Targeting astrocyte signaling for chronic pain
Summary
Clinical management of chronic pain after nerve injury (neuropathic pain) and tumor invasion (cancer pain) is a real challenge due to our limited understanding of the cellular mechanisms that initiate and maintain chronic pain. It has been increasingly recognized that glial cells, such as microglia and astrocytes in the CNS play an important role in the development and maintenance of chronic pain. Notably, astrocytes make very close contacts with synapses and astrocyte reaction after nerve injury, arthritis, and tumor growth is more persistent than microglial reaction, and displays a better correlation with chronic pain behaviors. Accumulating evidence indicates that activated astrocytes can release proinflammatory cytokines (e.g., interleukin [IL]-1β) and chemokines (e.g., monocyte chemoattractant protein-1 [MCP-1]/also called CCL2) in the spinal cord to enhance and prolong persistent pain states. IL-1β can powerfully modulate synaptic transmission in the spinal cord by enhancing excitatory synaptic transmission and suppressing inhibitory synaptic transmission. IL-1β activation (cleavage) in the spinal cord after nerve injury requires the matrix metalloprotease-2. In particular, nerve injury and inflammation activate the c-Jun N-terminal kinase in spinal astrocytes, leading to a substantial increase in the expression and release of MCP-1. The MCP-1 increases pain sensitivity via direct activation of NMDA receptors in dorsal horn neurons. Pharmacological inhibition of the IL-1β, c-Jun N-terminal kinase, MCP-1, or matrix metalloprotease-2 signaling via spinal administration has been shown to attenuate inflammatory, neuropathic, or cancer pain. Therefore, interventions in specific signaling pathways in astrocytes may offer new approaches for the management of chronic pain.
Contributor Information
Yong-Jing Gao, Email: ude.dravrah.hwb.suez@gnijy.
Ru-Rong Ji, Email: ude.dravrah.hwb.suez@ijrr.
References
- 1. Julius D, Basbaum AIMolecular mechanisms of nociception. Nature. 2001;413:203–210. doi: 10.1038/35093019.] [[PubMed][Google Scholar]
- 2. Lundeberg T, Ekholm JPain-from periphery to brain. Disabil Rehabil. 2002;24:402–406. doi: 10.1080/09638280110108823.] [[PubMed][Google Scholar]
- 3. Millan MJDescending control of pain. Prog Neurobiol. 2002;66:355–474. doi: 10.1016/S0301-0082(02)00009-6.] [[PubMed][Google Scholar]
- 4. Woolf CJ, Mannion RJNeuropathic pain: aetiology, symptoms, mechanisms, and management. Lancet. 1999;353:1959–1964. doi: 10.1016/S0140-6736(99)01307-0.] [[PubMed][Google Scholar]
- 5. Dubner R, Ruda MAActivity-dependent neuronal plasticity following tissue injury and inflammation. Trends Neurosci. 1992;15:96–103. doi: 10.1016/0166-2236(92)90019-5.] [[PubMed][Google Scholar]
- 6. Mantyh PW, Clohisy DR, Koltzenburg M, Hunt SPMolecular mechanisms of cancer pain. Nat Rev Cancer. 2002;2:201–209. doi: 10.1038/nrc747.] [[PubMed][Google Scholar]
- 7. Willis CL, Davis TPChronic inflammatory pain and the neurovascular unit: a central role for glia in maintaining BBB integrity? Curr Pharm Des. 2008;14:1625–1643. doi: 10.2174/138161208784705414.] [[PubMed][Google Scholar]
- 8. Costigan M, Scholz J, Woolf CJNeuropathic pain: a maladaptive response of the nervous system to damage. Annu Rev Neurosci. 2009;32:1–32. doi: 10.1146/annurev.neuro.051508.135531.] [[Google Scholar]
- 9. Ji RR, Kohno T, Moore KA, Woolf CJCentral sensitization and LTP: do pain and memory share similar mechanisms? Trends Neurosci. 2003;26:696–705. doi: 10.1016/j.tins.2003.09.017.] [[PubMed][Google Scholar]
- 10. Basbaum AI, Bautista DM, Scherrer G, Julius DCellular and molecular mechanisms of pain. Cell. 2009;139:267–284. doi: 10.1016/j.cell.2009.09.028.] [[Google Scholar]
- 11. Dworkin RH, Backonja M, Rowbotham MC, et al Advances in neuropathic pain: diagnosis, mechanisms, and treatment recommendations. Arch Neurol. 2003;60:1524–1534. doi: 10.1001/archneur.60.11.1524.] [[PubMed][Google Scholar]
- 12. Ho KY, Siau CChronic pain management: therapy, drugs and needles. Ann Acad Med Singapore. 2009;38:929–930.[PubMed][Google Scholar]
- 13. Moalem G, Tracey DJImmune and inflammatory mechanisms in neuropathic pain. Brain Res Rev. 2006;51:240–264. doi: 10.1016/j.brainresrev.2005.11.004.] [[PubMed][Google Scholar]
- 14. Aldskogius H, Kozlova ENCentral neuron-glial and glial-glial interactions following axon injury. Prog Neurobiol. 1998;55:1–26. doi: 10.1016/S0301-0082(97)00093-2.] [[PubMed][Google Scholar]
- 15. Nimmerjahn A, Kirchhoff F, Helmchen FResting microglial cells are highly dynamic surveillants of brain parenchyma in vivo. Science. 2005;308:1314–1318. doi: 10.1126/science.1110647.] [[PubMed][Google Scholar]
- 16. Rossi DJ, Brady JD, Mohr CAstrocyte metabolism and signaling during brain ischemia. Nat Neurosci. 2007;10:1377–1386. doi: 10.1038/nn2004.] [[PubMed][Google Scholar]
- 17. Hanisch UK, Kettenmann HMicroglia: active sensor and versatile effector cells in the normal and pathologic brain. Nat Neurosci. 2007;10:1387–1394. doi: 10.1038/nn1997.] [[PubMed][Google Scholar]
