Ailanthone: A novel potential drug for treating human cancer
Journal: 2020/July - Oncology Letters
Abstract:
Cancer is the second leading cause of death after cardiovascular disease. In 2015, >8.7 million people died worldwide due to cancer, and by 2030 this figure is expected to increase to ~13.1 million. Tumor chemotherapy drugs have specific toxicity and side effects, and patients can also develop secondary drug resistance. To prevent and treat cancer, scientists have developed novel drugs with improved antitumor effects and decreased toxicity. Ailanthone (AIL) is a quassinoid extract from the traditional Chinese medicine plant Ailanthus altissima, which is known to have anti-inflammatory and antimalarial effects. An increasing number of studies have focused on AIL due to its antitumor activity. AIL can inhibit cell proliferation and induce apoptosis by up- or downregulating cancer-associated molecules, which ultimately leads to cancer cell death. Antitumor effects of AIL have been observed in melanoma, acute myeloid leukemia, bladder, lung, breast, gastric and prostate cancer and vestibular neurilemmoma. To the best of our knowledge, the present study is the first review to describe the antitumor mechanisms of AIL.
Keywords: ailanthone; antitumor; apoptosis; autophagy; cancer; mechanism.
Relations:
Content
Diseases
(5)
Chemicals
(1)
Organisms
(1)
Processes
(5)
Anatomy
(1)
Similar articles
Articles by the same authors
Discussion board
Oncol Lett 20(2): 1489-1503

Ailanthone: A novel potential drug for treating human cancer

Medical School of Ningbo University, Ningbo University, Ningbo, Zhejiang 315211, P.R. China
Department of Gastrointestinal Surgery, The Affiliated Hospital of The Medical School of Ningbo University and Ningbo First Hospital, Ningbo, Zhejiang 315010, P.R. China
Correspondence to: Professor Zhilong Yan, Department of Gastrointestinal Surgery, The Affiliated Hospital of The Medical School of Ningbo University and Ningbo First Hospital, 59 Liuting Street, Ningbo, Zhejiang 315010, P.R. China, E-mail: nc.ude.ubn@gnolihznay
Received 2019 Sep 12; Accepted 2020 May 5.
This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.

Abstract

Cancer is the second leading cause of death after cardiovascular disease. In 2015, >8.7 million people died worldwide due to cancer, and by 2030 this figure is expected to increase to ~13.1 million. Tumor chemotherapy drugs have specific toxicity and side effects, and patients can also develop secondary drug resistance. To prevent and treat cancer, scientists have developed novel drugs with improved antitumor effects and decreased toxicity. Ailanthone (AIL) is a quassinoid extract from the traditional Chinese medicine plant Ailanthus altissima, which is known to have anti-inflammatory and antimalarial effects. An increasing number of studies have focused on AIL due to its antitumor activity. AIL can inhibit cell proliferation and induce apoptosis by up- or downregulating cancer-associated molecules, which ultimately leads to cancer cell death. Antitumor effects of AIL have been observed in melanoma, acute myeloid leukemia, bladder, lung, breast, gastric and prostate cancer and vestibular neurilemmoma. To the best of our knowledge, the present study is the first review to describe the antitumor mechanisms of AIL.

Keywords: ailanthone, cancer, antitumor, apoptosis, autophagy, mechanism
Abstract

Acknowledgements

Not applicable.

Acknowledgements

Glossary

Abbreviations

AILailanthone
AMLacute myeloid leukemia
MMPmatrix metalloproteinase
Nrf2NF-E2-related factor
YAPYes-associated protein
JAKJanus kinase
STAT3signal transducer and activator of transcription 3
RAFRAF proto-oncogene serine/threonine-protein kinase
MEKmitogen-activated protein kinase kinase
ERKextracellular signal-regulated kinases
PI3Kphosphoinositide 3-kinase
AKTprotein kinase B
PARPpoly-ADP-ribose polymerase
mTORmammalian target of rapamycin
Bcl-2B cell lymphoma-2
BaxBcl-2-associated X
ARandrogen receptors
CRPCcastration-resistant prostate cancer
AMPKAMP-activated protein kinase
CKICDK inhibitor
Glossary

References

  • 1. Blattner WAHuman retroviruses: Their role in cancer. Proc Assoc Am Physicians. 1999;111:563–572. doi: 10.1046/j.1525-1381.1999.99210.x.] [[PubMed][Google Scholar]
  • 2. Tomlinson IP, Novelli MR, Bodmer WFThe mutation rate and cancer. Proc Natl Acad Sci USA. 1996;93:14800–14803. doi: 10.1073/pnas.93.25.14800.] [[Google Scholar]
  • 3. Wogan GN, Hecht SS, Felton JS, Conney AH, Loeb LAEnvironmental and chemical carcinogenesis. Semin Cancer Biol. 2004;14:473–486. doi: 10.1016/j.semcancer.2004.06.010.] [[PubMed][Google Scholar]
  • 4. Hanahan D, Weinberg RAHallmarks of cancer: The next generation. Cell. 2011;144:646–674. doi: 10.1016/j.cell.2011.02.013.] [[PubMed][Google Scholar]
