Regulation of NF-E2-related factor 2 signaling for cancer chemoprevention: antioxidant coupled with antiinflammatory.
Journal: 2011/April - Antioxidants and Redox Signaling
ISSN: 1557-7716
Abstract:
Cancer chemoprevention is a process of using either natural or synthetic compounds to reduce the risk of developing cancer. Observations that NF-E2-related factor 2 (Nrf2)-deficient mice lack response to some chemopreventive agents point to the important role of Nrf2 in chemoprevention. Nrf2 is a member of basic-leucine zipper transcription factor family and has been shown to regulate gene expression by binding to a response element, antioxidant responsive element. It is generally believed that activation of Nrf2 signaling is an adaptive response to the environmental and endogenous stresses. Under homeostatic conditions, Nrf2 is suppressed by association with Kelch-like ECH-associated protein 1 (Keap1), but is stimulated upon exposure to oxidative or electrophilic stress. Once activated, Nrf2 translocates into nuclei and upregulates a group of genes that act in concert to combat oxidative stress. Nrf2 is also shown to have protective function against inflammation, a pathological process that could contribute to carcinogenesis. In this review, we will discuss the current progress in the study of Nrf2 signaling, in particular, the mechanisms of Nrf2 activation by chemopreventive agents. We will also discuss some of the potential caveats of Nrf2 in cancer treatment and future opportunity and challenges on regulation of Nrf2-mediated antioxidant and antiinflammatory signaling in the context of cancer prevention.
Relations:
Content
Citations
(61)
References
(182)
Diseases
(1)
Conditions
(1)
Drugs
(1)
Chemicals
(4)
Organisms
(3)
Processes
(6)
Affiliates
(1)
Similar articles
Articles by the same authors
Discussion board
Antioxid Redox Signal 13(11): 1679-1698

Regulation of NF-E2-Related Factor 2 Signaling for Cancer Chemoprevention: Antioxidant Coupled with Antiinflammatory

Department of Physiology, School of Pharmacy, China Pharmaceutical University, Nanjing, China.
Department of Pharmaceutics, Center for Cancer Prevention Research, Ernest-Mario School of Pharmacy, Rutgers, the State University of New Jersey, Piscataway, New Jersey.
Department of Neurosurgery, The Vivian L. Smith Center for Neurologic Research, The University of Texas-Health Science Center at Houston, Houston, Texas.
Corresponding author.
Address correspondence to: Prof. Ah-Ng Tony Kong, Department of Pharmaceutics, Center for Cancer Prevention Research, Ernest-Mario School of Pharmacy, Rutgers, the State University of New Jersey, 160 Frelinghuysen Road, Piscataway, NJ 08854. E-mail:ude.sregtur.ycamrahp@tgnok
Prof. Rong Hu, Department of Physiology, School of Pharmacy, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, China. E-mail:moc.liamtoh@uhlehcim
Dr. Rong Yu, Department of Neurosurgery, The Vivian L. Smith Center for Neurologic Research, The University of Texas-Health Science Center at Houston, 6431 Fannin St., Room 7.134. Houston, TX 77030. E-mail:ude.cmt.htu@uy.gnor
Address correspondence to: Prof. Ah-Ng Tony Kong, Department of Pharmaceutics, Center for Cancer Prevention Research, Ernest-Mario School of Pharmacy, Rutgers, the State University of New Jersey, 160 Frelinghuysen Road, Piscataway, NJ 08854. E-mail:ude.sregtur.ycamrahp@tgnokProf. Rong Hu, Department of Physiology, School of Pharmacy, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, China. E-mail:moc.liamtoh@uhlehcimDr. Rong Yu, Department of Neurosurgery, The Vivian L. Smith Center for Neurologic Research, The University of Texas-Health Science Center at Houston, 6431 Fannin St., Room 7.134. Houston, TX 77030. E-mail:ude.cmt.htu@uy.gnor
Received 2010 Apr 30; Revised 2010 May 8; Accepted 2010 May 9.