- 18. Scholz J, Woolf CJThe neuropathic pain triad: neurons, immune cells and glia. Nat Neurosci. 2007;10:1361–1368. doi: 10.1038/nn1992.] [[PubMed][Google Scholar]
- 19. McMahon SB, Malcangio MCurrent challenges in glia-pain biology. Neuron. 2009;64:46–54. doi: 10.1016/j.neuron.2009.09.033.] [[PubMed][Google Scholar]
- 20. Ren K, Dubner RNeuron-glia crosstalk gets serious: role in pain hypersensitivity. Curr Opin Anaesthesiol. 2008;21:570–579. doi: 10.1097/ACO.0b013e32830edbdf.] [[Google Scholar]
- 21. Hansson ECould chronic pain and spread of pain sensation be induced and maintained by glial activation? Acta Physiol (Oxf) 2006;187:321–327. doi: 10.1111/j.1748-1716.2006.01568.x.] [[PubMed][Google Scholar]
- 22. Ji RR, Kawasaki Y, Zhuang ZY, Wen YR, Decosterd IPossible role of spinal astrocytes in maintaining chronic pain sensitization: review of current evidence with focus on bFGF/JNK pathway. Neuron Glia Biol. 2006;2:259–269. doi: 10.1017/S1740925X07000403.] [[Google Scholar]
- 23. Suter MR, Wen YR, Decosterd I, Ji RRDo glial cells control pain? Neuron Glia Biol. 2007;3:255–268. doi: 10.1017/S1740925X08000100.] [[Google Scholar]
- 24. Watkins LR, Hutchinson MR, Ledeboer A, et al. Norman Cousins Lecture. Glia as the “bad guys”: implications for improving clinical pain control and the clinical utility of opioids. Brain Behav Immun. 2007;21:131–146. doi: 10.1016/j.bbi.2006.10.011.] [
- 25. Romero-Sandoval EA, Horvath RJ, DeLeo JANeuroimmune interactions and pain: focus on glial-modulating targets. Curr Opin Investig Drugs. 2008;9:726–734.[Google Scholar]
- 26. Hald ASpinal astrogliosis in pain models: cause and effects. Cell Mol Neurobiol. 2009;29:609–619. doi: 10.1007/s10571-009-9390-6.] [[PubMed][Google Scholar]
- 27. Milligan ED, Watkins LRPathological and protective roles of glia in chronic pain. Nat Rev Neurosci. 2009;10:23–36. doi: 10.1038/nrn2533.] [[Google Scholar]
- 28. Halassa MM, Fellin T, Takano H, Dong JH, Haydon PGSynaptic islands defined by the territory of a single astrocyte. J Neurosci. 2007;27:6473–6477. doi: 10.1523/JNEUROSCI.1419-07.2007.] [[Google Scholar]
- 29. Garrison CJ, Dougherty PM, Kajander KC, Carlton SMStaining of glial fibrillary acidic protein (GFAP) in lumbar spinal cord increases following a sciatic nerve constriction injury. Brain Res. 1991;565:1–7. doi: 10.1016/0006-8993(91)91729-K.] [[PubMed][Google Scholar]
- 30. Colburn RW, Rickman AJ, DeLeo JAThe effect of site and type of nerve injury on spinal glial activation and neuropathic pain behavior. Exp Neurol. 1999;157:289–304. doi: 10.1006/exnr.1999.7065.] [[PubMed][Google Scholar]
- 31. Zhuang ZY, Wen YR, Zhang DR, et al A peptide c-Jun N-terminal kinase (JNK) inhibitor blocks mechanical allodynia after spinal nerve ligation: respective roles of JNK activation in primary sensory neurons and spinal astrocytes for neuropathic pain development and maintenance. J Neurosci. 2006;26:3551–3560. doi: 10.1523/JNEUROSCI.5290-05.2006.] [[Google Scholar]
- 32. Guo W, Wang H, Watanabe M, et al Glial-cytokine-neuronal interactions underlying the mechanisms of persistent pain. J Neurosci. 2007;27:6006–6018. doi: 10.1523/JNEUROSCI.0176-07.2007.] [[Google Scholar]
- 33. Wei F, Guo W, Zou S, Ren K, Dubner RSupraspinal glial-neuronal interactions contribute to descending pain facilitation. J Neurosci. 2008;28:10482–10495. doi: 10.1523/JNEUROSCI.3593-08.2008.] [[Google Scholar]
- 34. Raghavendra V, Tanga FY, DeLeo JAComplete Freunds adjuvant-induced peripheral inflammation evokes glial activation and proinflammatory cytokine expression in the CNS. Eur J Neurosci. 2004;20:467–473. doi: 10.1111/j.1460-9568.2004.03514.x.] [[PubMed][Google Scholar]
- 35. Sweitzer SM, Colburn RW, Rutkowski M, DeLeo JAAcute peripheral inflammation induces moderate glial activation and spinal IL-lbeta expression that correlates with pain behavior in the rat. Brain Res. 1999;829:209–221. doi: 10.1016/S0006-8993(99)01326-8.] [[PubMed][Google Scholar]
- 36. Gao YJ, Cheng JK, Zeng Q, et al Selective inhibition of JNK with a peptide inhibitor attenuates pain hypersensitivity and tumor growth in a mouse skin cancer pain model. Exp Neurol. 2009;219:146–55. doi: 10.1016/j.expneurol.2009.05.006.] [[Google Scholar]
- 37. Fujita M, Andoh T, Ohashi K, et al Roles of kinin B1 and B2 receptors in skin cancer pain produced by orthotopic melanoma inoculation in mice. Eur J Pain. 2010;14:588–594. doi: 10.1016/j.ejpain.2009.10.010.] [[PubMed][Google Scholar]
- 38. Zhang HW, Iida Y, Andoh T, et al Mechanical hypersensitivity and alterations in cutaneous nerve fibers in a mouse model of skin cancer pain. J Pharmacol Sci. 2003;91:167–170. doi: 10.1254/jphs.91.167.] [[PubMed][Google Scholar]
- 39. Schwei MJ, Honore P, Rogers SD, et al Neurochemical and cellular reorganization of the spinal cord in a murine model of bone cancer pain. J Neurosci. 1999;19:10886–10897.[Google Scholar]
