via targeting multiple pathological causes by antioxidative, anti-inflammatory, antiamyloidogenic, and anti-apoptotic properties. The Boswellia species, having neuroprotective potential, makes them a promising candidate to cure or prevent the neurodegenerative disorders.

Key Words: Alzheimer’s diseases, Boswellia, Cognitive, Neurodegenerative, diseases Neuroprotection

References

  • 1. Ayoobi F, Shamsizadeh A, Fatemi I, Vakilian A, Allahtavakoli M, Hassanshahi G, et al Bio-effectiveness of the main flavonoids of Achillea millefolium in the pathophysiology of neurodegenerative disorders-a review. Iran J Basic Med Sci. 2017;20:604–612.[Google Scholar]
  • 2. Durães F, Pinto M, Sousa EOld drugs as new treatments for neurodegenerative diseases. Pharmaceuticals. 2018;11:44.[Google Scholar]
  • 3. Finkel TSignal transduction by reactive oxygen species. J Cell Biol. 2011;194:7–15.[Google Scholar]
  • 4. Winner B, Kohl Z, Gage FHNeurodegenerative disease and adult neurogenesis. Eur J Neurosci. 2011;33:1139–1151.[PubMed][Google Scholar]
  • 5. Shirooie S, Nabavi SF, Dehpour AR, Belwal T, Habtemariam S, Argüelles S, et al Targeting mTORs by omega-3 fatty acids: a possible novel therapeutic strategy for neurodegeneration? Pharmacol Res. 2018;135:37–48.[PubMed][Google Scholar]
  • 6. Mertens M, Buettner A, Kirchhoff EThe volatile constituents of frankincense–a review. Flavour Fragr J. 2009;24:279–300.[PubMed][Google Scholar]
  • 7. Morikawa T, Matsuda H, Yoshikawa MA review of anti-inflammatory terpenoids from the incense gum resins frankincense and myrrh. J Oleo Sci. 2017;66:805–814.[PubMed][Google Scholar]
  • 8. Siddiqui MBoswellia serrata, a potential antiinflammatory agent: an overview. Indian J Pharm Sci. 2011;73:255–261.[Google Scholar]
  • 9. Farshchi A, Ghiasi G, Farshchi S, Malek Khatabi PEffects of Boswellia papyrifera gum extract on learning and memory in mice and rats. Iran J Basic Med Sci. 2010;13:9–15.[PubMed][Google Scholar]
  • 10. Hamidpour R, Hamidpour S, Hamidpour M, Shahlari MFrankincense (乳香 Rǔ Xiāng; Boswellia species): from the selection of traditional applications to the novel phytotherapy for the prevention and treatment of serious diseases. J Tradit Complement Med. 2013;3:221–226.[Google Scholar]
  • 11. Takahashi M, Sung B, Shen Y, Hur K, Link A, Boland CR, et al Boswellic acid exerts antitumor effects in colorectal cancer cells by modulating expression of the let-7 and miR-200 microRNA family. Carcinogenesis. 2012;33:2441–2449.[Google Scholar]
  • 12. Basch E, Boon H, Heerema TD, Foppo I, Hashmi S, Hasskarl J, et al Boswellia: An evidence-based systematic review by the natural standard research collaboration. J Herb Pharmacother. 2004;4:63–83.[PubMed][Google Scholar]
  • 13. Rijkers T, Ogbazghi W, Wessel M, Bongers FThe effect of tapping for frankincense on sexual reproduction in Boswellia papyrifera. J Appl Ecol. 2006;43:1188–1195.[PubMed][Google Scholar]
  • 14. Goyal SNovel anti-inflammatory topical herbal gels containing Withania somnifera and Boswellia serrata. Int J Pharm Biol Arch. 2011;2:1087–1094.[PubMed][Google Scholar]
  • 15. Ammon H. Boswellic acids and their role in chronic inflammatory diseases. In: Gupta SC, Prasad S, Aggarwal BB, editors , editors. Anti-inflammatory Nutraceuticals and Chronic Diseases. Springer; 2016. pp. 291–327. [PubMed]