Abstract

Cancer chemoprevention is a process of using either natural or synthetic compounds to reduce the risk of developing cancer. Observations that NF-E2-related factor 2 (Nrf2)-deficient mice lack response to some chemopreventive agents point to the important role of Nrf2 in chemoprevention. Nrf2 is a member of basic-leucine zipper transcription factor family and has been shown to regulate gene expression by binding to a response element, antioxidant responsive element. It is generally believed that activation of Nrf2 signaling is an adaptive response to the environmental and endogenous stresses. Under homeostatic conditions, Nrf2 is suppressed by association with Kelch-like ECH-associated protein 1 (Keap1), but is stimulated upon exposure to oxidative or electrophilic stress. Once activated, Nrf2 translocates into nuclei and upregulates a group of genes that act in concert to combat oxidative stress. Nrf2 is also shown to have protective function against inflammation, a pathological process that could contribute to carcinogenesis. In this review, we will discuss the current progress in the study of Nrf2 signaling, in particular, the mechanisms of Nrf2 activation by chemopreventive agents. We will also discuss some of the potential caveats of Nrf2 in cancer treatment and future opportunity and challenges on regulation of Nrf2-mediated antioxidant and antiinflammatory signaling in the context of cancer prevention. Antioxid. Redox Signal. 13, 1679–1698.

Abstract

Abbreviations Used

ACFaberrant crypt foci
AOMazoxymethane
AREantioxidant responsive element
BaPbenzo[a]pyrene
BBNN-nitrosobutyl(4-hydroxybutyl)amine
bNLSbipartite nuclear localization signal at the basic region
BTBbroad complex, tramtrack, and bric a brac
bZipbasic-leucine zipper
CNCCap ’n’ Collar
CRCcolorectal cancer
CTRC-terminal region
D3T3H-1,2-dithiole-3-thione
DGRdouble glycine/Kelch repeat region
DLG(formulated as) L-X-X-Q-D-X-D-L-G
DMBA7,12-dimethylbenz(a)anthracene
DSSdextran sulfate sodium
EGFPgreen fluorescence protein
ERK2extracellular signal-regulated protein kinase 2
ETGE(formulated as) D/N-X-E-T/-S-G-E
fNrf2free-floating Nrf2
gptguanine phosphoribosyltransferase
GSTglutathione S-transferase
HO-1heme oxygenase-1
IQ2-amino-3-methylimidazo[4,5-f]quinoline
IVRintervening region
JNK1c-Jun NH(2)-terminal kinase-1
Keap1Kelch-like ECH-associated protein 1
kNrf2Keap1-binding Nrf2
Mafmusculoaponeurotic fibrosarcoma
MAPKsmitogen-activated protein kinases
NehNrf2-ECH homology
NESnuclear exporting signal
NESTAnuclear exporting signal at transactivation (TA) domain
NESzipnuclear exporting signal in the ZIP dimerization domain
NF-κBnuclear factor-kappa-B
NLSnuclear localization signal
NLSCmonopartite NLS at the carboxyl-terminus
NLSNmonopartite NLS at the amino-terminus
NQO1NAD(P)H:quinone oxidoreductase 1
Nrf2NF-E2-related factor 2
Nrf2 KONrf2 knockout
Nrf2 WTwild-type mice with intact Nrf2 function
NTRN-terminal region
PCaprostate cancer
PERKPKR-like endoplasmic reticulum kinase
PI3Kphosphatidylinositol 3-kinase
PINprostatic intraepithelial neoplasia
PKCprotein kinase C
Rbretinoblastoma
RNSreactive nitrogen species
ROSreactive oxygen species
SFNsulforaphane
SV40simian virus 40
tBHQtert-butylhydroquinone
TPA12-O-tetradecanoylphorbol-13-acetate
TRAMPtransgenic adenocarcinoma mouse prostate
Ububiquitination
UGTUDP-glucuronosyltransferase
Abbreviations Used

References

  • 1. Abate-Shen C. Shen MM. Molecular genetics of prostate cancer. Genes Dev. 2000;14:2410–2434.[PubMed]
  • 2. Adams JM. Cory S. Transgenic models of tumor development. Science. 1991;254:1161–1167.[PubMed]
  • 3. Adhami VM. Siddiqui IA. Ahmad N. Gupta S. Mukhtar H. Oral consumption of green tea polyphenols inhibits insulin-like growth factor-I-induced signaling in an autochthonous mouse model of prostate cancer. Cancer Res. 2004;64:8715–8722.[PubMed]
  • 4. Aggarwal BB. Shishodia S. Molecular targets of dietary agents for prevention and therapy of cancer. Biochem Pharmacol. 2006;71:1397–1421.[PubMed]
  • 5. Aggarwal BB. Van Kuiken ME. Iyer LH. Harikumar KB. Sung B. Molecular targets of nutraceuticals derived from dietary spices: potential role in suppression of inflammation and tumorigenesis. Exp Biol Med (Maywood) 2009;234:825–849.