- 40. Hald A, Nedergaard S, Hansen RR, Ding M, Heegaard AMDifferential activation of spinal cord glial cells in murine models of neuropathic and cancer pain. Eur J Pain. 2009;13:138–145. doi: 10.1016/j.ejpain.2008.03.014.] [[PubMed][Google Scholar]
- 41. Zhang RX, Liu B, Wang L, et al Spinal glial activation in a new rat model of bone cancer pain produced by prostate cancer cell inoculation of the tibia. Pain. 2005;118:125–136. doi: 10.1016/j.pain.2005.08.001.] [[PubMed][Google Scholar]
- 42. Ma W, Quirion RPartial sciatic nerve ligation induces increase in the phosphorylation of extracellular signal-regulated kinase (ERK) and c-Jun N-terminal kinase (JNK) in astrocytes in the lumbar spinal dorsal horn and the gracile nucleus. Pain. 2002;99:175–184. doi: 10.1016/S0304-3959(02)00097-0.] [[PubMed][Google Scholar]
- 43. Zhang J, De Koniuck YSpatial and temporal relationship between monocyte chemoattractant protein-1 expression and spinal glial activation following peripheral nerve injury. J Neurochem. 2006;97:772–783. doi: 10.1111/j.1471-4159.2006.03746.x.] [[PubMed][Google Scholar]
- 44. Tanga FY, Raghavendra V, DeLeo JAQuantitative real-time RT-PCR assessment of spinal microglial and astrocytic activation markers in a rat model of neuropathic pain. Neurochem Int. 2004;45:397–407. doi: 10.1016/j.neuint.2003.06.002.] [[PubMed][Google Scholar]
- 45. Cavaliere C, Cirillo G, Rosaria Bianco M, et al Gliosis alters expression and uptake of spinal glial amiuo acid transporters in a mouse neuropathic pain model. Neuron Glia Biol. 2007;3:141–153. doi: 10.1017/S1740925X07000695.] [[PubMed][Google Scholar]
- 46. Svensson M, Eriksson NP, Aldskogius HEvidence for activation of astrocytes via reactive microglial cells following hypoglossal nerve transection. J Neurosci Res. 1993;35:373–381. doi: 10.1002/jnr.490350404.] [[PubMed][Google Scholar]
- 47. Miyoshi K, Obata K, Kondo T, Okamura H, Noguchi KInterleukin-18-mediated microglia/astrocyte interaction in the spinal cord enhances neuropathic pain processing after nerve injury. J Neurosci. 2008;28:12775–12787. doi: 10.1523/JNEUROSCI.3512-08.2008.] [[Google Scholar]
- 48. Garrison CJ, Dougherty PM, Carlton SMGFAP expression in lumbar spinal cord of naive and neuropathic rats treated with MK-801. Exp Neurol. 1994;129:237–243. doi: 10.1006/exnr.1994.1165.] [[PubMed][Google Scholar]
- 49. Chen JJ, Lue JH, Lin LH, et al Effects of pre-emptive drug treatment on astrocyte activation in the cuneate nucleus following rat median nerve injury. Pain. 2010;148:158–166. doi: 10.1016/j.pain.2009.11.004.] [[PubMed][Google Scholar]
- 50. Colburn RW, DeLeo JA, Rickman AJ, et al Dissociation of microglial activation and neuropathic pain behaviors following peripheral nerve injury in the rat. J Neuroimmnunol. 1997;79:163–175. doi: 10.1016/S0165-5728(97)00119-7.] [[PubMed][Google Scholar]
- 51. Kim DS, Figueroa KW, Li KW, et al Profiling of dynamically changed gene expression in dorsal root ganglia post peripheral nerve injury and a critical role of injury-induced glial fibrillary acidic protein in maintenance of pain behaviors [corrected] Pain. 2009;143:114–122. doi: 10.1016/j.pain.2009.02.006.] [[Google Scholar]
- 52. Gao YJ, Zhang L, Samad OA, et al JNK-induced MCP-1 production in spinal cord astrocytes contributes to central sensitization and neuropathic pain. J Neurosci. 2009;29:4096–4108. doi: 10.1523/JNEUROSCI.3623-08.2009.] [[Google Scholar]
- 53. Weyerbacher AR, Xu Q, Tamasdan C, Shin SJ, Inturrisi CEN-Methyl-D-aspartate receptor (NMDAR) independent maintenance of inflammatory pain. Pain. 2010;148:237–246. doi: 10.1016/j.pain.2009.11.003.] [[Google Scholar]
- 54. Svensson CI, Brodin ESpinal astrocytes in pain processing: non-neuronal cells as therapeutic targets. Mol Interv. 2010;10:25–38. doi: 10.1124/mi.10.1.6.] [[PubMed][Google Scholar]
- 55. Svensson CI, Zattoni M, Serhan CNLipoxius and aspirin-triggered lipoxin inhibit inflammatory pain processing. J Exp Med. 2007;204:245–252. doi: 10.1084/jem.20061826.] [[Google Scholar]
- 56. Gao YJ, Xu ZZ, Liu YC, et al The c-Jun N-terminal kinase 1 (JNK1) in spinal astrocytes is required for the maintenance of bilateral mechanical allodynia under a persistent inflammatory pain condition. Pain. 2010;148:309–319. doi: 10.1016/j.pain.2009.11.017.] [[Google Scholar]
- 57. Hofstetter CP, Holmstrom NA, Lilja JA, et al Allodynia limits the usefulness of intraspinal neural stem cell grafts; directed differentiation improves outcome. Nat Neurosci. 2005;8:346–353. doi: 10.1038/nn1405.] [[PubMed][Google Scholar]
- 58. Davies JE, Proschel C, Zhang N, et al Transplanted astrocytes derived from BMP- or CNTF-treated glial-restricted precursors have opposite effects on recovery and allodynia after spinal cord injury. J Biol. 2008;7:24–24. doi: 10.1186/jbiol85.] [[Google Scholar]
- 59. Gao YJ, Zhang L, Ji RR. Spinal injection of TNF-α-activated astrocytes produces persistent pain symptom-mechanical allodynia by releasing monocyte chemoattractant protein-1. Glia 2010 (in press).