  • 16. Liu J-J, Nilsson A, Oredsson S, Badmaev V, Zhao W-Z, Duan R-DBoswellic acids trigger apoptosis via a pathway dependent on caspase-8 activation but independent on Fas/Fas ligand interaction in colon cancer HT-29 cells. Carcinogenesis. 2002;23:2087–2093.[PubMed][Google Scholar]
  • 17. Abdel-Tawab M, Werz O, Schubert-Zsilavecz MBoswellia serrata. Clin Pharmacokinet. 2011;50:349–369.[PubMed][Google Scholar]
  • 18. Syrovets T, Büchele B, Gedig E, Slupsky JR, Simmet TAcetyl-boswellic acids are novel catalytic inhibitors of human topoisomerases I and IIα Mol Pharmacol. 2000;58:71–81.[PubMed][Google Scholar]
  • 19. Brookmeyer R, Johnson E, Ziegler-Graham K, Arrighi HMForecasting the global burden of Alzheimer’s disease. Alzheimer’s Dement. 2007;3:186–191.[PubMed][Google Scholar]
  • 20. Kumar A, Singh AA review on Alzheimer’s disease pathophysiology and its management: an update. Pharmacol Rep. 2015;67:195–203.[PubMed][Google Scholar]
  • 21. Serrano-Pozo A, Frosch MP, Masliah E, Hyman BTNeuropathological alterations in Alzheimer disease. Cold Spring Harb Perspect Med. 2011;1:a006189.[Google Scholar]
  • 22. Reddy VS, Bukke S, Dutt N, Rana P, Pandey AKA systematic review and meta-analysis of the circulatory, erythrocellular and CSF selenium levels in Alzheimer’s disease: A metal meta-analysis (AMMA study-I) J Trace Elem Med Biol. 2017;42:68–75.[PubMed][Google Scholar]
  • 23. Wenk GLNeuropathologic changes in Alzheimer’s disease: potential targets for treatment. J Clin Psychiatry. 2006;67:3–7.[PubMed][Google Scholar]
  • 24. Yassin N, El-Shenawy S, Mahdy KA, Gouda N, Marrie A, Farrag A, et al Effect of Boswellia serrata on Alzheimer’s disease induced in rats. J Arab Soc Med Res. 2013;8:1–11.[PubMed][Google Scholar]
  • 25. Ahmed H, Mohamed E, El-Dsoki SEvidences for the promising therapeutic potential of Boswellia serrata against Alzheimer’s disease: pre-clinical study. Int J Pharm Pharm Sci. 2014;6:384–392.[PubMed][Google Scholar]
  • 26. Ibrahim BMM Experimental study of the effects of Boswellia serrata and ginger (Zingiber officinale) on Alzheimer’s Disease induced in rats. CU Theses; 2012. [PubMed][Google Scholar]
  • 27. Correia SC, Santos RX, Perry G, Zhu X, Moreira PI, Smith MAInsulin-resistant brain state: the culprit in sporadic Alzheimer’s disease? Ageing Res Rev. 2011;10:264–273.[Google Scholar]
  • 28. Agrawal R, Tyagi E, Shukla R, Nath CInsulin receptor signaling in rat hippocampus: a study in STZ (ICV) induced memory deficit model. Eur Neuropsychopharmacol. 2011;21:261–273.[PubMed][Google Scholar]
  • 29. Qu Zq, Zhou Y, Zeng Ys, Lin Yk, Li Y, Zhong Zq, et al Protective effects of a Rhodiola crenulata extract and salidroside on hippocampal neurogenesis against streptozotocin-induced neural injury in the rat. PLoS One. 2012;7:e29641.[Google Scholar]
  • 30. Salkovic-Petrisic M, Knezovic A, Hoyer S, Riederer PWhat have we learned from the streptozotocin-induced animal model of sporadic Alzheimer’s disease, about the therapeutic strategies in Alzheimer’s research. J Neural Transm. 2013;120:233–252.[PubMed][Google Scholar]