  • 5. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal AGlobal cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2018;68:394–424. doi: 10.3322/caac.21492.] [[PubMed][Google Scholar]
  • 6. Chen W, Zheng R, Zhang S, Zhang S, Zeng H, Xia C, Zuo T, Yang Z, Zou X, He JCancer incidence and mortality in China, 2013. Cancer Lett. 2017;401:63–71. doi: 10.1016/j.canlet.2017.04.024.] [[PubMed][Google Scholar]
  • 7. Tseng HH, He BMolecular markers as therapeutic targets in lung cancer. Chin J Cancer. 2013;32:59–62. doi: 10.5732/cjc.013.10011.] [[Google Scholar]
  • 8. Qi F, Zhao L, Zhou A, Zhang B, Li A, Wang Z, Han JThe advantages of using traditional Chinese medicine as an adjunctive therapy in the whole course of cancer treatment instead of only terminal stage of cancer. Biosci Trends. 2015;9:16–34. doi: 10.5582/bst.2015.01019.] [[PubMed][Google Scholar]
  • 9. Nakamura K, Shinozuka K, Yoshikawa NAnticancer and antimetastatic effects of cordycepin, an active component of cordyceps sinensis. J Pharmacol Sci. 2015;127:53–56. doi: 10.1016/j.jphs.2014.09.001.] [[PubMed][Google Scholar]
  • 10. Lumlerdkij N, Tantiwongse J, Booranasubkajorn S, Boonrak R, Akarasereenont P, Laohapand T, Heinrich MUnderstanding cancer and its treatment in thai traditional medicine: An ethnopharmacological-anthropological investigation. J Ethnopharmacol. 2018;216:259–273. doi: 10.1016/j.jep.2018.01.029.] [[PubMed][Google Scholar]
  • 11. Bezwoda WR, MacDonald DF, Gear JS, Derman DP, Bothwell TH, Sqi S, Hurwitz S, Lewis DCombination chemotherapy including bleomycin in the treatment of advanced hodgkin's disease. S Afr Med J. 1978;53:369–373.[PubMed][Google Scholar]
  • 12. Durant JR, Gams RA, Bartolucci AA, Dorfman RFBCNU with and without cyclophosphamide, vincristine, and prednisone (COP) and cycle-active therapy in non-hodgkin's lymphoma. Cancer Treat Rep. 1977;61:1085–1096.[PubMed][Google Scholar]
  • 13. Wong MY, Chiu GNLiposome formulation of co-encapsulated vincristine and quercetin enhanced antitumor activity in a trastuzumab-insensitive breast tumor xenograft model. Nanomedicine. 2011;7:834–840. doi: 10.1016/j.nano.2011.02.001.] [[PubMed][Google Scholar]
  • 14. Munker S, Vogelhuber M, Bornschein J, Stroszczynski C, Evert M, Schlitt H, Herr W, Teufel AEpiCO (epirubicin, cyclophosphamide and vincristine) as treatment for extrapulmonary high-grade neuroendocrine neoplasms. Z Gastroenterol. 2020;58:133–136. doi: 10.1055/a-1042-6504.] [[PubMed][Google Scholar]
  • 15. Büyükkapu Bay S, Kebudi R, Görgün O, Zülfikar B, Darendeliler E, Çakır FBVincristine, irinotecan, and temozolomide treatment for refractory/relapsed pediatric solid tumors: A single center experience. J Oncol Pharm Pract. 2019;25:1343–1348. doi: 10.1177/1078155218790798.] [[PubMed][Google Scholar]
  • 16. Weaver BAHow taxol/paclitaxel kills cancer cells. Mol Biol Cell. 2014;25:2677–2681. doi: 10.1091/mbc.e14-04-0916.] [[Google Scholar]
  • 17. Caparica R, Bruzzone M, Poggio F, Ceppi M, de Azambuja E, Lambertini MAnthracycline and taxane-based chemotherapy versus docetaxel and cyclophosphamide in the adjuvant treatment of HER2-negative breast cancer patients: A systematic review and meta-analysis of randomized controlled trials. Breast Cancer Res Treat. 2019;174:27–37. doi: 10.1007/s10549-018-5055-9.] [[PubMed][Google Scholar]
  • 18. Reck M, Brahmer J, Bennett B, Taylor F, Penrod JR, DeRosa M, Dastani H, Spigel DR, Gralla RJEvaluation of health-related quality of life and symptoms in patients with advanced non-squamous non-small cell lung cancer treated with nivolumab or docetaxel in checkmate 057. Eur J Cancer. 2018;102:23–30. doi: 10.1016/j.ejca.2018.05.005.] [[PubMed][Google Scholar]
  • 19. da Rocha AB, Lopes RM, Schwartsmann GNatural products in anticancer therapy. Curr Opin Pharmacol. 2001;1:364–369. doi: 10.1016/S1471-4892(01)00063-7.] [[PubMed][Google Scholar]
  • 20. Wang P, Yang HL, Yang YJ, Wang L, Lee SCOvercome cancer cell drug resistance using natural products. Evid Based Complement Alternat Med. 2015;2015:767136. doi: 10.1155/2015/767136.] [[Google Scholar]
  • 21. Wu X, Kong W, Qi X, Wang S, Chen Y, Zhao Z, Wang W, Lin X, Lai J, Yu Z, Lai GIcariin induces apoptosis of human lung adenocarcinoma cells by activating the mitochondrial apoptotic pathway. Life Sci. 2019;15:116879. doi: 10.1016/j.lfs.2019.116879.] [[PubMed][Google Scholar]
  • 22. Zhang P, Zhang M, Yu D, Liu W, Hu L, Zhang B, Zhou Q, Cao ZLycorine inhibits melanoma cell migration and metastasis mainly through reducing intracellular levels of beta-catenin and matrix metallopeptidase 9. J Cell Physiol. 2019;234:10566–10575. doi: 10.1002/jcp.27732.] [[PubMed][Google Scholar]