- 60. Meiler ST, Dykstra C, Grzybycki D, Murphy S, Gebhart GFThe possible role of glia in nociceptive processing and hyperalgesia in the spinal cord of the rat. Neuropharmacology. 1994;33:1471–1478. doi: 10.1016/0028-3908(94)90051-5.] [[PubMed][Google Scholar]
- 61. Watkius LR, Martin D, Ulrich P, Tracey KJ, Maier SFEvidence for the involvement of spinal cord glia in subcutaneous formalin induced hyperalgesia in the rat. Pain. 1997;71:225–235. doi: 10.1016/S0304-3959(97)03369-1.] [[PubMed][Google Scholar]
- 62. Milligan ED, Twining C, Chacur M, et al Spinal glia and proinflammatory cytokines mediate mirror-image neuropathic pain in rats. J Neurosci. 2003;23:1026–1040.[Google Scholar]
- 63. Obata H, Eisenach JC, Hussain H, Bynum T, Vincier MSpinal glial activation contributes to postoperative mechanical hypersensitivity in the rat. J Pain. 2006;7:816–822. doi: 10.1016/j.jpain.2006.04.004.] [[PubMed][Google Scholar]
- 64. Clark AK, Gentry C, Bradbury EJ, McMahon SB, Malcangio MRole of spinal microglia in rat models of peripheral nerve injury and inflammation. Eur J Pain. 2007;11:223–230. doi: 10.1016/j.ejpain.2006.02.003.] [[PubMed][Google Scholar]
- 65. Okada-Ogawa A, Suzuki I, Sessle BJ, et al Astroglia in medullary dorsal horn (trigeminal spinal subnucleus caudalis) are involved in trigeminal neuropathic pain mechanisms. J Neurosci. 2009;29:11161–11171. doi: 10.1523/JNEUROSCI.3365-09.2009.] [[Google Scholar]
- 66. Ledeboer A, Mahoney JH, Milligan ED, et al Spinal cord glia and interleukin-1 do not appear to mediate persistent allodynia induced by intramuscular acidic saline in rats. J Pain. 2006;7:757–767. doi: 10.1016/j.jpain.2006.04.001.] [[PubMed][Google Scholar]
- 67. Huck S, Grass F, Hortnagl HThe glutamate analogue alpha-aminoadipic acid is taken up by astrocytes before exerting its gliotoxic effect in vitro. J Neurosci. 1984;4:2650–2657.[Google Scholar]
- 68. Khurgel M, Koo AC, Ivy GOSelective ablation of astrocytes by intracerebral injections of alpha-aminoadipate. Glia. 1996;16:351–358. doi: 10.1002/(SICI)1098-1136(199604)16:4<351::AID-GLIA7>3.0.CO;2-2.] [[PubMed][Google Scholar]
- 69. Rodriguez MJ, Martinez-Sanchez M, Bernal F, Mahy NHeterogeneity between hippocampal and septal astroglia as a contributing factor to differential in vivo AMPA excitotoxicity. J Neurosci Res. 2004;77:344–353. doi: 10.1002/jnr.20177.] [[PubMed][Google Scholar]
- 70. Wang W, Wang W, Mei X, et al Crosstalk between spinal astrocytes and neurons in nerve injury-induced neuropathic pain. PLoS One. 2009;4:e6973–e6973. doi: 10.1371/journal.pone.0006973.] [[Google Scholar]
- 71. Beart PM, O’Shea RDTransporters for L-glutamate: an update on their molecular pharmacology and pathological involvement. Br J Pharmacol. 2007;150:5–17. doi: 10.1038/sj.bjp.0706949.] [[Google Scholar]
- 72. Huang YH, Bergles DEGlutamate transporters bring competition to the synapse. Curr Opin Neurobiol. 2004;14:346–352. doi: 10.1016/j.conb.2004.05.007.] [[PubMed][Google Scholar]
- 73. Tawfik VL, Lacroix-Fralish ML, Bercury KK, et al Induction of astrocyte differentiation by propentofylline increases glutamate transporter expression in vitro: heterogeneity of the quiescent phenotype. Glia. 2006;54:193–203. doi: 10.1002/glia.20365.] [[PubMed][Google Scholar]
- 74. Rothstein JD, Dykes-Hoberg M, Pardo CA, et al Knockout of glutamate transporters reveals a major role for astroglial transport in excitotoxicity and clearance of glutamate. Neuron. 1996;16:675–686. doi: 10.1016/S0896-6273(00)80086-0.] [[PubMed][Google Scholar]
- 75. Tanaka K, Watase K, Manabe T, et al Epilepsy and exacerbation of brain injury in mice lacking the glutamate transporter GLT-1. Science. 1997;276:1699–702. doi: 10.1126/science.276.5319.1699.] [[PubMed][Google Scholar]
- 76. Katagiri H, Tanaka K, Manabe TRequirement of appropriate glutamate concentrations in the synaptic cleft for hippocampal LTP induction. Eur J Neurosci. 2001;14:547–553. doi: 10.1046/j.0953-816x.2001.01664.x.] [[PubMed][Google Scholar]
- 77. Levenson J, Weeber E, Selcher JC, et al Long-term potentiation and contextual fear conditioning increase neuronal glutamate uptake. Nat Neurosci. 2002;5:155–161. doi: 10.1038/nn791.] [[PubMed][Google Scholar]
- 78. Sung B, Lim G, Mao JAltered expression and uptake activity of spinal glutamate transporters after nerve injury contribute to the pathogenesis of neuropathic pain in rats. J Neurosci. 2003;23:2899–2910.[Google Scholar]
- 79. Wang W, Wang W, Wang Y, et al Temporal changes of astrocyte activation and glutamate transporter-1 expression in the spinal cord after spinal nerve ligation-induced neuropathic pain. Anat Rec (Hoboken) 2008;291:513–518.[PubMed][Google Scholar]
- 80. Xin WJ, Weng HR, Dougherty PMPlasticity in expression of the glutamate transporters GLT-1 and GLAST in spinal dorsal horn glial cells following partial sciatic nerve ligation. Mol Pain. 2009;5:15–15. doi: 10.1186/1744-8069-5-15.] [[Google Scholar]
- 81. Tawfik VL, Regan MR, Haenggeli C, et al Propentofylline-induced astrocyte modulation leads to alterations in glial glutamate promoter activation following spinal nerve transection. Neuroscience. 2008;152:1086–1092. doi: 10.1016/j.neuroscience.2008.01.065.] [[Google Scholar]