  • 31. Sun P, Knezovic A, Parlak M, Cuber J, M Karabeg M, Deckert J, et al Long-term effects of intracerebroventricular streptozotocin treatment on adult neurogenesis in the rat hippocampus. Curr Alzheimer Res. 2015;12:772–84.[PubMed][Google Scholar]
  • 32. Beheshti S, Aghaie RTherapeutic effect of frankincense in a rat model of Alzheimer’s disease. Avicenna J Phytomed. 2016;6:468–475.[Google Scholar]
  • 33. Bensky D, Gamble A, Kaptchuk TJ Chinese herbal medicine: materia medica. Eastland Press Seattle: 2004. [PubMed][Google Scholar]
  • 34. Jeon S, Hur J, Jeong HJ, Koo B-S, Pak SCSuHeXiang Wan essential oil alleviates amyloid beta induced memory impairment through inhibition of tau protein phosphorylation in mice. Am J Chin Med. 2011;39:917–932.[PubMed][Google Scholar]
  • 35. den Brok MG, van Dalen JW, van Gool WA, Moll van Charante EP, de Bie RM, Richard EApathy in Parkinson’s disease: a systematic review and meta-analysis. Mov Disord. 2015;30:759–769.[PubMed][Google Scholar]
  • 36. Yuan H, Zhang ZW, Liang LW, Shen Q, Wang XD, Ren SM, et al Treatment strategies for Parkinson’s disease. Neurosci Bull. 2010;26:66–76.[Google Scholar]
  • 37. Gaki GS, Papavassiliou AGOxidative stress-induced signaling pathways implicated in the pathogenesis of Parkinson’s disease. Neuromolecular Med. 2014;16:217–230.[PubMed][Google Scholar]
  • 38. Kazmi S, Kafami L, Ebrahimi A, Jameie B, Joghataiee MTThe effects of Boswellia resin extract on dopaminergic cell line, SK-N-SH, against MPP+-induced neurotoxicity. Basic Clin Neurosci. 2011;3:16–21.[PubMed][Google Scholar]
  • 39. Baudry M, Bi XLearning and memory: an emergent property of cell motility. Neurobiol Learn Mem. 2013;104:64–72.[Google Scholar]
  • 40. Colciago A, Casati L, Negri-Cesi P, Celotti FLearning and memory: steroids and epigenetics. J Steroid Biochem Mol Biol. 2015;150:64–85.[PubMed][Google Scholar]
  • 41. Gallistel CR, Balsam PDTime to rethink the neural mechanisms of learning and memory. Neurobiol Learn Mem. 2014;108:136–144.[Google Scholar]
  • 42. Bliss TV, Collingridge GLA synaptic model of memory: long-term potentiation in the hippocampus. Nature. 1993;361:31–39.[PubMed][Google Scholar]
  • 43. Kandel ER, Schwartz JH, Jessell TM, Jessell MBT, Siegelbaum S, Hudspeth AJ Principles of neural science. New York: McGraw-hill; 2000. [PubMed][Google Scholar]
  • 44. Martin SJ, Grimwood PD, Morris RGSynaptic plasticity and memory: an evaluation of the hypothesis. Annu Rev Neurosci. 2000;23:649–711.[PubMed][Google Scholar]
  • 45. Whitlock JR, Heynen AJ, Shuler MG, Bear MFLearning induces long-term potentiation in the hippocampus. Science. 2006;313:1093–1097.[PubMed][Google Scholar]
  • 46. Arlt SNon-Alzheimer’s disease-related memory impairment and dementia. Dialogues Clin Neurosci. 2013;15:465–473.[Google Scholar]
  • 47. Hosseini SM, Esfandiari E, Alaei HEffects of frankincense aqueous extract during gestational period on increasing power of learning and memory in adult offsprings. J Isfahan Med School. 2004;21:16–20.[PubMed][Google Scholar]
  • 48. Hosseini Sharifabad M, Esfandiary EA morphometeric study on CA3 hippocampal field in young rats following maternal administration of Boswellia serrata resin during gestation. Iran J Basic Med Sci. 2007;10:176–182.[PubMed][Google Scholar]
