Efficient Intestinal Digestion and On Site Tumor-Bioactivation are the Two Important Determinants for Chylomicron-Mediated Lymph-Targeting Triglyceride-Mimetic Docetaxel Oral Prodrugs.
Journal: 2019/December - Advanced Science
ISSN: 2198-3844
Abstract:
The oral absorption of chemotherapeutical drugs is restricted by poor solubility and permeability, high first-pass metabolism, and gastrointestinal toxicity. Intestinal lymphatic transport of lipophilic prodrugs is a promising strategy to improve the oral delivery efficiency of anticancer drugs via entrapment into a lipid formulation and to avoid first-pass metabolism. However, several basic principles have still not been clarified, such as intestinal digestibility and stability and on-site tumor bioactivation. Herein, triglyceride-mimetic prodrugs of docetaxel (DTX) are designed by conjugating them to the sn-2 position of triglyceride (TG) through different linkage bonds. The role of intestinal digestion in oral absorption of TG-like prodrugs is then investigated by introducing significant steric-hindrance α-substituents into the prodrugs. It is surprisingly found that poor intestinal digestion leads to an unsatisfactory bioavailability but efficient intestinal digestion of TG-like prodrugs with a less steric-hindrance linkage (DTX-S-S-TG) facilitating oral absorption. Moreover, it is found that the TG-like reduction-sensitive prodrug (DTX-S-S-TG) has good stability during intestinal transport and blood circulation, and on-demand release of docetaxel at the tumor site, leading to a significantly improved antitumor efficiency with negligible gastrointestinal toxicity. In summary, the chylomicron-mediated lymph-targeting triglyceride-mimetic oral prodrug approach provides a good foundation for the development of oral chemotherapeutical formulations.
Relations:
Content
References
(21)
Drugs
(1)
Chemicals
(3)
Processes
(5)
Anatomy
(1)
Similar articles
Articles by the same authors
Discussion board
Adv Sci (Weinh) 6(24): 1901810

Efficient Intestinal Digestion and On Site Tumor‐Bioactivation are the Two Important Determinants for Chylomicron‐Mediated Lymph‐Targeting Triglyceride‐Mimetic Docetaxel Oral Prodrugs

Supporting information

Supporting Information

Supplemental Excel 1

Supplemental Excel 2

Supplemental Excel 3

Supplemental Excel 4

Supplemental Excel 5

Supplemental Excel 6

Supplemental Excel 7

Supplemental Excel 8

Supplemental Excel 9

Supplemental Excel 10

Supplemental Excel 11

Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016 China,
School of Pharmacy, Guang Xi University of Chinese Medicine, Wuhe Rode, Nanning 530200 China,
Key Laboratory of Structure‐Based Drug Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016 China,
Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016 P. R. China,
Municipal Key Laboratory of Biopharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016 P. R. China,
Zhonggui He, Email: moc.361.piv@iuggnohzeh.
Contributor Information.
Corresponding author.
E‐mail: moc.361.piv@iuggnohzeh, nc.ude.uhpys@nijnus
Received 2019 Jul 16; Revised 2019 Sep 12
This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

Abstract

The oral absorption of chemotherapeutical drugs is restricted by poor solubility and permeability, high first‐pass metabolism, and gastrointestinal toxicity. Intestinal lymphatic transport of lipophilic prodrugs is a promising strategy to improve the oral delivery efficiency of anticancer drugs via entrapment into a lipid formulation and to avoid first‐pass metabolism. However, several basic principles have still not been clarified, such as intestinal digestibility and stability and on‐site tumor bioactivation. Herein, triglyceride‐mimetic prodrugs of docetaxel (DTX) are designed by conjugating them to the sn‐2 position of triglyceride (TG) through different linkage bonds. The role of intestinal digestion in oral absorption of TG‐like prodrugs is then investigated by introducing significant steric‐hindrance α‐substituents into the prodrugs. It is surprisingly found that poor intestinal digestion leads to an unsatisfactory bioavailability but efficient intestinal digestion of TG‐like prodrugs with a less steric‐hindrance linkage (DTX‐S‐S‐TG) facilitating oral absorption. Moreover, it is found that the TG‐like reduction‐sensitive prodrug (DTX‐S‐S‐TG) has good stability during intestinal transport and blood circulation, and on‐demand release of docetaxel at the tumor site, leading to a significantly improved antitumor efficiency with negligible gastrointestinal toxicity. In summary, the chylomicron‐mediated lymph‐targeting triglyceride‐mimetic oral prodrug approach provides a good foundation for the development of oral chemotherapeutical formulations.