- 82. Liaw WJ, Stephens RL, Binns BC, et al Spinal glutamate uptake is critical for maintaining normal sensory transmission in rat spinal cord. Pain. 2005;115:60–70. doi: 10.1016/j.pain.2005.02.006.] [[PubMed][Google Scholar]
- 83. Weng HR, Chen JH, Cata JPInhibition of glutamate uptake in the spinal cord induces hyperalgesia and increased responses of spinal dorsal horn neurons to peripheral afferent stimulation. Neuroscience. 2006;138:1351–1360. doi: 10.1016/j.neuroscience.2005.11.061.] [[PubMed][Google Scholar]
- 84. Maeda S, Kawamoto A, Yatani Y, et al Gene transfer of GLT-1, a gliai glutamate transporter, into the spinal cord by recombinant adenovirus attenuates inflammatory and neuropathic pain in rats. Mol Pain. 2008;4:65–65. doi: 10.1186/1744-8069-4-65.] [[Google Scholar]
- 85. Chiang CY, Wang J, Xie YF, et al Astroglial glutamate-glutamine shuttle is involved in central sensitization of nociceptive neurons in rat medullary dorsal horn. J Neurosci. 2007;27:9068–76. doi: 10.1523/JNEUROSCI.2260-07.2007.] [[Google Scholar]
- 86. Kozai T, Yamanaka H, Dai Y, et al Tissue type plasminogen activator induced in rat dorsal horn astrocytes contributes to mechanical hypersensitivity following dorsal root injury. Glia. 2007;55:595–603. doi: 10.1002/glia.20483.] [[PubMed][Google Scholar]
- 87. Bruno MA, Cuello ACActivity-dependent release of precursor nerve growth factor, conversion to mature nerve growth factor, and its degradation by a protease cascade. Proc Natl Acad Sci U S A. 2006;103:6735–6740. doi: 10.1073/pnas.0510645103.] [[Google Scholar]
- 88. Pang PT, Teng HK, Zaitsev E, et al Cleavage of proBDNF by tPA/plasmin is essential for long-term hippocampal plasticity. Science. 2004;306:487–491. doi: 10.1126/science.1100135.] [[PubMed][Google Scholar]
- 89. Hoffman KB, Martinez J, Lynch GProteolysis of cell adhesion molecules by serine proteases: a role in long term potentiation? Brain Res. 1998;811:29–33. doi: 10.1016/S0006-8993(98)00906-8.] [[PubMed][Google Scholar]
- 90. Qian Z, Gilbert ME, Colicos MA, Kandel ER, Kuhl DTissue-plasminogen activator is induced as an immediate-early gene during seizure, kindling and long-term potentiation. Nature. 1993;361:453–457. doi: 10.1038/361453a0.] [[PubMed][Google Scholar]
- 91. Blomstrand F, Khatibi S, Muyderman H, et al 5-Hydroxytryptamine and glutamate modulate velocity and extent of intercellular calcium signalling in hippocampal astroglial cells in primary cultures. Neuroscience. 1999;88:1241–1253. doi: 10.1016/S0306-4522(98)00351-0.] [[PubMed][Google Scholar]
- 92. Haydon PGGLIA: listening and talking to the synapse. Nat Rev Neurosci. 2001;2:185–193. doi: 10.1038/35058528.] [[PubMed][Google Scholar]
- 93. Giaume C, McCarthy KDControl of gap-junctional communication in astrocytic networks. Trends Neurosci. 1996;19:319–325. doi: 10.1016/0166-2236(96)10046-1.] [[PubMed][Google Scholar]
- 94. Nagy JI, Dudek FE, Rash JEUpdate on connexins and gap junctions in neurons and glia in the mammalian nervous system. Brain Res Brain Res Rev. 2004;47:191–215. doi: 10.1016/j.brainresrev.2004.05.005.] [[PubMed][Google Scholar]
- 95. Rohlmann A, Laskawi R, Hofer A, et al Facial nerve lesions lead to increased immunostaining of the astrocytic gap junction protein (connexin 43) in the corresponding facial nucleus of rats. Neurosci Lett. 1993;154:206–208. doi: 10.1016/0304-3940(93)90208-3.] [[PubMed][Google Scholar]
- 96. Lee IH, Lindqvist E, Kiehn O, Widenfalk J, Olson LGlial and neuronal connexin expression patterns in the rat spinal cord during development and following injury. J Comp Neurol. 2005;489:1–10. doi: 10.1002/cne.20567.] [[PubMed][Google Scholar]
- 97. Qin M, Wang JJ, Cao R, et al The lumbar spinal cord glial cells actively modulate subcutaneous formalin induced hyperalgesia in the rat. Neurosci Res. 2006;55:442–450. doi: 10.1016/j.neures.2006.04.017.] [[PubMed][Google Scholar]
- 98. Spataro LE, Sloane EM, Milligan ED, et al Spinal gap junctions: potential involvement in pain facilitation. J Pain. 2004;5:392–405. doi: 10.1016/j.jpain.2004.06.006.] [[PubMed][Google Scholar]
- 99. Lan L, Yuan H, Duau L, et al Blocking the glial function suppresses subcutaneous formalin-induced nociceptive behavior in he rat. Neurosci Res. 2007;57:112–129. doi: 10.1016/j.neures.2006.09.014.] [[PubMed][Google Scholar]
- 100. Zhuang ZY, Gerner P, Woolf CJ, Ji RRERK is sequentially activated in neurons, microglia, and astrocytes by spinal nerve ligation and contributes to mechanical allodynia in this neuropathic pain model. Pain. 2005;114:149–159. doi: 10.1016/j.pain.2004.12.022.] [[PubMed][Google Scholar]
- 101. Peters CM, Rogers SD, Pomonis JD, et al Endothelin receptor expression in the normal and injured spinal cord: potential involvement in injury-induced ischemia and gliosis. Exp Neurol. 2003;180:1–13. doi: 10.1016/S0014-4886(02)00023-7.] [[PubMed][Google Scholar]