  • 23. Segun PA, Ismail FMD, Ogbole OO, Nahar L, Evans AR, Ajaiyeoba O, Sarker SDAcridone alkaloids from the stem bark of citrus aurantium display selective cytotoxicity against breast, liver, lung and prostate human carcinoma cells. J Ethnopharmacol. 2018;227:131–138. doi: 10.1016/j.jep.2018.08.039.] [[PubMed][Google Scholar]
  • 24. Tomar P, Dey YN, Sharma D, Wanjari MM, Gaidhani S, Jadhav ACytotoxic and antiproliferative activity of kanchnar guggulu, an ayurvedic formulation. J Integr Med. 2018;16:411–417. doi: 10.1016/j.joim.2018.10.001.] [[PubMed][Google Scholar]
  • 25. Dhiman KAyurvedic intervention in the management of uterine fibroids: A case series. Ayu. 2014;35:303–308. doi: 10.4103/0974-8520.153750.] [[Google Scholar]
  • 26. Kasymjanova G, Tran AT, Cohen V, Pepe C, Sakr L, Small D, Agulnik JS, Jagoe RTThe use of a standardized Chinese herbal formula in patients with advanced lung cancer: A feasibility study. J Integr Med. 2018;16:390–395. doi: 10.1016/j.joim.2018.09.001.] [[PubMed][Google Scholar]
  • 27. Wang R, Lu Y, Li H, Sun L, Yang N, Zhao M, Zhang M, Shi QAntitumor activity of the ailanthus altissima bark phytochemical ailanthone against breast cancer MCF-7 cells. Oncol Lett. 2018;15:6022–6028.[Google Scholar]
  • 28. Rahman S, Fukamiya N, Ohno N, Tokuda H, Nishino H, Tagahara, Lee KH, Okano MInhibitory effects of quassinoid derivatives on epstein-barr virus early antigen activation. Chem Pharm Bull (Tokyo) 1997;45:675–677. doi: 10.1248/cpb.45.675.] [[PubMed][Google Scholar]
  • 29. Cho SK, Jeong M, Jang DS, Choi JHAnti-Inflammatory effects of canthin-6-one alkaloids from ailanthus altissima. Planta Med. 2018;84:527–535. doi: 10.1055/s-0043-123349.] [[PubMed][Google Scholar]
  • 30. Okunade AL, Bikoff RE, Casper SJ, Oksman A, Goldberg DE, Lewis WHAntiplasmodial activity of extracts and quassinoids isolated from seedlings of ailanthus altissima (Simaroubaceae) Phytother Res. 2003;17:675–677. doi: 10.1002/ptr.1336.] [[PubMed][Google Scholar]
  • 31. Jin M, Yang JH, Lee E, Lu Y, Kwon S, Son KH, Son KH, Son JK, Chang HWAntiasthmatic activity of luteolin-7-O-glucoside from Ailanthus altissima through the downregulation of T helper 2 cytokine expression and inhibition of prostaglandin E2 production in an ovalbumin-induced asthma model. Biol Pharm Bull. 2009;32:1500–1503. doi: 10.1248/bpb.32.1500.] [[PubMed][Google Scholar]
  • 32. Rahman S, Fukamiya N, Okano M, Tagahara K, Lee KHAnti-Tuberculosis activity of quassinoids. Chem Pharm Bull (Tokyo) 1997;45:1527–1529. doi: 10.1248/cpb.45.1527.] [[PubMed][Google Scholar]
  • 33. Melanchauski LS, Broto AP, Moraes TM, Nasser ALM, Said A, Hawas UW, Rashed K, Vilegas W, Hiruma-Lima CAGastroprotective and antisecretory effects of ailanthus excelsa (Roxb) J Nat Med. 2010;64:109–113. doi: 10.1007/s11418-009-0373-1.] [[PubMed][Google Scholar]
  • 34. Wright CW, O'Neill MJ, Phillipson JD, Warhurst DCUse of microdilution to assess in vitro antiamoebic activities of brucea javanica fruits, simarouba amara stem, and a number of quassinoids. Antimicrob Agents Chemother. 1988;32:1725–1729. doi: 10.1128/AAC.32.11.1725.] [[Google Scholar]
  • 35. Kundu P, Laskar SA brief resume on the genus Ailanthus: Chemical and pharmacological aspects. Phytochem Rev. 2010;9:379–412. doi: 10.1007/s11101-009-9157-1.[PubMed][Google Scholar]
  • 36. Kato T, Suzumura Y, Fukushima M, Honda T, Nakanishi T, Noguchi TAntitumor activity of novel ailanthone derivatives in vitro and in vivo. Anticancer Res. 1988;8:573–579.[PubMed][Google Scholar]
  • 37. Liu W, Liu X, Pan Z, Wang D, Li M, Chen X, Zhou L, Xu M, Li D, Zheng QAilanthone induces cell cycle arrest and apoptosis in melanoma B16 and A375 cells. Biomolecules. 2019;9:275. doi: 10.3390/biom9070275.] [[Google Scholar]
  • 38. Zhang Y, Zhang C, Min DAilanthone up-regulates miR-449a to restrain acute myeloid leukemia cells growth, migration and invasion. Exp Mol Pathol. 2019;108:114–120. doi: 10.1016/j.yexmp.2019.04.011.] [[PubMed][Google Scholar]
  • 39. Wei C, Chen C, Cheng Y, Zhu L, Wang Y, Luo C, He Y, Yang Z, Ji ZAilanthone induces autophagic and apoptotic cell death in human promyelocytic leukemia HL-60 cells. Oncol Lett. 2018;16:3569–3576.[Google Scholar]
  • 40. Daga M, Pizzimenti S, Dianzani C, Cucci MA, Cavalli R, Grattarola M, Ferrara B, Scariot V, Trotta F, Barrera GAilanthone inhibits cell growth and migration of cisplatin resistant bladder cancer cells through down-regulation of Nrf2, YAP, and c-Myc expression. Phytomedicine. 2019;56:156–164. doi: 10.1016/j.phymed.2018.10.034.] [[PubMed][Google Scholar]
  • 41. Hou S, Cheng Z, Wang W, Wang X, Wu YAilanthone exerts an antitumor function on the development of human lung cancer by upregulating microRNA-195. J Cell Biochem. 2019;120:10444–10451. doi: 10.1002/jcb.28329.] [[PubMed][Google Scholar]