  • 6. Alam J. Wicks C. Stewart D. Gong P. Touchard C. Otterbein S. Choi AM. Burow ME. Tou J. Mechanism of heme oxygenase-1 gene activation by cadmium in MCF-7 mammary epithelial cells. Role of p38 kinase and Nrf2 transcription factor. J Biol Chem. 2000;275:27694–27702.[PubMed]
  • 7. Aoki Y. Hashimoto AH. Amanuma K. Matsumoto M. Hiyoshi K. Takano H. Masumura K. Itoh K. Nohmi T. Yamamoto M. Enhanced spontaneous and benzo(a)pyrene-induced mutations in the lung of Nrf2-deficient gpt delta mice. Cancer Res. 2007;67:5643–5648.[PubMed]
  • 8. Aoki Y. Sato H. Nishimura N. Takahashi S. Itoh K. Yamamoto M. Accelerated DNA adduct formation in the lung of the Nrf2 knockout mouse exposed to diesel exhaust. Toxicol Appl Pharmacol. 2001;173:154–160.[PubMed]
  • 9. auf dem Keller U. Huber M. Beyer TA. Kumin A. Siemes C. Braun S. Bugnon P. Mitropoulos V. Johnson DA. Johnson JA. Hohl D. Werner S. Nrf transcription factors in keratinocytes are essential for skin tumor prevention but not for wound healing. Mol Cell Biol. 2006;26:3773–3784.
  • 10. Bardia A. Platz EA. Yegnasubramanian S. De Marzo AM. Nelson WG. Anti-inflammatory drugs, antioxidants, and prostate cancer prevention. Curr Opin Pharmacol. 2009;9:419–426.
  • 11. Barve A. Khor TO. Hao X. Keum YS. Yang CS. Reddy B. Kong AN. Murine prostate cancer inhibition by dietary phytochemicals—curcumin and phenyethylisothiocyanate. Pharm Res. 2008;25:2181–2189.
  • 12. Barve A. Khor TO. Nair S. Reuhl K. Suh N. Reddy B. Newmark H. Kong AN. Gamma-tocopherol-enriched mixed tocopherol diet inhibits prostate carcinogenesis in TRAMP mice. Int J Cancer. 2009;124:1693–1699.
  • 13. Berenblum I. Armuth V. Two independent aspects of tumor promotion. Biochim Biophys Acta. 1981;651:51–63.[PubMed]
  • 14. Bertram JSThe molecular biology of cancer. Mol Aspects Med. 2000;21:167–223.[PubMed][Google Scholar]
  • 15. Bloom D. Dhakshinamoorthy S. Jaiswal AK. Site-directed mutagenesis of cysteine to serine in the DNA binding region of Nrf2 decreases its capacity to upregulate antioxidant response element-mediated expression and antioxidant induction of NAD(P)H:quinone oxidoreductase1 gene. Oncogene. 2002;21:2191–2200.[PubMed]
  • 16. Bloom DA. Jaiswal AK. Phosphorylation of Nrf2 at Ser40 by protein kinase C in response to antioxidants leads to the release of Nrf2 from INrf2, but is not required for Nrf2 stabilization/accumulation in the nucleus and transcriptional activation of antioxidant response element-mediated NAD(P)H:quinone oxidoreductase-1 gene expression. J Biol Chem. 2003;278:44675–44682.[PubMed]
  • 17. Bookstein R. Rio P. Madreperla SA. Hong F. Allred C. Grizzle WE. Lee WH. Promoter deletion and loss of retinoblastoma gene expression in human prostate carcinoma. Proc Natl Acad Sci U S A. 1990;87:7762–7766.
  • 18. Bosland MCUse of animal models in defining efficacy of chemoprevention agents against prostate cancer. Eur Urol. 1999;35:459–463.[PubMed][Google Scholar]
  • 19. Brinster RL. Chen HY. Messing A. van Dyke T. Levine AJ. Palmiter RD. Transgenic mice harboring SV40 T-antigen genes develop characteristic brain tumors. Cell. 1984;37:367–379.