- 102. Madiai F, Goettl VM, Hussain SR, et al Anti-fibroblast growth factor-2 antibodies attenuate mechanical allodynia in a rat model of neuropathic pain. J Mol Neurosci. 2005;27:315–324. doi: 10.1385/JMN:27:3:315.] [[PubMed][Google Scholar]
- 103. Madiai F, Hussain SR, Goettl VM, et al Upregulation of FGF-2 in reactive spinal cord astrocytes following unilateral lumbar spinal nerve ligation. Exp Brain Res. 2003;148:366–376.[PubMed][Google Scholar]
- 104. Garry EM, Delaney A, Blackburn-Munro G, et al Activation of p38 and p42/44 MAP kinase in neuropathic pain: involvement of VPAC2 and NK2 receptors and mediation by spinal glia. Mol Cell Neurosci. 2005;30:523–537. doi: 10.1016/j.mcn.2005.08.016.] [[PubMed][Google Scholar]
- 105. Knerlich-Lukoschus F, Juraschek M, Blomer U, et al Force-dependent development of neuropathic central pain and time-related CCL2/CCR2 expression after graded spinal cord contusion injuries of the rat. J Neurotrauma. 2008;25:427–448. doi: 10.1089/neu.2007.0431.] [[PubMed][Google Scholar]
- 106. Kawasaki Y, Zhang L, Cheng JK, Ji RRCytokine mechanisms of central sensitization: distinct and overlapping role of interleukin-1beta, iuterleukin-6, and tumor necrosis factor-alpha in regulating synaptic and neuronal activity in the superficial spinal cord. J Neurosci. 2008;28:5189–5194. doi: 10.1523/JNEUROSCI.3338-07.2008.] [[Google Scholar]
- 107. Zhang RX, Li A, Liu B, et al IL-1ra alleviates inflammatory hyperalgesia through preventing phosphorylation of NMDA receptor NR-1 subunit in rats. Pain. 2008;135:232–239. doi: 10.1016/j.pain.2007.05.023.] [[Google Scholar]
- 108. DeLeo JA, Colburn RW, Rickman AJCytokine and growth factor immunohistochemical spinal profiles in two animal models of mononeuropathy. Brain Res. 1997;759:50–57. doi: 10.1016/S0006-8993(97)00209-6.] [[PubMed][Google Scholar]
- 109. Fu D, Guo Q, Ai Y, et al Glial activation and segmental upregulation of interleukin-lbeta (IL-1beta) in the rat spinal cord after surgical incision. Neurochein Res. 2006;31:333–340. doi: 10.1007/s11064-005-9032-4.] [[PubMed][Google Scholar]
- 110. Milligan ED, O’Connor KA, Nguyen KT, et al Intrathecal HIV-1 envelope glycoprotein gp120 induces enhanced pain states mediated by spinal cord proinflammatory cytokines. J Neurosci. 2001;21:2808–2819.[Google Scholar]
- 111. Sweitzer S, Martin D, DeLeo JAIntrathecal interleukin-1 receptor antagonist in combination with soluble tumor necrosis factor receptor exhibits an anti-allodynic action in a rat model of neuropathic pain. Neuroscience. 2001;103:529–539. doi: 10.1016/S0306-4522(00)00574-1.] [[PubMed][Google Scholar]
- 112. Wolf G, Gabay E, Tal M, Yirmiya R, Shavit YGenetic impairment of interleukin-1 signaling attenuates neuropathic pain, autotomy, and spontaneous ectopic neuronal activity, following nerve injury in mice. Pain. 2006;120:315–324. doi: 10.1016/j.pain.2005.11.011.] [[PubMed][Google Scholar]
- 113. Ji GC, Zhang YQ, Ma F, Wu GCIncrease of nociceptive threshold induced by intrathecal injection of interleukin-1 beta in normal and carrageenan inflammatory rat. Cytokine. 2002;19:31–36. doi: 10.1006/cyto.2002.1949.] [[PubMed][Google Scholar]
- 114. Kawasaki Y, Xu ZZ, Wang X, et al Distinct roles of matrix metalloproteases in the early- and late-phase development of neuropathic pain. Nat Med. 2008;14:331–336. doi: 10.1038/nm1723.] [[Google Scholar]
- 115. Tadano T, Namioka M, Nakagawasai O, et al Induction of nociceptive responses by intrathecal injection of interleukin-1 in mice. Life Sci. 1999;65:255–261. doi: 10.1016/S0024-3205(99)00244-1.] [[PubMed][Google Scholar]
- 116. Sung CS, Wen ZH, Chang WK, et al Intrathecal interleukin-1beta administration induces thermal hyperalgesia by activating inducible nitric oxide synthase expression in the rat spinal cord. Brain Res. 2004;1015:145–153. doi: 10.1016/j.brainres.2004.04.068.] [[PubMed][Google Scholar]
- 117. Reeve AJ, Patel S, Fox A, Walker K, Urban LIntrathecally administered endotoxin or cytokines produce allodynia, hyperalgesia and changes in spinal cord neuronal responses to nociceptive stimuli in the rat. Eur J Pain. 2000;4:247–257. doi: 10.1053/eujp.2000.0177.] [[PubMed][Google Scholar]
- 118. Tsakiri N, Kimber I, Rothwell NJ, Pinteaux EInterleukin-1-induced interleukin-6 synthesis is mediated by the neutral sphingomyelinase/Src kinase pathway in neurones. Br J Pharmacol. 2008;153:775–783. doi: 10.1038/sj.bjp.0707610.] [[Google Scholar]
- 119. Zhang RX, Liu B, Li A, et al Interleukin 1beta facilitates bone cancer pain in rats by enhancing NMDA receptor NR-1 subunit phosphorylation. Neuroscience. 2008;154:1533–1558. doi: 10.1016/j.neuroscience.2008.04.072.] [[Google Scholar]
- 120. Binshtok AM, Wang H, Zimmermann K, et al Nociceptors are interleukin-1beta sensors. J Neurosci. 2008;28:14062–14073. doi: 10.1523/JNEUROSCI.3795-08.2008.] [[Google Scholar]
- 121. Coull JA, Beggs S, Boudreau D, et al BDNF from microglia causes the shift in neuronal anion gradient underlying neuropathic pain. Nature. 2005;438:1017–1021. doi: 10.1038/nature04223.] [[PubMed][Google Scholar]
- 122. Woolf CJ, Salter MWNeuronal plasticity: increasing the gain in pain. Science. 2000;288:1765–1769. doi: 10.1126/science.288.5472.1765.] [[PubMed][Google Scholar]
