Zinc protoporphyrin suppresses cancer cell viability through a heme oxygenase-1-independent mechanism: the involvement of the Wnt/β-catenin signaling pathway.
Journal: 2013/July - Biochemical Pharmacology
ISSN: 1873-2968
Abstract:
Zinc protoporphyrin (ZnPP), a known inhibitor of heme oxygenase-1 (HO-1), has been reported to have anticancer activity in both in vitro and in vivo model systems. While the mechanisms of ZnPP's anticancer activity remain to be elucidated, it is generally believed that ZnPP suppresses tumor growth through inhibition of HO-1 activity. We examined this hypothesis by altering cellular levels of HO-1 in human ovarian (A2780) and prostate cancer (DU145) cells and found that ZnPP inhibits cancer cell viability through an HO-1-independent mechanism. Neither over-expression nor knockdown of HO-1 significantly alters ZnPP's cytotoxicity in human cancer cells, indicating that HO-1 does not mediate ZnPP's inhibitory effect on cancer cell growth. Consistent with these observations, tin protoporphyrin (SnPP), a well-established HO-1 inhibitor, was found to be much less cytotoxic than ZnPP, and docosahexaenoic acid (DHA), an HO-1 inducer, enhanced ZnPP's cytotoxicity. In an effort to define the mechanisms of ZnPP-induced cytotoxicity, we found that ZnPP but not SnPP, diminished β-catenin expression through proteasome degradation and potently suppressed β-catenin-mediated signaling in our model systems. Thus, ZnPP-induced cytotoxicity is independent of HO-1 expression in cancer cells and the Wnt/β-catenin pathway is potentially involved in ZnPP's anticancer activity.
Relations:
Citations
(10)
Diseases
(1)
Drugs
(1)
Chemicals
(6)
Organisms
(1)
Processes
(3)
Anatomy
(1)
Affiliates
(2)
Similar articles
Articles by the same authors
Discussion board
Collaboration tool especially designed for Life Science professionals.Drag-and-drop any entity to your messages.