  • 20. Chen C. Shen G. Hebbar V. Hu R. Owuor ED. Kong AN. Epigallocatechin-3-gallate-induced stress signals in HT-29 human colon adenocarcinoma cells. Carcinogenesis. 2003;24:1369–1378.[PubMed]
  • 21. Chen ML. Xu PZ. Peng XD. Chen WS. Guzman G. Yang X. Di Cristofano A. Pandolfi PP. Hay N. The deficiency of Akt1 is sufficient to suppress tumor development in Pten +/− mice. Genes Dev. 2006;20:1569–1574.
  • 22. Colburn NH. Kensler TW. Targeting transcription factors for cancer prevention—the case of Nrf2. Cancer Prev Res (Phila Pa) 2008;1:153–155.[PubMed]
  • 23. Corpet DE. Pierre F. Point: from animal models to prevention of colon cancer. Systematic review of chemoprevention in min mice and choice of the model system. Cancer Epidemiol Biomarkers Prev. 2003;12:391–400.
  • 24. Cullinan SB. Diehl JA. PERK-dependent activation of Nrf2 contributes to redox homeostasis and cell survival following endoplasmic reticulum stress. J Biol Chem. 2004;279:20108–20117.[PubMed]
  • 25. Cullinan SB. Gordan JD. Jin J. Harper JW. Diehl JA. The Keap1-BTB protein is an adaptor that bridges Nrf2 to a Cul3-based E3 ligase: oxidative stress sensing by a Cul3-Keap1 ligase. Mol Cell Biol. 2004;24:8477–8486.
  • 26. De Marzo AM. Meeker AK. Zha S. Luo J. Nakayama M. Platz EA. Isaacs WB. Nelson WG. Human prostate cancer precursors and pathobiology. Urology. 2003;62:55–62.[PubMed]
  • 27. de Sousa RR. Queiroz KC. Souza AC. Gurgueira SA. Augusto AC. Miranda MA. Peppelenbosch MP. Ferreira CV. Aoyama H. Phosphoprotein levels, MAPK activities and NFkappaB expression are affected by fisetin. J Enzyme Inhib Med Chem. 2007;22:439–444.[PubMed]
  • 28. Dhakshinamoorthy S. Porter AG. Nitric oxide-induced transcriptional up-regulation of protective genes by Nrf2 via the antioxidant response element counteracts apoptosis of neuroblastoma cells. J Biol Chem. 2004;279:20096–20107.[PubMed]
  • 29. Dinkova-Kostova AT. Holtzclaw WD. Cole RN. Itoh K. Wakabayashi N. Katoh Y. Yamamoto M. Talalay P. Direct evidence that sulfhydryl groups of Keap1 are the sensors regulating induction of phase 2 enzymes that protect against carcinogens and oxidants. Proc Natl Acad Sci U S A. 2002;99:11908–11913.
  • 30. Dixit V. Mak TW. NF-kappaB signaling. Many roads lead to madrid. Cell. 2002;111:615–619.[PubMed]
  • 31. Fahey JW. Haristoy X. Dolan PM. Kensler TW. Scholtus I. Stephenson KK. Talalay P. Lozniewski A. Sulforaphane inhibits extracellular, intracellular, and antibiotic-resistant strains of Helicobacter pylori and prevents benzo[a]pyrene-induced stomach tumors. Proc Natl Acad Sci U S A. 2002;99:7610–7615.
  • 32. Fasso M. Waitz R. Hou Y. Rim T. Greenberg NM. Shastri N. Fong L. Allison JP. SPAS-1 (stimulator of prostatic adenocarcinoma-specific T cells)/SH3GLB2: A prostate tumor antigen identified by CTLA-4 blockade. Proc Natl Acad Sci U S A. 2008;105:3509–3514.
  • 33. Favreau LV. Pickett CB. Transcriptional regulation of the rat NAD(P)H:quinone reductase gene. Identification of regulatory elements controlling basal level expression and inducible expression by planar aromatic compounds and phenolic antioxidants. J Biol Chem. 1991;266:4556–4561.[PubMed]
  • 34. Friling RS. Bensimon A. Tichauer Y. Daniel V. Xenobiotic-inducible expression of murine glutathione S-transferase Ya subunit gene is controlled by an electrophile-responsive element. Proc Natl Acad Sci U S A. 1990;87:6258–6262.