Keywords: docetaxel, lymph transport, oral chemotherapy, reduction‐sensitive, triglyceride‐mimetic prodrugs
Abstract

Supporting Information

Click here for additional data file.(4.0M, pdf)
Click here for additional data file.(4.0M, pdf)

Supplemental Excel 1

Click here for additional data file.(12K, xlsx)
Click here for additional data file.(12K, xlsx)

Supplemental Excel 2

Click here for additional data file.(25K, xlsx)
Click here for additional data file.(25K, xlsx)

Supplemental Excel 3

Click here for additional data file.(10K, xlsx)
Click here for additional data file.(10K, xlsx)

Supplemental Excel 4

Click here for additional data file.(25K, xlsx)
Click here for additional data file.(25K, xlsx)

Supplemental Excel 5

Click here for additional data file.(11K, xlsx)
Click here for additional data file.(11K, xlsx)

Supplemental Excel 6

Click here for additional data file.(21K, xlsx)
Click here for additional data file.(21K, xlsx)

Supplemental Excel 7

Click here for additional data file.(36K, xlsx)
Click here for additional data file.(36K, xlsx)

Supplemental Excel 8

Click here for additional data file.(9.8K, xlsx)
Click here for additional data file.(9.8K, xlsx)

Supplemental Excel 9

Click here for additional data file.(10K, xlsx)
Click here for additional data file.(10K, xlsx)

Supplemental Excel 10

Click here for additional data file.(8.8K, xlsx)
Click here for additional data file.(8.8K, xlsx)

Supplemental Excel 11

Click here for additional data file.(9.2K, xlsx)
Click here for additional data file.(9.2K, xlsx)

Notes

Tian C., Guo J., Wang G., Sun B., Na K., Zhang X., Xu Z., Cheng M., He Z., Sun J., Efficient Intestinal Digestion and On Site Tumor‐Bioactivation are the Two Important Determinants for Chylomicron‐Mediated Lymph‐Targeting Triglyceride‐Mimetic Docetaxel Oral Prodrugs. Adv. Sci. 2019, 6, 1901810 10.1002/advs.201901810 [CrossRef] [Google Scholar]

Notes

Contributor Information

Zhonggui He, Email: moc.361.piv@iuggnohzeh.

Jin Sun, Email: nc.ude.uhpys@nijnus.

