Solute Accumulation and Compartmentation during the Cold Acclimation of Puma Rye.
Journal: 2010/June - Plant Physiology
ISSN: 0032-0889
PUBMED: 16668599
Abstract:
During cold acclimation of Puma rye (Secale cereale L. cv Puma), the intracellular osmotic potential nearly doubles. During this period, the accumulation of glycinebetaine, proline, and soluble sugars was monitored. The amount of glycinebetaine increased from 290 to 1300 micrograms per gram fresh weight during the 4-week acclimation period. Proline content did not change during the first 3 weeks of acclimation but then increased from 27 to 580 micrograms per gram fresh weight during the next 3 weeks. The total soluble sugar content more than doubled by the second week of cold acclimation, increasing from 11 to 26 milligrams per gram fresh weight. Most of this increase can be attributed to the accumulation of sucrose and raffinose, whose levels increased from 2.4 and 0 to 11 and 5 milligrams per gram fresh weight, respectively. The content of monosaccharides, predominantly glucose, remained at a constant 10 milligrams per gram fresh weight throughout the acclimation period. A comparison of the sugar content of protoplasts versus vacuoles isolated from cold-acclimated leaves revealed that the extravacuolar volume contained monosaccharides, sucrose, and raffinose. Thus, the increased amounts of sucrose and raffinose that occur during cold acclimation are present in compartments external to the vacuole and may contribute to cryoprotection.
Relations:
Content
Citations
(32)
References
(8)
Drugs
(1)
Affiliates
(1)
Similar articles
Articles by the same authors
Discussion board
Plant Physiol 98(1): 108-113

Solute Accumulation and Compartmentation during the Cold Acclimation of Puma Rye <sup><a href="#fn1" rid="fn1" class=" fn">1</a></sup>

Abstract

During cold acclimation of Puma rye (Secale cereale L. cv Puma), the intracellular osmotic potential nearly doubles. During this period, the accumulation of glycinebetaine, proline, and soluble sugars was monitored. The amount of glycinebetaine increased from 290 to 1300 micrograms per gram fresh weight during the 4-week acclimation period. Proline content did not change during the first 3 weeks of acclimation but then increased from 27 to 580 micrograms per gram fresh weight during the next 3 weeks. The total soluble sugar content more than doubled by the second week of cold acclimation, increasing from 11 to 26 milligrams per gram fresh weight. Most of this increase can be attributed to the accumulation of sucrose and raffinose, whose levels increased from 2.4 and 0 to 11 and 5 milligrams per gram fresh weight, respectively. The content of monosaccharides, predominantly glucose, remained at a constant 10 milligrams per gram fresh weight throughout the acclimation period. A comparison of the sugar content of protoplasts versus vacuoles isolated from cold-acclimated leaves revealed that the extravacuolar volume contained monosaccharides, sucrose, and raffinose. Thus, the increased amounts of sucrose and raffinose that occur during cold acclimation are present in compartments external to the vacuole and may contribute to cryoprotection.

Full text

Full text is available as a scanned copy of the original print version. Get a printable copy (PDF file) of the complete article (1.0M), or click on a page image below to browse page by page. Links to PubMed are also available for Selected References.

Selected References

These references are in PubMed. This may not be the complete list of references from this article.
  • Berlin J, Quisenberry JE, Bailey F, Woodworth M, McMichael BL. Effect of water stress on cotton leaves : I. An electron microscopic stereological study of the palisade cells. Plant Physiol. 1982 Jul;70(1):238–243.[PMC free article] [PubMed] [Google Scholar]
  • Boller T, Kende H. Hydrolytic enzymes in the central vacuole of plant cells. Plant Physiol. 1979 Jun;63(6):1123–1132.[PMC free article] [PubMed] [Google Scholar]
  • Dowgert MF, Steponkus PL. Effect of cold acclimation on intracellular ice formation in isolated protoplasts. Plant Physiol. 1983 Aug;72(4):978–988.[PMC free article] [PubMed] [Google Scholar]
  • Rudolph AS, Crowe JH. Membrane stabilization during freezing: the role of two natural cryoprotectants, trehalose and proline. Cryobiology. 1985 Aug;22(4):367–377. [PubMed] [Google Scholar]
  • Rudolph AS, Crowe JH, Crowe LM. Effects of three stabilizing agents--proline, betaine, and trehalose--on membrane phospholipids. Arch Biochem Biophys. 1986 Feb 15;245(1):134–143. [PubMed] [Google Scholar]
  • Simcox PD, Reid EE, Canvin DT, Dennis DT. Enzymes of the Glycolytic and Pentose Phosphate Pathways in Proplastids from the Developing Endosperm of Ricinus communis L. Plant Physiol. 1977 Jun;59(6):1128–1132.[PMC free article] [PubMed] [Google Scholar]
  • Uemura M, Steponkus PL. Effect of cold acclimation on the incidence of two forms of freezing injury in protoplasts isolated from rye leaves. Plant Physiol. 1989 Nov;91(3):1131–1137.[PMC free article] [PubMed] [Google Scholar]
  • Wagner GJ. Content and vacuole/extravacuole distribution of neutral sugars, free amino acids, and anthocyanin in protoplasts. Plant Physiol. 1979 Jul;64(1):88–93.[PMC free article] [PubMed] [Google Scholar]
Field of Botany, Cornell University, Ithaca, New York 14853
Department of Soil, Crop, and Atmospheric Sciences, Cornell University, Ithaca, New York 14853
Present address: Department of Botany and Plant Sciences, University of California, Riverside, CA 92521.
Present address: Department of Biology, Williams College, Williamstown, MA 01267.
Supported, in part, by a grant from the U.S. Department of Energy (DE-FG02-84ER 13214) to P.L. Steponkus. K.L.K. was supported by a National Science Foundation Graduate Fellowship.
Abstract
During cold acclimation of Puma rye (Secale cereale L. cv Puma), the intracellular osmotic potential nearly doubles. During this period, the accumulation of glycinebetaine, proline, and soluble sugars was monitored. The amount of glycinebetaine increased from 290 to 1300 micrograms per gram fresh weight during the 4-week acclimation period. Proline content did not change during the first 3 weeks of acclimation but then increased from 27 to 580 micrograms per gram fresh weight during the next 3 weeks. The total soluble sugar content more than doubled by the second week of cold acclimation, increasing from 11 to 26 milligrams per gram fresh weight. Most of this increase can be attributed to the accumulation of sucrose and raffinose, whose levels increased from 2.4 and 0 to 11 and 5 milligrams per gram fresh weight, respectively. The content of monosaccharides, predominantly glucose, remained at a constant 10 milligrams per gram fresh weight throughout the acclimation period. A comparison of the sugar content of protoplasts versus vacuoles isolated from cold-acclimated leaves revealed that the extravacuolar volume contained monosaccharides, sucrose, and raffinose. Thus, the increased amounts of sucrose and raffinose that occur during cold acclimation are present in compartments external to the vacuole and may contribute to cryoprotection.
Collaboration tool especially designed for Life Science professionals.Drag-and-drop any entity to your messages.