  • 35. Frohlich DA. McCabe MT. Arnold RS. Day ML. The role of Nrf2 in increased reactive oxygen species and DNA damage in prostate tumorigenesis. Oncogene. 2008;27:4353–4362.[PubMed]
  • 36. Furukawa M. Xiong Y. BTB protein Keap1 targets antioxidant transcription factor Nrf2 for ubiquitination by the Cullin 3-Roc1 ligase. Mol Cell Biol. 2005;25:162–171.
  • 37. Gao H. Ouyang X. Banach-Petrosky WA. Gerald WL. Shen MM. Abate-Shen C. Combinatorial activities of Akt and B-Raf/Erk signaling in a mouse model of androgen-independent prostate cancer. Proc Natl Acad Sci U S A. 2006;103:14477–14482.
  • 38. Gingrich JR. Barrios RJ. Kattan MW. Nahm HS. Finegold MJ. Greenberg NM. Androgen-independent prostate cancer progression in the TRAMP model. Cancer Res. 1997;57:4687–4691.[PubMed]
  • 39. Gingrich JR. Barrios RJ. Morton RA. Boyce BF. DeMayo FJ. Finegold MJ. Angelopoulou R. Rosen JM. Greenberg NM. Metastatic prostate cancer in a transgenic mouse. Cancer Res. 1996;56:4096–4102.[PubMed]
  • 40. Greenberg NM. DeMayo F. Finegold MJ. Medina D. Tilley WD. Aspinall JO. Cunha GR. Donjacour AA. Matusik RJ. Rosen JM. Prostate cancer in a transgenic mouse. Proc Natl Acad Sci U S A. 1995;92:3439–3443.
  • 41. Greenberg NM. DeMayo FJ. Sheppard PC. Barrios R. Lebovitz R. Finegold M. Angelopoulou R. Dodd JG. Duckworth ML. Rosen JM, et al. The rat probasin gene promoter directs hormonally and developmentally regulated expression of a heterologous gene specifically to the prostate in transgenic mice. Mol Endocrinol. 1994;8:230–239.[PubMed]
  • 42. Gupta S. Adhami VM. Subbarayan M. MacLennan GT. Lewin JS. Hafeli UO. Fu P. Mukhtar H. Suppression of prostate carcinogenesis by dietary supplementation of celecoxib in transgenic adenocarcinoma of the mouse prostate model. Cancer Res. 2004;64:3334–3343.[PubMed]
  • 43. Gupta S. Ahmad N. Marengo SR. MacLennan GT. Greenberg NM. Mukhtar H. Chemoprevention of prostate carcinogenesis by alpha-difluoromethylornithine in TRAMP mice. Cancer Res. 2000;60:5125–5133.[PubMed]
  • 44. Gupta S. Hastak K. Ahmad N. Lewin JS. Mukhtar H. Inhibition of prostate carcinogenesis in TRAMP mice by oral infusion of green tea polyphenols. Proc Natl Acad Sci U S A. 2001;98:10350–10355.
  • 45. Hanahan DOncogenes in transgenic mice. Nature. 1984;312:503–504.[PubMed][Google Scholar]
  • 46. Hatcher H. Planalp R. Cho J. Torti FM. Torti SV. Curcumin: from ancient medicine to current clinical trials. Cell Mol Life Sci. 2008;65:1631–1652.
  • 47. Heidelberger C. Freeman AE. Pienta RJ. Sivak A. Bertram JS. Casto BC. Dunkel VC. Francis MW. Kakunaga T. Little JB. Schechtman LM. Cell transformation by chemical agents—a review and analysis of the literature. A report of the U.S. Environmental Protection Agency Gene-Tox Program. Mutat Res. 1983;114:283–385.[PubMed]
  • 48. Hong F. Sekhar KR. Freeman ML. Liebler DC. Specific patterns of electrophile adduction trigger Keap1 ubiquitination and Nrf2 activation. J Biol Chem. 2005;280:31768–31775.[PubMed]
  • 49. Hong WK. Sporn MB. Recent advances in chemoprevention of cancer. Science. 1997;278:1073–1077.[PubMed]
  • 50. Hsu CH. Cheng AL. Clinical studies with curcumin. Adv Exp Med Biol. 2007;595:471–480.[PubMed]
  • 51. Hu R. Kong AN. Activation of MAP kinases, apoptosis and nutrigenomics of gene expression elicited by dietary cancer-prevention compounds. Nutrition. 2004;20:83–88.[PubMed]
  • 52. Huang HC. Nguyen T. Pickett CB. Regulation of the antioxidant response element by protein kinase C-mediated phosphorylation of NF-E2-related factor 2. Proc Natl Acad Sci U S A. 2000;97:12475–12480.