Contributor Information

References

  • 1. Fallowfield L., Atkins L., Catt S., Cox A., Coxon C., Langridge C., Morris R., Price M., Ann. Oncol. 2006, 17, 205. [[PubMed]
  • 2. Mei L., Zhang Z., Zhao L., Huang L., Yang X.‐L., Tang J., Feng S.‐S., Adv. Drug Delivery Rev. 2013, 65, 880. [[PubMed]
  • 3. a) Ahn J.‐H., Kim S.‐B., Sohn H.‐J., Lee J.‐S., Kang Y.‐K., Kun Kim W., The Breast 2005, 14, 304; [b) Vassilomanolakis M., Koumakis G., Barbounis V., Demiri M., Panopoulos C., Chrissohoou M., Apostolikas N., Efremidis A. P., The Breast 2005, 14, 136. [[PubMed]
  • 4. Zhang L., Zhang N., Int. J. Nanomed. 2013, 8, 2927.
  • 5. a) Mu C.‐F., Balakrishnan P., Cui F.‐D., Yin Y.‐M., Lee Y.‐B., Choi H.‐G., Yong CS., Chung S.‐J., Shim C.‐K., Kim D.‐D., Biomaterials 2010, 31, 2371; [b) Wang Y., Chen L., Tan L., Zhao Q., Luo F., Wei Y., Qian Z., Biomaterials 2014, 35, 6972. [[PubMed][Google Scholar]
  • 6. a) Gao K., Sun J., Liu K., Liu X., He Z., Drug Dev. Ind. Pharm. 2008, 34, 1227; [b) Yin Y.‐M., Cui F.‐D., Mu C.‐F., Choi M.‐K., Kim J. S., Chung S.‐J., Shim C.‐K., Kim D.‐D., J. Controlled Release 2009, 140, 86. [[PubMed]
  • 7. Cho H.‐J., Park JW., Yoon I.‐S., Kim D.‐D., Int. J. Nanomed. 2014, 9, 495. [Google Scholar]
  • 8. Hu K., Cao S., Hu F., Feng J., Int. J. Nanomed. 2012, 7, 3537.
  • 9. Benet L. Z., Izumi T., Zhang Y., Silverman J. A., Wacher V. J., J. Controlled Release 1999, 62, 25. [[PubMed]
  • 10. a) Bardelmeijer H. A., Ouwehand M., Buckle T., Huisman M. T., Schellens J. H. M., Beijnen J. H., van Tellingen O., Cancer Res. 2002, 62, 6158; [b) van Waterschoot R. A. B., Lagas J. S., Wagenaar E., van der Kruijssen C. M. M., van Herwaarden A. E., Song J.‐Y., Rooswinkel R. W., van Tellingen O., Rosing H., Beijnen J. H., Schinkel A. H., Cancer Res. 2009, 69, 8996. [[PubMed]
  • 11. Malingrã© M. M., Richel D. J., Beijnen J. H., Rosing H., Koopman F. J., Ww T. B. H., Schot M. E., Schellens J. H., J. Clin. Oncol. 2001, 19, 1160. [[PubMed]
  • 12. a) Humberstone A. J., Charman W. N., Adv. Drug Delivery Rev. 1997, 25, 103; b) Porter C. J. H., Trevaskis N. L., Charman W. N., Nat. Rev. Drug Discovery 2007, 6, 231; [c) Trevaskis N. L., Kaminskas L. M., Porter C. J. H., Nat. Rev. Drug Discovery 2015, 14, 781; [d) Yáñez J. A., Wang S. W. J., Knemeyer I. W., Wirth M. A., Alton K. B., Adv. Drug Delivery Rev. 2011, 63, 923. [[PubMed]
  • 13. a) Garzon‐Aburbeh A., Poupaert JH., Claesen M., Dumont P., Atassi G., J. Med. Chem. 1983, 26, 1200; [b) Han S., Hu L., Gracia, Quach T., Simpson J. S., Edwards G. A., Trevaskis N. L., Porter C. J. H., Mol. Pharmaceutics 2016, 13, 3351; [c) Han S., Quach T., Hu L., Wahab A., Charman W. N., Stella V. J., Trevaskis N. L., Simpson J. S., Porter C. J. H., J. Controlled Release 2014, 177, 1; [d) Khan M. S. Y., Akhter M., Eur. J. Med. Chem. 2005, 40, 371; [e) Sakai A., Mori N., Shuto S., Suzuki T., J. Pharm. Sci. 1993, 82, 575; [f) Sugihara J., Furuuchi S., Ando H., Takashima K., Harigaya S., J. Pharmacobio‐Dyn. 1988, 11, 555. [[PubMed][Google Scholar]
  • 14. Hu L., Quach T., Han S., Lim S. F., Yadav P., Senyschyn D., Trevaskis N. L., Simpson J. S., Porter C. J. H., Angew. Chem., Int. Ed. 2016, 55, 13700. [[PubMed]
  • 15. a) Li X., Kim J., Yoon J., Chen X., Adv. Mater. 2017, 29, 10.1002/adma.201606857; ] [b) Sun B., Luo C., Yu H., Zhang X., Chen Q., Yang W., Wang M., Kan Q., Zhang H., Wang Y., He Z., Sun J., Nano Lett. 2018, 18, 3643. [
  • 16. Cong L., Jin S., Bingjun S., Zhonggui H., Trends Pharmacol. Sci. 2014, 35, 556. [[PubMed]
  • 17. Nevin P., Koelsch D., Mansbach CM., J. Lipid Res. 1995, 36, 2405. [[PubMed][Google Scholar]
  • 18. Kuemmerle N. B., Rysman E., Lombardo P. S., Flanagan A. J., Lipe B. C., Wells W. A., Pettus J. R., Froehlich H. M., Memoli V. A., Morganelli P. M., Swinnen J. V., Timmerman L. A., Chaychi L., Fricano C. J., Eisenberg B. L., Coleman W. B., Kinlaw W. B., Mol. Cancer Ther. 2011, 10, 427.
  • 19. Wei W., Cong L., Jincheng Y., Bingjun S., Dongyang Z., Yan L., Yingli W., Wenqian Y., Qiming K., Jin S., J. Controlled Release 2018, 285, 187. [[PubMed]
  • 20. Ho SY., Storch J., Am. J. Physiol.: Cell Physiol. 2001, 281, C1106. [[PubMed][Google Scholar]
  • 21. a) Xiao C., Stahel P., Carreiro A. L., Buhman K. K., Lewis G. F., Trends Endocrinol. Metabol. 2018, 29, 151; [b) Mao Y., Feng S., Li S., Zhao Q., Di D., Liu Y., Wang S., Biomaterials 2019, 188, 173. [[PubMed]
Collaboration tool especially designed for Life Science professionals.Drag-and-drop any entity to your messages.