  • 42. Ni Z, Yao C, Zhu X, Gong C, Xu Z, Wang L, Li S, Zou C, Zhu SAilanthone inhibits non-small cell lung cancer cell growth through repressing DNA replication via downregulating RPA1. Br J Cancer. 2017;117:1621–1630. doi: 10.1038/bjc.2017.319.] [[Google Scholar]
  • 43. Chen Y, Zhu L, Yang X, Wei C, Chen C, He Y, Ji ZAilanthone induces G2/M cell cycle arrest and apoptosis of SGC7901 human gastric cancer cells. Mol Med Rep. 2017;16:6821–6827. doi: 10.3892/mmr.2017.7491.] [[Google Scholar]
  • 44. Zhuo Z, Hu J, Yang X, Chen M, Lei X, Deng L, Yao N, Peng Q, Chen Z, Ye W, Zhang DAilanthone inhibits huh7 cancer cell growth via cell cycle arrest and apoptosis in vitro and in vivo. Sci Rep. 2015;5:16185. doi: 10.1038/srep16185.] [[Google Scholar]
  • 45. Gao W, Ge S, Sun JAilanthone exerts anticancer effect by up-regulating miR-148a expression in MDA-MB-231 breast cancer cells and inhibiting proliferation, migration and invasion. Biomed Pharmacother. 2019;109:1062–1069. doi: 10.1016/j.biopha.2018.10.114.] [[PubMed][Google Scholar]
  • 46. Yang P, Sun D, Jiang FAilanthone promotes human vestibular schwannoma cell apoptosis and autophagy by downregulation of miR-21. Oncol Res. 2018;26:941–948. doi: 10.3727/096504018X15149775533331.] [[PubMed][Google Scholar]
  • 47. Kong D, Ying B, Zhang J, Ying HThe anti-osteosarcoma property of ailanthone through regulation of miR-126/VEGF-A axis. Artif Cells Nanomed Biotechnol. 2019;47:3913–3919. doi: 10.1080/21691401.2019.1669622.] [[PubMed][Google Scholar]
  • 48. He Y, Peng S, Wang J, Chen H, Cong X, Chen A, Hu M, Qin M, Wu H, Gao S, et al Ailanthone targets p23 to overcome MDV3100 resistance in castration-resistant prostate cancer. Nat Commun. 2016;7:13122. doi: 10.1038/ncomms13122.] [[Google Scholar]
  • 49. Han F, Liu G, Sun C, Wei JAilanthone reverses multidrug resistance by inhibiting the P-glycoprotein-mediated efflux in resistant K562/A02 cells. Cell Mol Biol (Noisy-le-grand) 2018;64:55–61. doi: 10.14715/cmb/2017.64.15.9.] [[PubMed][Google Scholar]
  • 50. Guy GP, Jr, Thomas CC, Thompson T, Watson M, Massetti GM, Richardson LC, Centers for Disease Control and Prevention (CDC) Vital signs: Melanoma incidence and mortality trends and projections - United States, 1982-2030. MMWR Morb Mortal Wkly Rep. 2015;64:591–596.
  • 51. Lens MB, Dawes MGlobal perspectives of contemporary epidemiological trends of cutaneous malignant melanoma. Br J Dermatol. 2004;150:179–185. doi: 10.1111/j.1365-2133.2004.05708.x.] [[PubMed][Google Scholar]
  • 52. Yamamoto JF, Goodman MTPatterns of leukemia incidence in the United States by subtype and demographic characteristics, 1997-2002. Cancer Causes Control. 2008;19:379–390. doi: 10.1007/s10552-007-9097-2.] [[PubMed][Google Scholar]
  • 53. Shin VY, Chu KMmiRNA as potential biomarkers and therapeutic targets for gastric cancer. World J Gastroenterol. 2014;20:10432–10439. doi: 10.3748/wjg.v20.i30.10432.] [[Google Scholar]
  • 54. Chen YJ, Guo YN, Shi K, Huang HM, Huang SP, Xu WQ, Li ZY, Wei KL, Gan TQ, Chen GDown-Regulation of microRNA-144-3p and its clinical value in non-small cell lung cancer: A comprehensive analysis based on microarray, miRNA-sequencing, and quantitative real-time PCR data. Respir Res. 2019;20:48. doi: 10.1186/s12931-019-0994-1.] [[Google Scholar]
  • 55. Yuan G, Zhao Y, Wu D, Gao C, Jiao ZmiRNA-20a upregulates TAK1 and increases proliferation in osteosarcoma cells. Future Oncol. 2018;14:461–469. doi: 10.2217/fon-2017-0490.] [[PubMed][Google Scholar]
  • 56. De Luca L, Trino S, Laurenzana I, Tagliaferri D, Falco G, Grieco V, Bianchino G, Nozza F, Campia V, D'Alessio F, et al Knockdown of miR-128a induces Lin28a expression and reverts myeloid differentiation blockage in acute myeloid leukemia. Cell Death Dis. 2017;8:e2849. doi: 10.1038/cddis.2017.253.] [[Google Scholar]
  • 57. Elhamamsy AR, El Sharkawy MS, Zanaty AF, Mahrous MA, Mohamed AE, Abushaaban EACirculating miR-92a, miR-143 and miR-342 in plasma are novel potential biomarkers for acute myeloid leukemia. Int J Mol Cell Med. 2017;6:77–86.[Google Scholar]
  • 58. Li Q, Peng J, Li X, Leng A, Liu TMiR-449a targets Flot2 and inhibits gastric cancer invasion by inhibiting TGF-beta-mediated EMT. Diagn Pathol. 2015;10:202. doi: 10.1186/s13000-015-0435-5.] [[Google Scholar]
  • 59. Sandbothe M, Buurman R, Reich N, Greiwe L, Vajen B, Gürlevik E, Schäffer V, Eilers M, Kühnel F, Vaquero A, et al The microRNA-449 family inhibits TGF-beta-mediated liver cancer cell migration by targeting SOX4. J Hepatol. 2017;66:1012–1021. doi: 10.1016/j.jhep.2017.01.004.] [[PubMed][Google Scholar]
  • 60. DeGeorge KC, Holt HR, Hodges SCBladder cancer: Diagnosis and treatment. Am Fam Physician. 2017;96:507–514.[PubMed][Google Scholar]
  • 61. Nadal R, Bellmunt JManagement of metastatic bladder cancer. Cancer Treat Rev. 2019;76:10–21. doi: 10.1016/j.ctrv.2019.04.002.] [[PubMed][Google Scholar]