  • 53. Huang HC. Nguyen T. Pickett CB. Phosphorylation of Nrf2 at Ser-40 by protein kinase C regulates antioxidant response element-mediated transcription. J Biol Chem. 2002;277:42769–42774.[PubMed]
  • 54. Hunt TL. Luce BR. Page MJ. Pokrzywinski R. Willingness to pay for cancer prevention. Pharmacoeconomics. 2009;27:299–312.[PubMed]
  • 55. Hurwitz AA. Foster BA. Kwon ED. Truong T. Choi EM. Greenberg NM. Burg MB. Allison JP. Combination immunotherapy of primary prostate cancer in a transgenic mouse model using CTLA-4 blockade. Cancer Res. 2000;60:2444–2448.[PubMed]
  • 56. Iida K. Itoh K. Kumagai Y. Oyasu R. Hattori K. Kawai K. Shimazui T. Akaza H. Yamamoto M. Nrf2 is essential for the chemopreventive efficacy of oltipraz against urinary bladder carcinogenesis. Cancer Res. 2004;64:6424–6431.[PubMed]
  • 57. Ishii T. Itoh K. Sato H. Bannai S. Oxidative stress-inducible proteins in macrophages. Free Radic Res. 1999;31:351–355.[PubMed]
  • 58. Itoh K. Chiba T. Takahashi S. Ishii T. Igarashi K. Katoh Y. Oyake T. Hayashi N. Satoh K. Hatayama I. Yamamoto M. Nabeshima Y. An Nrf2/small Maf heterodimer mediates the induction of phase II detoxifying enzyme genes through antioxidant response elements. Biochem Biophys Res Commun. 1997;236:313–322.[PubMed]
  • 59. Itoh K. Igarashi K. Hayashi N. Nishizawa M. Yamamoto M. Cloning and characterization of a novel erythroid cell-derived CNC family transcription factor heterodimerizing with the small Maf family proteins. Mol Cell Biol. 1995;15:4184–4193.
  • 60. Itoh K. Tong KI. Yamamoto M. Molecular mechanism activating Nrf2-Keap1 pathway in regulation of adaptive response to electrophiles. Free Radic Biol Med. 2004;36:1208–1213.[PubMed]
  • 61. Itoh K. Wakabayashi N. Katoh Y. Ishii T. Igarashi K. Engel JD. Yamamoto M. Keap1 represses nuclear activation of antioxidant responsive elements by Nrf2 through binding to the amino-terminal Neh2 domain. Genes Dev. 1999;13:76–86.
  • 62. Jain AK. Bloom DA. Jaiswal AK. Nuclear import and export signals in control of Nrf2. J Biol Chem. 2005;280:29158–29168.[PubMed]
  • 63. Jakubikova J. Sedlak J. Mithen R. Bao Y. Role of PI3K/Akt and MEK/ERK signaling pathways in sulforaphane- and erucin-induced phase II enzymes and MRP2 transcription, G2/M arrest and cell death in Caco-2 cells. Biochem Pharmacol. 2005;69:1543–1552.[PubMed]
  • 64. Jemal A. Siegel R. Ward E. Hao Y. Xu J. Thun MJ. Cancer statistics, 2009. CA Cancer J Clin. 2009;59:225–249.[PubMed]
  • 65. Jeong WS. Jun M. Kong AN. Nrf2: a potential molecular target for cancer chemoprevention by natural compounds. Antioxid Redox Signal. 2006;8:99–106.[PubMed]
  • 66. Juge N. Mithen RF. Traka M. Molecular basis for chemoprevention by sulforaphane: a comprehensive review. Cell Mol Life Sci. 2007;64:1105–1127.[PubMed]
  • 67. Kakizoe TChemoprevention of cancer—focusing on clinical trials. Jpn J Clin Oncol. 2003;33:421–442.[PubMed][Google Scholar]
  • 68. Kang KW. Choi SH. Kim SG. Peroxynitrite activates NF-E2-related factor 2/antioxidant response element through the pathway of phosphatidylinositol 3-kinase: the role of nitric oxide synthase in rat glutathione S-transferase A2 induction. Nitric Oxide. 2002;7:244–253.[PubMed]
  • 69. Kang KW. Lee SJ. Park JW. Kim SG. Phosphatidylinositol 3-kinase regulates nuclear translocation of NF-E2-related factor 2 through actin rearrangement in response to oxidative stress. Mol Pharmacol. 2002;62:1001–1010.[PubMed]
  • 70. Kang MI. Kobayashi A. Wakabayashi N. Kim SG. Yamamoto M. Scaffolding of Keap1 to the actin cytoskeleton controls the function of Nrf2 as key regulator of cytoprotective phase 2 genes. Proc Natl Acad Sci U S A. 2004;101:2046–2051.