  • 49. Sharifabad MH, Esfandiary EThe effects of maternal administration of boswellia gum resin (Frankincense) during lactation on stereological parameters of rat hippocampus. J Isfahan Med School. 2012;29:1–9.[PubMed][Google Scholar]
  • 50. Beheshti S, Shakakomi AG, Ghaedi K, Dehestani HFrankincense upregulates the hippocampal calcium/calmodulin kinase II-α during development of the rat brain and improves memory performance. Int J Dev Neurosci. 2018;69:44–48.[PubMed][Google Scholar]
  • 51. Kang H, Sun LD, Atkins CM, Soderling TR, Wilson MA, Tonegawa SAn important role of neural activity-dependent CaMKIV signaling in the consolidation of long-term memory. Cell. 2001;106:771–783.[PubMed][Google Scholar]
  • 52. Petersen JD, Chen X, Vinade L, Dosemeci A, Lisman JE, Reese TSDistribution of postsynaptic density (PSD)-95 and Ca2+/calmodulin-dependent protein kinase II at the PSD. J Neurosci. 2003;23:11270–11278.[Google Scholar]
  • 53. Lisman J, Schulman H, Cline HThe molecular basis of CaMKII function in synaptic and behavioural memory. Nat Rev Neurosci. 2002;3:175–190.[PubMed][Google Scholar]
  • 54. Khalaj-Kondori M, Sadeghi F, Hosseinpourfeizi MA, Shaikhzadeh-Hesari F, Nakhlband A, Rahmati-Yamchi MBoswellia serrata gum resin aqueous extract upregulatesBDNF but not CREB expression in adult male rat hippocampus. Turk J Med Sci. 2016;46:1573–1578.[PubMed][Google Scholar]
  • 55. Mahmoudi A, Hosseini-Sharifabad A, Monsef-Esfahani HR, Yazdinejad AR, Khanavi M, Roghani A, et al Evaluation of systemic administration of Boswellia papyrifera extracts on spatial memory retention in male rats. J Nat Med. 2011;65:519–525.[PubMed][Google Scholar]
  • 56. Begin M, Langlois M, Lorrain D, Cunnane SThyroid function and cognition during aging. Curr Gerontol Geriatr Res. 2008;2008:474868.[Google Scholar]
  • 57. Miller KJ, Parsons TD, Whybrow PC, Van Herle K, Rasgon N, Van Herle A, et al Verbal memory retrieval deficits associated with untreated hypothyroidism. J Neuropsychiatry Clin Neurosc. 2007;19:132–136.[PubMed][Google Scholar]
  • 58. Paz-Baruch N, Leikin M, Leikin R Visual processing and attention abilities of general gifted and excelling in mathematics students. , Charles University in Prague, Faculty of Education; ERME, Feb 2015. Prague, Czech Republic: Charles University in Prague; pp. 1046–1051. [PubMed][Google Scholar]
  • 59. Hosseini M, Hadjzadeh MA-R, Derakhshan M, Havakhah S, Rassouli FB, Rakhshandeh H, et al The beneficial effects of olibanum on memory deficit induced by hypothyroidism in adult rats tested in Morris water maze. Arch Pharm Res. 2010;33:463–468.[PubMed][Google Scholar]
  • 60. Bejar C, Wang R-H, Weinstock MEffect of rivastigmine on scopolamine-induced memory impairment in rats. Eur J Pharmacol. 1999;383:231–240.[PubMed][Google Scholar]
  • 61. Hosseinzadeh H, Ramezani M, Akhtar Y, Ziaei TEffects Boswellia carterii gum resin fractions on intact memory and hyoscine-induced learning impairments in rats performing the Morris water maze task. J Medicinal Plants. 2010;2:95–101.[PubMed][Google Scholar]
  • 62. Mahboubi M, Taghizadeh M, Talaei SA, Firozeh SMT, Rashidi AA, Tamtaji ORCombined administration of Melissa officinalis and Boswellia serrata extracts in an animal model of memory. Iran J Psychiatry Behav Sci. 2016;10:e681.[Google Scholar]