- 123. Samad TA, Moore KA, Sapirstein A, et al Interleukin-1beta-mediated induction of Cox-2 in the CNS contributes to inflammatory pain hypersensitivity. Nature. 2001;410:471–475. doi: 10.1038/35068566.] [[PubMed][Google Scholar]
- 124. Rosenberg GAMatrix metalloproteinases in neuroinflammation. Glia. 2002;39:279–291. doi: 10.1002/glia.10108.] [[PubMed][Google Scholar]
- 125. Parks WC, Wilson CL, Lopez-Boado YSMatrix metalloproteinases as modulators of inflammation and innate immunity. Nat Rev Immunol. 2004;4:617–629. doi: 10.1038/nri1418.] [[PubMed][Google Scholar]
- 126. Yong VWMetalloproteinases: mediators of pathology and regeneration in the CNS. Nat Rev Neurosci. 2005;6:931–944. doi: 10.1038/nrn1807.] [[PubMed][Google Scholar]
- 127. Manicone AM, McGuire JKMatrix metalloproteinases as modulators of inflammation. Semin Cell Dev Biol. 2008;19:34–41. doi: 10.1016/j.semcdb.2007.07.003.] [[Google Scholar]
- 128. Schonbeck U, Mach F, Libby PGeneration of biologically active IL-1 beta by matrix metalloproteinases: a novel caspase-1-independent pathway of IL-1 beta processing. J Immunol. 1998;161:3340–3346.[PubMed][Google Scholar]
- 129. Croitoru-Lamoury J, Guillemin GJ, Boussin FD, et al Expression of chemokines and their receptors in human and simian astrocytes: evidence for a central role of TNF alpha and IFN gamma in CXCR4 and CCR5 modulation. Glia. 2003;41:354–370. doi: 10.1002/glia.10181.] [[PubMed][Google Scholar]
- 130. Meeuwsen S, Persoon-Deen C, Bsibsi M, Ravid R, van Noort JMCytokine, chemokine and growth factor gene profiling of cultured human astrocytes after exposure to proinflammatory stimuli. Glia. 2003;43:243–253. doi: 10.1002/glia.10259.] [[PubMed][Google Scholar]
- 131. El-Hage N, Gurwell JA, Singh IN, et al Synergistic increases in intracellular Ca2+, and the release of MCP-1, RANTES, and IL-6 by astrocytes treated with opiates and HIV-1 Tat. Glia. 2005;50:91–106. doi: 10.1002/glia.20148.] [[Google Scholar]
- 132. Mojsilovic-Petrovic J, Callaghan D, Cui H, et al Hypoxia-inducible factor-1 (HIF-1) is involved in the regulation of hypoxia-stimulated expression of monocyte chemoattractant protein-1 (MCP-1/CCL2) and MCP-5 (Cell2) in astrocytes. J Neuroinflammation. 2007;4:12–12. doi: 10.1186/1742-2094-4-12.] [[Google Scholar]
- 133. Van Der Voorn P, Tekstra J, Beelen RH, et al Expression of MCP-1 by reactive astrocytes in demyelinating multiple, sclerosis lesions. Am J Pathol. 1999;154:45–51. doi: 10.1016/S0002-9440(10)65249-2.] [[Google Scholar]
- 134. Tanuma N, Sakuma H, Sasaki A, Matsumoto YChemokine expression by astrocytes plays a role in microglia/macrophage activation and subsequent neurodegeneration in secondary progressive multiple sclerosis. Acta Neuropathol. 2006;112:195–204. doi: 10.1007/s00401-006-0083-7.] [[PubMed][Google Scholar]
- 135. Huang D, Han Y, Rani MR, et al Chemokines and chemokine receptors in inflammation of the nervous system: manifold roles and exquisite regulation. Immunol Rev. 2000;177:52–67. doi: 10.1034/j.1600-065X.2000.17709.x.] [[PubMed][Google Scholar]
- 136. Babcock AA, Kuziel WA, Rivest S, Owens TChemokine expression by glial cells directs leukocytes to sites of axonal injury in the CNS. J Neurosci. 2003;23:7922–7930.[Google Scholar]
- 137. Yan YP, Sailor KA, Lang BT, et al Monocyte chemoattractant protein-1 plays a critical role in neuroblast migration after focal cerebral ischemia. J Cereb Blood Flow Metab. 2007;27:1213–1224. doi: 10.1038/sj.jcbfm.9600432.] [[PubMed][Google Scholar]
- 138. White FA, Sun J, Waters SM, et al Excitatory monocyte chemoattractant protein-1 signaling is up-regulated in sensory neurons after chronic compression of the dorsal root ganglion. Proc Natl Acad Sci U S A. 2005;102:14092–14097. doi: 10.1073/pnas.0503496102.] [[Google Scholar]
- 139. Gosseliu RD, Varela C, Banisadr G, et al Constitutive expression of CCR2 chemokine receptor and inhibition by MCP-1/CCL2 of GABA-induced currents in spinal cord neurones. J Neurochem. 2005;95:1023–1034. doi: 10.1111/j.1471-4159.2005.03431.x.] [[PubMed][Google Scholar]
- 140. Gao YJ, Ji RRc-Fos and pERK, which is a better marker for neuronal activation and central sensitization after noxious stimulation and tissue injury? Open Pain J. 2009;2:11–7. doi: 10.2174/1876386300902010011.] [[Google Scholar]
- 141. Thacker MA, Clark AK, Bishop T, et al CCL2 is a key mediator of microglia activation in neuropathic pain states. Eur J Pain. 2009;13:263–272. doi: 10.1016/j.ejpain.2008.04.017.] [[PubMed][Google Scholar]
- 142. Abbadie C, Lindia JA, Cumiskey AM, et al Impaired neuropathic pain responses in mice lacking the chemokine receptor CCR2. Proc Natl Acad Sci U S A. 2003;100:7947–7952. doi: 10.1073/pnas.1331358100.] [[Google Scholar]
- 143. Zhang J, Shi XQ, Echeverry S, et al Expression of CCR2 in both resident and bone marrow-derived microglia plays a critical role in neuropathic pain. J Neurosci. 2007;27:12396–12406. doi: 10.1523/JNEUROSCI.3016-07.2007.] [[Google Scholar]