  • 62. Ciamporcero E, Daga M, Pizzimenti S, Roetto A, Dianzani C, Compagnone A, Palmieri A, Ullio C, Cangemi L, Pili R, Barrera GCrosstalk between Nrf2 and YAP contributes to maintaining the antioxidant potential and chemoresistance in bladder cancer. Free Radic Biol Med. 2018;115:447–457. doi: 10.1016/j.freeradbiomed.2017.12.005.] [[PubMed][Google Scholar]
  • 63. Rojo de la Vega M, Chapman E, Zhang DDNRF2 and the hallmarks of cancer. Cancer Cell. 2018;34:21–43. doi: 10.1016/j.ccell.2018.03.022.] [[Google Scholar]
  • 64. Zanconato F, Cordenonsi M, Piccolo SYAP/TAZ at the roots of cancer. Cancer Cell. 2016;29:783–803. doi: 10.1016/j.ccell.2016.05.005.] [[Google Scholar]
  • 65. Wang Y, Zhang X, Zou C, Kung HF, Lin MC, Dress A, Wardle F, Jiang BH, Lai LmiR-195 inhibits tumor growth and angiogenesis through modulating IRS1 in breast cancer. Biomed Pharmacother. 2016;80:95–101. doi: 10.1016/j.biopha.2016.03.007.] [[PubMed][Google Scholar]
  • 66. Liu B, Qu J, Xu F, Guo Y, Wang Y, Yu H, Qian BmiR-195 suppresses non-small cell lung cancer by targeting CHEK1. Oncotarget. 2015;6:9445–9456. doi: 10.18632/oncotarget.3255.] [[Google Scholar]
  • 67. Yu S, Jing L, Yin XR, Wang MC, Chen YM, Guo Y, Nan KJ, Han LLmiR-195 suppresses the metastasis and epithelial-mesenchymal transition of hepatocellular carcinoma by inhibiting YAP. Oncotarget. 2017;8:99757–99771. doi: 10.18632/oncotarget.20909.] [[Google Scholar]
  • 68. Zhang X, Tao T, Liu C, Guan H, Huang Y, Xu B, Chen MDownregulation of miR-195 promotes prostate cancer progression by targeting HMGA1. Oncol Rep. 2016;36:376–382. doi: 10.3892/or.2016.4797.] [[PubMed][Google Scholar]
  • 69. Siegel RL, Miller KD, Jemal ACancer statistics, 2018. CA Cancer J Clin. 2018;68:7–30. doi: 10.3322/caac.21442.] [[PubMed][Google Scholar]
  • 70. Brackmann DEVestibular schwannoma (acoustic neuroma) Otolaryngol Clin North Am. 2012;45:xiii–xv. doi: 10.1016/j.otc.2011.12.017.] [[PubMed][Google Scholar]
  • 71. Rosahl S, Bohr C, Lell M, Hamm K, Iro HDiagnosis and management of vestibular schwannomas - an interdisciplinary challenge. Laryngorhinootologie. 2017;96:S152–S182. (In German) [[PubMed][Google Scholar]
  • 72. Feng YH, Wu CL, Tsao CJ, Chang JG, Lu PJ, Yeh KT, Uen YH, Lee JC, Shiau ALDeregulated expression of sprouty2 and microRNA-21 in human colon cancer: Correlation with the clinical stage of the disease. Cancer Biol Ther. 2011;11:111–121. doi: 10.4161/cbt.11.1.13965.] [[PubMed][Google Scholar]
  • 73. Wu X, Zhuo S, Zheng C, Gao GMicroRNA-21 correlates TGF-beta1 pathway of pancreatic ductal adenocarcinoma. Zhong Nan Da Xue Xue Bao. 2019;44:749–756. (In Chinese) [[PubMed][Google Scholar]
  • 74. Bharali D, Banerjee BD, Bharadwaj M, Husain SA, Kar PExpression analysis of microrna-21 and microrna-122 in hepatocellular carcinoma. J Clin Exp Hepatol. 2019;9:294–301. doi: 10.1016/j.jceh.2018.07.005.] [[Google Scholar]
  • 75. Mirabello L, Troisi RJ, Savage SAOsteosarcoma incidence and survival rates from 1973 to 2004: Data from the surveillance, epidemiology, and end results program. Cancer. 2009;115:1531–1543. doi: 10.1002/cncr.24121.] [[Google Scholar]
  • 76. Harrison DJ, Geller DS, Gill JD, Lewis VO, Gorlick RCurrent and future therapeutic approaches for osteosarcoma. Expert Rev Anticancer Ther. 2018;18:39–50. doi: 10.1080/14737140.2018.1413939.] [[PubMed][Google Scholar]
  • 77. Kim YH, Goh TS, Lee CS, Oh SO, Kim JI, Jeung SH, Pak KPrognostic value of microRNAs in osteosarcoma: A meta-analysis. Oncotarget. 2017;8:8726–8737. doi: 10.18632/oncotarget.14429.] [[Google Scholar]
  • 78. Hesse E, Taipaleenmaki HMicroRNAs in bone metastasis. Curr Osteoporos Rep. 2019;17:122–128. doi: 10.1007/s11914-019-00510-4.] [[PubMed][Google Scholar]
  • 79. Sasaki R, Osaki M, Okada FMicroRNA-Based diagnosis and treatment of metastatic human osteosarcoma. Cancers. 2019;11:553. doi: 10.3390/cancers11040553.] [[Google Scholar]
  • 80. Huggins C, Hodges CV. Studies on prostatic cancer. I. The effect of castration, of estrogen and androgen injection on serum phosphatases in metastatic carcinoma of the prostate. CA Cancer J Clin. 1972;22:232–240. doi: 10.3322/canjclin.22.4.232.] [[PubMed]
  • 81. Koochekpour SAndrogen receptor signaling and mutations in prostate cancer. Asian J Androl. 2010;12:639–657. doi: 10.1038/aja.2010.89.] [[Google Scholar]
  • 82. Harris WP, Mostaghel EA, Nelson PS, Montgomery BAndrogen deprivation therapy: Progress in understanding mechanisms of resistance and optimizing androgen depletion. Nat Clin Pract Urol. 2009;6:76–85. doi: 10.1038/ncpuro1296.] [[Google Scholar]
  • 83. Petrylak DP, Tangen CM, Hussain MH, Lara PN, Jr, Jones JA, Taplin ME, Burch PA, Berry D, Moinpour C, Kohli M, et al Docetaxel and estramustine compared with mitoxantrone and prednisone for advanced refractory prostate cancer. N Engl J Med. 2004;351:1513–1520. doi: 10.1056/NEJMoa041318.] [[PubMed][Google Scholar]