  • 63. Czerniawski J, Miyashita T, Lewandowski G, Guzowski JFSystemic lipopolysaccharide administration impairs retrieval of context–object discrimination, but not spatial, memory: evidence for selective disruption of specific hippocampus-dependent memory functions during acute neuroinflammation. Brain Behav Immun. 2015;44:159–166.[Google Scholar]
  • 64. Kranjac D, McLinden KA, Deodati LE, Papini MR, Chumley MJ, Boehm GWPeripheral bacterial endotoxin administration triggers both memory consolidation and reconsolidation deficits in mice. Brain Behav Immun. 2012;26:109–121.[PubMed][Google Scholar]
  • 65. Lehnardt S, Massillon L, Follett P, Jensen FE, Ratan R, Rosenberg PA, et al Activation of innate immunity in the CNS triggers neurodegeneration through a Toll-like receptor 4-dependent pathway. Proc Natl Acad Sci. 2003;100:8514–8519.[Google Scholar]
  • 66. Zhao M, Zhou A, Xu L, Zhang XThe role of TLR4-mediated PTEN/PI3K/AKT/NF-κB signaling pathway in neuroinflammation in hippocampal neurons. Neuroscience. 2014;269:93–101.[PubMed][Google Scholar]
  • 67. Beheshti S, Karimi BFrankincense improves memory retrieval in rats treated with lipopolysaccharide. J Herbmed Pharmacol. 2016;5:12–16.[PubMed][Google Scholar]
  • 68. Dodrill CBNeuropsychological effects of seizures. Epilepsy Behav. 2004;5:21–24.[PubMed][Google Scholar]
  • 69. Babb TLAxonal growth and neosynaptogenesis in human and experimental hippocampal epilepsy. Adv Neurol. 1997;72:45–51.[PubMed][Google Scholar]
  • 70. Portavella M, Vargas J, Torres B, Salas CThe effects of telencephalic pallial lesions on spatial, temporal, and emotional learning in goldfish. Brain Res Bull. 2002;57:397–399.[PubMed][Google Scholar]
  • 71. Jalili C, Salahshoor M, Pourmotabbed A, Moradi S, Roshankhah S, Darehdori AS, et al The effects of aqueous extract of Boswellia serrata on hippocampal region CA1 and learning deficit in kindled rats. Res Pharm Sci. 2014;9:351–358.[Google Scholar]
  • 72. Jalili C, Salahshoor MR, Moradi S, Pourmotabbed A, Motaghi MThe therapeutic effect of the aqueous extract of Boswellia serrata on the learning deficit in kindled rats. Int J Prev Med. 2014;5:563–568.[Google Scholar]
  • 73. Burger CRegion-specific genetic alterations in the aging hippocampus: implications for cognitive aging. Front Aging Neurosci. 2010;2:140.[Google Scholar]
  • 74. Hosseini-Sharifabad M, Kamali-Ardakani R, Hosseini-Sharifabad ABeneficial effect of Boswellia serrata gum resin on spatial learning and the dendritic tree of dentate gyrus granule cells in aged rats. Avicenna J Phytomed. 2016;6:189–197.[Google Scholar]
  • 75. Taghizadeh M, Maghaminejad F, Aghajani M, Rahmani MThe effect of tablet containing Boswellia serrata and Melisa officinalis extract on older adults’ memory: A randomized controlled trial. Arch Gerontol Geriatr. 2018;75:146–150.[PubMed][Google Scholar]
  • 76. Noseworthy JH, Lucchinetti C, Rodriguez M, Weinshenker BGMultiple sclerosis. New Engl J Med. 2000;343:938–952.[PubMed][Google Scholar]
  • 77. Lopez YP, Kenis G, Rutten BP, Myint AM, Steinbusch HW, van den Hove DLQuinolinic acid-immunoreactivity in the naïve mouse brain. J Chem Neuroanat. 2016;71:6–12.[PubMed][Google Scholar]