- 144. Bhangoo S, Ren D, Miller RJ, et al Delayed functional expression of neuronal chemokine receptors following focal nerve demyelination in the rat: a mechanism for the development of chronic sensitization of peripheral nociceptors. Mol Pain. 2007;3:38–38. doi: 10.1186/1744-8069-3-38.] [[Google Scholar]
- 145. Bhangoo SK, Ripsch MS, Buchanan DJ, Miller RJ, White FAIncreased chemokine signaling in a model of HIV1-associated peripheral neuropathy. Mol Pain. 2009;5:48–48. doi: 10.1186/1744-8069-5-48.] [[Google Scholar]
- 146. Ji RR, Gereau RWt, Malcangio M, Strichartz GRMAP kinase and pain. Brain Res Rev. 2009;60:135–148. doi: 10.1016/j.brainresrev.2008.12.011.] [[Google Scholar]
- 147. Jin SX, Zhuang ZY, Woolf CJ, Ji RRp38 mitogen-activated protein kinase is activated after a spinal nerve ligation in spinal cord microglia and dorsal root ganglion neurons and contributes to the generation of neuropathic pain. J Neurosci. 2003;23:4017–4022.[Google Scholar]
- 148. Tsuda M, Mizokoshi A, Shigemoto-Mogami Y, Koizumi S, Inoue KActivation of p38 mitogen-activated protein kinase in spinal hyperactive microglia contributes to pain hypersensitivity following peripheral nerve injury. Glia. 2004;45:89–95. doi: 10.1002/glia.10308.] [[PubMed][Google Scholar]
- 149. Weyerbacher AR, Xu Q, Tamasdan C, Shin SJ, Inturrisi CEN-Methyl-d-aspartate receptor (NMDAR) independent maintenance of inflammatory pain. Pain. 2010;148:237–246. doi: 10.1016/j.pain.2009.11.003.] [[Google Scholar]
- 150. Migheli A, Piva R, Atzori C, Troost D, Schiffer Dc-Jun, JNK/ SAPK kinases and transcription factor NF-kappa B are selectively activated in astrocytes, but not motor neurons, in amyotrophic lateral sclerosis. J Neuropathol Exp Neurol. 1997;56:1314–1322. doi: 10.1097/00005072-199712000-00006.] [[PubMed][Google Scholar]
- 151. Obata K, Yamanaka H, Kobayashi K, et al Role of mitogenactivated protein kinase activation in injured and intact primary afferent neurons for mechanical and heat hypersensitivity after spinal nerve ligation. J Neurosci. 2004;24:10211–10222. doi: 10.1523/JNEUROSCI.3388-04.2004.] [[Google Scholar]
- 152. Daulhac L, Mallet C, Courteix C, et al Diabetes-induced mechanical hyperalgesia involves spinal mitogen-activated protein kinase activation in neurons and microglia via N-rnetbyl-D-aspartate~dependent mechanisms. Mol Pharmacol. 2006;70:1246–1254. doi: 10.1124/mol.106.025478.] [[PubMed][Google Scholar]
- 153. Falsig J, Porzgen P, Lotharius J, Leist MSpecific modulation of astrocyte inflammation by inhibition of mixed lineage kinases with CEP-1347. J Immunol. 2004;173:2762–2770.[PubMed][Google Scholar]
- 154. Gao YJ, Ji RRChemokines, neuronal-glial interactions, and central processing of neuropathic pain. Pharmacol Ther. 2010;126:56–68. doi: 10.1016/j.pharmthera.2010.01.002.] [[Google Scholar]
- 155. Katsura H, Obata K, Miyoshi K, et al Transforming growth factor-activated kinase 1 induced in spinal astrocytes contributes to mechanical hypersensitivity after nerve injury. Glia. 2008;56:723–733. doi: 10.1002/glia.20648.] [[PubMed][Google Scholar]
- 156. Ferrara N, Ousley F, Gospodarowicz DBovine brain astrocytes express basic fibroblast growth factor, a neurotropic and angiogenic mitogen. Brain Res. 1988;462:223–232. doi: 10.1016/0006-8993(88)90550-1.] [[PubMed][Google Scholar]
- 157. Eclancher F, Perraud F, Faltin J, Labourdette G, Sensenbrenner MReactive astrogliosis after basic fibroblast growth factor (bFGF) injection in injured neonatal rat brain. Glia. 1990;3:502–509. doi: 10.1002/glia.440030609.] [[PubMed][Google Scholar]
- 158. Takano T, Oberheim N, Cotrina ML, Nedergaard MAstrocytes and ischemic injury. Stroke. 2009;40:S8–S12. doi: 10.1161/STROKEAHA.108.533166.] [[Google Scholar]
- 159. Hayakawa K, Nakano T, Irie K, et al Inhibition of reactive astrocytes with fluorocitrate retards neurovascular remodeling and recovery after focal cerebral ischemia in mice. J Cereb Blood Flow Metab. 2010;30:871–882. doi: 10.1038/jcbfm.2009.257.] [[Google Scholar]
- 160. Borsello T, Clarke PG, Hirt L, et al A peptide inhibitor of c-Jun N-terminal kinase protects against excitotoxicity and cerebral ischemia. Nat Med. 2003;9:1180–1186. doi: 10.1038/nm911.] [[PubMed][Google Scholar]
- 161. Davis JE, Gabler NK, Walker-Daniels J, Spurlock METhe c-Jun N-terminal kinase mediates the induction of oxidative stress and insulin resistance by palmitate and toll-like receptor 2 and 4 ligands in 3T3-L1 adipocytes. Florin Metab Res. 2009;41:523–530. doi: 10.1055/s-0029-1202852.] [[PubMed][Google Scholar]
- 162. Ijaz A, Tejada T, Catanuto P, et al Inhibition of C-jun N-terminal kinase improves insulin sensitivity but worsens albuminuria in experimental diabetes. Kidney Int. 2009;75:381–388. doi: 10.1038/ki.2008.559.] [[PubMed][Google Scholar]
- 163. Oberheim NA, Takano T, Han X, et al Uniquely hominid features of adult human astrocytes. J Neurosci. 2009;29:3276–3287. doi: 10.1523/JNEUROSCI.4707-08.2009.] [[Google Scholar]
- 164. Oberheim NA, Wang X, Goldman S, Nedergaard MAstrocytic complexity distinguishes the human brain. Trends Neurosci. 2006;29:547–553. doi: 10.1016/j.tins.2006.08.004.] [[PubMed][Google Scholar]