  • 84. de Bono JS, Oudard S, Ozguroglu M, Hansen S, Machiels JP, Kocak I, Gravis G, Bodrogi I, Mackenzie MJ, Shen L, et al Prednisone plus cabazitaxel or mitoxantrone for metastatic castration-resistant prostate cancer progressing after docetaxel treatment: A randomised open-label trial. Lancet. 2010;376:1147–1154. doi: 10.1016/S0140-6736(10)61389-X.] [[PubMed][Google Scholar]
  • 85. Ryan CJ, Smith MR, Fizazi K, Saad F, Mulders PFA, Sternberg CN, Miller K, Logothetis CJ, Shore ND, Small EJ, et al Abiraterone acetate plus prednisone versus placebo plus prednisone in chemotherapy-naive men with metastatic castration-resistant prostate cancer (COU-AA-302): final overall survival analysis of a randomised, double-blind, placebo-controlled phase 3 study. Lancet Oncol. 2015;16:152–160. doi: 10.1016/S1470-2045(14)71205-7.] [[PubMed][Google Scholar]
  • 86. Parker C, Nilsson S, Heinrich D, Helle SI, O'Sullivan JM, Fosså SD, Chodacki A, Wiechno P, Logue J, Seke M, et al Alpha emitter radium-223 and survival in metastatic prostate cancer. N Engl J Med. 2013;369:213–223. doi: 10.1056/NEJMoa1213755.] [[PubMed][Google Scholar]
  • 87. Beer TM, Armstrong AJ, Rathkopf DE, Loriot Y, Sternberg CN, Higano CS, Iversen P, Bhattacharya S, Carles J, Chowdhury S, et al Enzalutamide in metastatic prostate cancer before chemotherapy. N Engl J Med. 2014;371:424–433. doi: 10.1056/NEJMoa1405095.] [[Google Scholar]
  • 88. Scher HI, Fizazi K, Saad F, Taplin ME, Sternberg CN, Miller K, de Wit R, Mulders P, Chi KN, Shore ND, et al Increased survival with enzalutamide in prostate cancer after chemotherapy. N Engl J Med. 2012;367:1187–1197. doi: 10.1056/NEJMoa1207506.] [[PubMed][Google Scholar]
  • 89. Antonarakis ES, Lu C, Wang H, Luber B, Nakazawa M, Roeser JC, Chen Y, Mohammad TA, Chen Y, Fedor HL, et al AR-V7 and resistance to enzalutamide and abiraterone in prostate cancer. N Engl J Med. 2014;371:1028–1038. doi: 10.1056/NEJMoa1315815.] [[Google Scholar]
  • 90. Cano LQ, Lavery DN, Bevan CLMini-Review: Foldosome regulation of androgen receptor action in prostate cancer. Mol Cell Endocrinol. 2013;369:52–62. doi: 10.1016/j.mce.2013.01.023.] [[PubMed][Google Scholar]
  • 91. Tao WW, Jiang H, Tao XM, Jiang P, Sha LY, Sun XCEffects of acupuncture, tuina, tai chi, qigong, and traditional Chinese medicine five-element music therapy on symptom management and quality of life for cancer patients: A meta-analysis. J Pain Symptom Manage. 2016;51:728–747. doi: 10.1016/j.jpainsymman.2015.11.027.] [[PubMed][Google Scholar]
  • 92. Tang S, Ma X, Lu J, Zhang Y, Liu M, Wang XPreclinical toxicology and toxicokinetic evaluation of ailanthone, a natural product against castration-resistant prostate cancer, in mice. Fitoterapia. 2019;136:104161. doi: 10.1016/j.fitote.2019.04.016.] [[PubMed][Google Scholar]
  • 93. Winder C, Azzi R, Wagner DThe development of the globally harmonized system (GHS) of classification and labelling of hazardous chemicals. J Hazard Mater. 2005;125:29–44. doi: 10.1016/j.jhazmat.2005.05.035.] [[PubMed][Google Scholar]
  • 94. Hassan M, Watari H, AbuAlmaaty A, Ohba Y, Sakuragi NApoptosis and molecular targeting therapy in cancer. BioMed Res Int. 2014;2014:150845. doi: 10.1155/2014/150845.] [[Google Scholar]
  • 95. Goldar S, Khaniani MS, Derakhshan SM, Baradaran BMolecular mechanisms of apoptosis and roles in cancer development and treatment. Asian Pac J Cancer Prev. 2015;16:2129–2144. doi: 10.7314/APJCP.2015.16.6.2129.] [[PubMed][Google Scholar]
  • 96. Green DR, Reed JCMitochondria and apoptosis. Science. 1998;281:1309–1312. doi: 10.1126/science.281.5381.1309.] [[PubMed][Google Scholar]
  • 97. Redza-Dutordoir M, Averill-Bates DAActivation of apoptosis signalling pathways by reactive oxygen species. Biochim Biophys Acta. 2016;1863:2977–2992. doi: 10.1016/j.bbamcr.2016.09.012.] [[PubMed][Google Scholar]
  • 98. Cory S, Roberts AW, Colman PM, Adams JMTargeting BCL-2-like proteins to kill cancer cells. Trends Cancer. 2016;2:443–460. doi: 10.1016/j.trecan.2016.07.001.] [[PubMed][Google Scholar]
  • 99. Lowe SW, Schmitt EM, Smith SW, Osborne BA, Jacks TP53 is required for radiation-induced apoptosis in mouse thymocytes. Nature. 1993;362:847–849. doi: 10.1038/362847a0.] [[PubMed][Google Scholar]
  • 100. Kastenhuber ER, Lowe SWPutting p53 in context. Cell. 2017;170:1062–1078. doi: 10.1016/j.cell.2017.08.028.] [[Google Scholar]
  • 101. Wang Z, Wang N, Liu P, Xie XAMPK and cancer. Exp Suppl. 2016;107:203–226.[PubMed][Google Scholar]
  • 102. Aziz SA, Jilaveanu LB, Zito C, Camp RL, Rimm DL, Conrad P, Kluger HMVertical targeting of the phosphatidylinositol-3 kinase pathway as a strategy for treating melanoma. Clin Cancer Res. 2010;16:6029–6039. doi: 10.1158/1078-0432.CCR-10-1490.] [[Google Scholar]