  • 78. Sundaram G, Brew BJ, Jones SP, Adams S, Lim CK, Guillemin GJQuinolinic acid toxicity on oligodendroglial cells: relevance for multiple sclerosis and therapeutic strategies. J Neuroinflammation. 2014;11:204.[Google Scholar]
  • 79. Rahimi VB, Askari VR, Mehrdad A, Sadeghnia HRBoswellia serrata has promising impact on glutamate and quinolinic acid-induced toxicity on oligodendroglia cells: in vitro study. Acta Pol Pharm. 2017;74:1803–1811.[PubMed][Google Scholar]
  • 80. Chiaravalloti ND, DeLuca JCognitive impairment in multiple sclerosis. The Lancet Neurol. 2008;7:1139–1151.[PubMed][Google Scholar]
  • 81. Mirhosseini G, Tehranipour M, Shahri NMThe synergistic effects of mixture extract Portulaca olerace, Urtica Dioica, Boswellia serrate on multiple sclerosis in rats. J Gorgan Univ Med Sci. 2018;21:57–61.[PubMed][Google Scholar]
  • 82. Sedighi B, Pardakhty A, Kamali H, Shafiee K, Hasani BNEffect of Boswellia papyrifera on cognitive impairment in multiple sclerosis. Iran J Neurol. 2014;13:149–153.[Google Scholar]
  • 83. Majdinasab N, Siahpush A, Mousavinejad SK, Malayeri A, Sajedi SA, Bizhanzadeh PEffect of Boswellia serrata on cognitive impairment in multiple sclerosis patients. J Herb Med. 2016;6:119–127.[PubMed][Google Scholar]
  • 84. Miniño AM, Murphy SL, Xu J, Kochanek KDDeaths: final data for 2008. Natl Vital Stat Rep. 2011;59:1–126.[PubMed][Google Scholar]
  • 85. Della-Morte D, Guadagni F, Palmirotta R, Testa G, Caso V, Paciaroni M, et al Genetics of ischemic stroke, stroke-related risk factors, stroke precursors and treatments. Pharmacogenomics. 2012;13:595–613.[PubMed][Google Scholar]
  • 86. Mahajan S, Kashyap R, Sood B, Jaret P, Mokta J, Kaushik N, et al J Assoc Physicians India. 2004;52:699–702.[PubMed][Google Scholar]
  • 87. Lai TW, Zhang S, Wang YTExcitotoxicity and stroke: identifying novel targets for neuroprotection. Prog Neurobiol. 2014;115:157–188.[PubMed][Google Scholar]
  • 88. Chamorro Á, Dirnagl U, Urra X, Planas AMNeuroprotection in acute stroke: targeting excitotoxicity, oxidative and nitrosative stress, and inflammation. Lancet Neurol. 2016;15:869–881.[PubMed][Google Scholar]
  • 89. Assimopoulou A, Zlatanos S, Papageorgiou VAntioxidant activity of natural resins and bioactive triterpenes in oil substrates. Food Chem. 2005;92:721–727.[PubMed][Google Scholar]
  • 90. Sadeghnia HR, Arjmand F, Ghorbani ANeuroprotective effect of Boswellia serrata and its active constituent acetyl 11-keto-β-boswellic acid against oxygen-glucose-serum deprivation-induced cell injury. Acta Pol Pharm. 2017;74:911–920.[PubMed][Google Scholar]
  • 91. Rajabian A, Boroushaki MT, Hayatdavoudi P, Sadeghnia HRBoswellia serrata Protects Against Glutamate-Induced Oxidative Stress and Apoptosis in PC12 and N2a Cells. DNA Cell Biol. 2016;35:666–679.[PubMed][Google Scholar]
  • 92. Al-Harrasi A, Ali L, Ceniviva E, Al-Rawahi A, Hussain J, Hussain H, et al Antiglycation and antioxidant activities and HPTLC analysis of Boswellia sacra Oleogum resin: the sacred frankincense. Trop J Pharm Res. 2013;12:597–602.[PubMed][Google Scholar]