  • 103. Brachmann SM, Hofmann I, Schnell C, Fritsch C, Wee S, Lane H, Wang S, Echeverria CG, Maira SMSpecific apoptosis induction by the dual PI3K/mTor inhibitor NVP-BEZ235 in HER2 amplified and PIK3CA mutant breast cancer cells. Proc Natl Acad Sci USA. 2009;106:22299–22304. doi: 10.1073/pnas.0905152106.] [[Google Scholar]
  • 104. Martinelli E, Troiani T, D'Aiuto E, Morgillo F, Vitagliano D, Capasso A, Costantino S, Ciuffreda LP, Merolla F, Vecchione L, et al Antitumor activity of pimasertib, a selective MEK 1/2 inhibitor, in combination with PI3K/mTOR inhibitors or with multi-targeted kinase inhibitors in pimasertib-resistant human lung and colorectal cancer cells. Int J Cancer. 2013;133:2089–2101. doi: 10.1002/ijc.28236.] [[PubMed][Google Scholar]
  • 105. Lim HJ, Crowe P, Yang JLCurrent clinical regulation of PI3K/PTEN/Akt/mTOR signalling in treatment of human cancer. J Cancer Res Clin Oncol. 2015;141:671–689. doi: 10.1007/s00432-014-1803-3.] [[PubMed][Google Scholar]
  • 106. Hassan B, Akcakanat A, Holder AM, Meric-Bernstam FTargeting the PI3-kinase/Akt/mTOR signaling pathway. Surg Oncol Clin N Am. 2013;22:641–664. doi: 10.1016/j.soc.2013.06.008.] [[Google Scholar]
  • 107. Panda M, Biswal BKCell signaling and cancer: A mechanistic insight into drug resistance. Mol Biol Rep. 2019;46:5645–5659. doi: 10.1007/s11033-019-04958-6.] [[PubMed][Google Scholar]
  • 108. Koskela HL, Eldfors S, Ellonen P, van Adrichem AJ, Kuusanmäki H, Andersson EI, Lagström S, Clemente MJ, Olson T, Jalkanen SE, et al Somatic STAT3 mutations in large granular lymphocytic leukemia. N Engl J Med. 2012;366:1905–1913. doi: 10.1056/NEJMoa1114885.] [[Google Scholar]
  • 109. Cocchiola R, Rubini E, Altieri F, Chichiarelli S, Paglia G, Romaniello D, Carissimi S, Giorgi A, Giamogante F, Macone A, et al STAT3 post-translational modifications drive cellular signaling pathways in prostate cancer cells. Int J Mol Sci. 2019;20:815. doi: 10.3390/ijms20081815.] [[Google Scholar]
  • 110. Horiguchi A, Oya M, Shimada T, Uchida A, Marumo K, Murai MActivation of signal transducer and activator of transcription 3 in renal cell carcinoma: A study of incidence and its association with pathological features and clinical outcome. J Urol. 2002;168:762–765. doi: 10.1097/00005392-200208000-00095.] [[PubMed][Google Scholar]
  • 111. Zhu H, Chang LL, Yan FJ, Hu Y, Zeng CM, Zhou TY, Yuan T, Ying MD, Cao J, He QJ, Yang BAKR1C1 activates STAT3 to promote the metastasis of non-small cell lung cancer. Theranostics. 2018;8:676–692. doi: 10.7150/thno.21463.] [[Google Scholar]
  • 112. Nishimoto A, Kugimiya N, Hosoyama T, Enoki T, Li TS, Hamano KJAB1 regulates unphosphorylated STAT3 DNA-binding activity through protein-protein interaction in human colon cancer cells. Biochem Biophy Res Commun. 2013;438:513–518. doi: 10.1016/j.bbrc.2013.07.105.] [[PubMed][Google Scholar]
  • 113. Wei D, Le X, Zheng L, Wang L, Frey JA, Gao AC, Peng Z, Huang S, Xiong HQ, Abbruzzese JL, Xie KStat3 activation regulates the expression of vascular endothelial growth factor and human pancreatic cancer angiogenesis and metastasis. Oncogene. 2003;22:319–329. doi: 10.1038/sj.onc.1206122.] [[PubMed][Google Scholar]
  • 114. Wu M, Song D, Li H, Yang Y, Ma X, Deng S, Ren C, Shu XNegative regulators of STAT3 signaling pathway in cancers. Cancer Manag Res. 2019;11:4957–4969. doi: 10.2147/CMAR.S206175.] [[Google Scholar]
  • 115. Stirewalt DL, Kopecky KJ, Meshinchi S, Appelbaum FR, Slovak ML, Willman CL, Radich JPFLT3, RAS, and TP53 mutations in elderly patients with acute myeloid leukemia. Blood. 2001;97:3589–3595. doi: 10.1182/blood.V97.11.3589.] [[PubMed][Google Scholar]
  • 116. Roberts PJ, Der CJTargeting the Raf-MEK-ERK mitogen-activated protein kinase cascade for the treatment of cancer. Oncogene. 2007;26:3291–3310. doi: 10.1038/sj.onc.1210422.] [[PubMed][Google Scholar]
  • 117. Polakis PWnt signaling in cancer. Cold Spring Harb Perspect Biol. 2012;4:a008052. doi: 10.1101/cshperspect.a008052.] [[Google Scholar]
  • 118. Tan SH, Barker NWnt signaling in adult epithelial stem cells and cancer. Prog Mol Biol Transl Sci. 2018;153:21–79. doi: 10.1016/bs.pmbts.2017.11.017.] [[PubMed][Google Scholar]
  • 119. Taketo MMShutting down wnt signal-activated cancer. Nat Genet. 2004;36:320–322. doi: 10.1038/ng0404-320.] [[PubMed][Google Scholar]
  • 120. Radtke F, Raj KThe role of Notch in tumorigenesis: Oncogene or tumour suppressor? Nat Rev Cancer. 2003;3:756–767. doi: 10.1038/nrc1186.] [[PubMed][Google Scholar]
  • 121. Huang T, Zhou Y, Cheng AS, Yu J, To KF, Kang WNOTCH receptors in gastric and other gastrointestinal cancers: Oncogenes or tumor suppressors? Mol Cancer. 2016;15:80. doi: 10.1186/s12943-016-0566-7.] [[Google Scholar]
  • 122. Lobry C, Oh P, Mansour MR, Look AT, Aifantis INotch signaling: Switching an oncogene to a tumor suppressor. Blood. 2014;123:2451–2459. doi: 10.1182/blood-2013-08-355818.] [[Google Scholar]
  • 123. Xu X, Zhao Y, Xu M, Dai Q, Meng W, Yang J, Qin RActivation of Notch signal pathway is associated with a poorer prognosis in acute myeloid leukemia. Med Oncol. 2011;28:S483–S489. doi: 10.1007/s12032-010-9667-0.] [[PubMed][Google Scholar]
  • 124. Ono M, Takimoto R, Osuga T, Okagawa Y, Hirakawa M, Yoshida M, Arihara Y, Uemura N, Hayasaka N, Miura S, et al Targeting notch-1 positive acute leukemia cells by novel fucose-bound liposomes carrying daunorubicin. Oncotarget. 2016;7:38586–38597. doi: 10.18632/oncotarget.9558.] [[Google Scholar]
  • 125. Johnson DG, Walker CLCyclins and cell cycle checkpoints. Ann Rev Pharmacol Toxicol. 1999;39:295–312. doi: 10.1146/annurev.pharmtox.39.1.295.] [[PubMed][Google Scholar]
  • 126. Vermeulen K, Van Bockstaele DR, Berneman ZNThe cell cycle: A review of regulation, deregulation and therapeutic targets in cancer. Cell Prolif. 2003;36:131–149. doi: 10.1046/j.1365-2184.2003.00266.x.] [[Google Scholar]
  • 127. Geng Y, Eaton EN, Picon M, Roberts JM, Lundberg AS, Gifford A, Sardet C, Weinberg RARegulation of cyclin E transcription by E2Fs and retinoblastoma protein. Oncogene. 1996;12:1173–1180.[PubMed][Google Scholar]
  • 128. Ohtani K, DeGregori J, Nevins JRRegulation of the cyclin E gene by transcription factor E2F1. Proc Natl Acad Sci USA. 1995;92:12146–12150. doi: 10.1073/pnas.92.26.12146.] [[Google Scholar]
  • 129. Luo Z, Zang M, Guo WAMPK as a metabolic tumor suppressor: Control of metabolism and cell growth. Future Oncol. 2010;6:457–470. doi: 10.2217/fon.09.174.] [[Google Scholar]
  • 130. Galluzzi L, Bravo-San Pedro JM, Levine B, Green DR, Kroemer GPharmacological modulation of autophagy: Therapeutic potential and persisting obstacles. Nat Rev Drug Discov. 2017;16:487–511. doi: 10.1038/nrd.2017.22.] [[Google Scholar]
  • 131. Choi KSAutophagy and cancer. Exp Mol Med. 2012;44:109–120. doi: 10.3858/emm.2012.44.2.033.] [[Google Scholar]
  • 132. Liang XH, Jackson S, Seaman M, Brown K, Kempkes B, Hibshoosh H, Levine BInduction of autophagy and inhibition of tumorigenesis by beclin 1. Nature. 1999;402:672–676. doi: 10.1038/45257.] [[PubMed][Google Scholar]
  • 133. Komatsu M, Waguri S, Koike M, Sou YS, Ueno T, Hara T, Mizushima N, Iwata JI, Ezaki J, Murata S, et al Homeostatic levels of p62 control cytoplasmic inclusion body formation in autophagy-deficient mice. Cell. 2007;131:1149–1163. doi: 10.1016/j.cell.2007.10.035.] [[PubMed][Google Scholar]
  • 134. Tanida I, Minematsu-Ikeguchi N, Ueno T, Kominami ELysosomal turnover, but not a cellular level, of endogenous LC3 is a marker for autophagy. Autophagy. 2005;1:84–91. doi: 10.4161/auto.1.2.1697.] [[PubMed][Google Scholar]
  • 135. Tanida I, Ueno T, Kominami ELC3 and Autophagy. Methods Mol Biol. 2008;445:77–88. doi: 10.1007/978-1-59745-157-4_4.] [[PubMed][Google Scholar]
  • 136. Mundade R, Imperiale TF, Prabhu L, Loehrer PJ, Lu TGenetic pathways, prevention, and treatment of sporadic colorectal cancer. Oncoscience. 2014;1:400–406. doi: 10.18632/oncoscience.59.] [[Google Scholar]
  • 137. Coleman MPCancer survival: Global surveillance will stimulate health policy and improve equity. Lancet. 2014;383:564–573. doi: 10.1016/S0140-6736(13)62225-4.] [[PubMed][Google Scholar]
  • 138. Winer A, Adams S, Mignatti PMatrix metalloproteinase inhibitors in cancer therapy: Turning past failures into future successes. Mol Cancer Ther. 2018;17:1147–1155. doi: 10.1158/1535-7163.MCT-17-0646.] [[Google Scholar]
  • 139. Hung WC, Tseng WL, Shiea J, Chang HCSkp2 overexpression increases the expression of MMP-2 and MMP-9 and invasion of lung cancer cells. Cancer Lett. 2010;288:156–161. doi: 10.1016/j.canlet.2009.06.032.] [[PubMed][Google Scholar]
  • 140. Karthika C, Sureshkumar RCan curcumin along with chemotherapeutic drug and lipid provide an effective treatment of metastatic colon cancer and alter multidrug resistance? Med Hypotheses. 2019;132:109325. doi: 10.1016/j.mehy.2019.109325.] [[PubMed][Google Scholar]
  • 141. An Q, Han C, Zhou Y, Li F, Li D, Zhang X, Yu Z, Duan Z, Kan QMatrine induces cell cycle arrest and apoptosis with recovery of the expression of miR-126 in the A549 non-small cell lung cancer cell line. Mol Med Rep. 2016;14:4042–4048. doi: 10.3892/mmr.2016.5753.] [[Google Scholar]
  • 142. Bjorklund M, Roos J, Gogvadze V, Shoshan MResveratrol induces SIRT1- and energy-stress-independent inhibition of tumor cell regrowth after low-dose platinum treatment. Cancer Chemother Pharmacol. 2011;68:1459–1467. doi: 10.1007/s00280-011-1640-x.] [[PubMed][Google Scholar]
Collaboration tool especially designed for Life Science professionals.Drag-and-drop any entity to your messages.