  • 93. Afsar V, Reddy YM, Saritha KIn vitro antioxidant activity and anti-inflammatory activity of methanolic leaf extract of Boswellia serrata. Int J Life Sc Bt &amp; Pharm Res. 2012;4:15–23.[PubMed][Google Scholar]
  • 94. Forouzanfar F, Hosseinzadeh H, Ebrahimzadeh Bideskan A, Sadeghnia HRAqueous and ethanolic extracts of Boswellia serrata protect against focal cerebral ischemia and reperfusion injury in rats. Phytother Res. 2016;30:1954–1967.[PubMed][Google Scholar]
  • 95. Rahnema MEffect of treatment with aqueous extracts of Boswellia serrata on blood-brain barrier permeability and brain edema in experimental model of stroke in rats. Qom Univ Med Sci J. 2017;11:56–65.[PubMed][Google Scholar]
  • 96. Kirste S, Treier M, Wehrle SJ, Becker G, Abdel-Tawab M, Gerbeth K, et al Boswellia serrata acts on cerebral edema in patients irradiated for brain tumors: A prospective, randomized, placebo-controlled, double-blind pilot trial. Cancer. 2011;117:3788–3795.[PubMed][Google Scholar]
  • 97. Moein P, Abbasi Fard S, Asnaashari A, Baratian H, Barekatain M, Tavakoli N, et al The effect of Boswellia Serrata on neurorecovery following diffuse axonal injury. Brain Inj. 2013;27:1454–1460.[PubMed][Google Scholar]
  • 98. Sheykhiyeh Golzardi Mahshid, Rezaenejad Rezvan, Kachouei Emadeddin Y, Siahposht-Khachaki Ali. Neuroscience J Shefaye Khatam. 2018;6[PubMed]
  • 99. Ding Y, Chen M, Wang M, Wang M, Zhang T, Park J, et al Neuroprotection by acetyl-11-keto-β-boswellic acid, in ischemic brain injury involves the Nrf2/HO-1 defense pathway. Sci Rep. 2014;4:7002–7010.[Google Scholar]
  • 100. Ding Y, Chen M, Wang M, Li Y, Wen APost treatment with 11-keto-β-boswellic acid ameliorates cerebral ischemia-reperfusion injury: Nrf2/HO-1 pathway as a potential mechanism. Mol Neurobiol. 2015;52:1430–1439.[PubMed][Google Scholar]
  • 101. Sayed AS, El Sayed NSEDCo-administration of 3-acetyl-11-keto-beta-boswellic acid potentiates the protective effect of celecoxib in lipopolysaccharide-induced cognitive impairment in mice: possible implication of anti-inflammatory and antiglutamatergic pathways. J Mol Neurosci. 2016;59:58–67.[PubMed][Google Scholar]
  • 102. Bishnoi M, Patil C, Kumar A, Kulkarni SKCo-administration of acetyl-11-keto-β-boswellic acid, a specific 5-lipoxygenase inhibitor, potentiates the protective effect of COX-2 inhibitors in kainic acid-induced neurotoxicity in mice. Pharmacology. 2007;79:34–41.[PubMed][Google Scholar]
  • 103. Ding Y, Qiao Y, Wang M, Zhang H, Li L, Zhang Y, et al Enhanced neuroprotection of acetyl-11-keto-β-boswellic acid (AKBA)-loaded O-carboxymethyl chitosan nanoparticles through antioxidant and anti-inflammatory pathways. Mol Neurobiol. 2016;53:3842–3853.[PubMed][Google Scholar]
  • 104. Sayed AS, Gomaa IEO, Bader M, El Sayed NSEDRole of 3-acetyl-11-keto-beta-boswellic acid in counteracting LPS-induced neuroinflammation via modulation of miRNA-155. Mol Neurobiol. 2018;55:5798–5808.[PubMed][Google Scholar]
  • 105. Bishnoi M, Patil C, Kumar A, Kulkarni SProtective effects of nimesulide (COX Inhibitor), AKBA (5-LOX Inhibitor), and their combination in aging-associated abnormalities in mice. Methods Find Exp Clin Pharmacol. 2005;27:465–470.[PubMed][Google Scholar]
Collaboration tool especially designed for Life Science professionals.Drag-and-drop any entity to your messages.