  • 71. Kaplan-Lefko PJ. Chen TM. Ittmann MM. Barrios RJ. Ayala GE. Huss WJ. Maddison LA. Foster BA. Greenberg NM. Pathobiology of autochthonous prostate cancer in a pre-clinical transgenic mouse model. Prostate. 2003;55:219–237.[PubMed]
  • 72. Karapetian RN. Evstafieva AG. Abaeva IS. Chichkova NV. Filonov GS. Rubtsov YP. Sukhacheva EA. Melnikov SV. Schneider U. Wanker EE. Vartapetian AB. Nuclear oncoprotein prothymosin alpha is a partner of Keap1: implications for expression of oxidative stress-protecting genes. Mol Cell Biol. 2005;25:1089–1099.
  • 73. Katoh Y. Iida K. Kang MI. Kobayashi A. Mizukami M. Tong KI. McMahon M. Hayes JD. Itoh K. Yamamoto M. Evolutionary conserved N-terminal domain of Nrf2 is essential for the Keap1-mediated degradation of the protein by proteasome. Arch Biochem Biophys. 2005;433:342–350.[PubMed]
  • 74. Katoh Y. Itoh K. Yoshida E. Miyagishi M. Fukamizu A. Yamamoto M. Two domains of Nrf2 cooperatively bind CBP, a CREB binding protein, and synergistically activate transcription. Genes Cells. 2001;6:857–868.[PubMed]
  • 75. Kelloff GJ. Crowell JA. Steele VE. Lubet RA. Boone CW. Malone WA. Hawk ET. Lieberman R. Lawrence JA. Kopelovich L. Ali I. Viner JL. Sigman CC. Progress in cancer chemoprevention. Ann N Y Acad Sci. 1999;889:1–13.[PubMed]
  • 76. Kelloff GJ. Lieberman R. Steele VE. Boone CW. Lubet RA. Kopelovich L. Malone WA. Crowell JA. Higley HR. Sigman CC. Agents, biomarkers, and cohorts for chemopreventive agent development in prostate cancer. Urology. 2001;57:46–51.[PubMed]
  • 77. Kensler TW. Curphey TJ. Maxiutenko Y. Roebuck BD. Chemoprotection by organosulfur inducers of phase 2 enzymes: dithiolethiones and dithiins. Drug Metabol Drug Interact. 2000;17:3–22.[PubMed]
  • 78. Keum YS. Khor TO. Lin W. Shen G. Kwon KH. Barve A. Li W. Kong AN. Pharmacokinetics and pharmacodynamics of broccoli sprouts on the suppression of prostate cancer in transgenic adenocarcinoma of mouse prostate (TRAMP) mice: implication of induction of Nrf2, HO-1 and apoptosis and the suppression of Akt-dependent kinase pathway. Pharm Res. 2009;26:2324–2331.[PubMed]
  • 79. Keum YS. Yu S. Chang PP. Yuan X. Kim JH. Xu C. Han J. Agarwal A. Kong AN. Mechanism of action of sulforaphane: inhibition of p38 mitogen-activated protein kinase isoforms contributing to the induction of antioxidant response element-mediated heme oxygenase-1 in human hepatoma HepG2 cells. Cancer Res. 2006;66:8804–8813.[PubMed]
  • 80. Khor TO. Huang MT. Kwon KH. Chan JY. Reddy BS. Kong AN. Nrf2-deficient mice have an increased susceptibility to dextran sulfate sodium-induced colitis. Cancer Res. 2006;66:11580–11584.[PubMed]
  • 81. Khor TO. Huang MT. Prawan A. Liu Y. Hao X. Yu S. Cheung WK. Chan JY. Reddy BS. Yang CS. Kong AN. Increased susceptibility of Nrf2 knockout mice to colitis-associated colorectal cancer. Cancer Prev Res (Phila Pa) 2008;1:187–191.
  • 82. Khor TO. Yu S. Kong AN. Dietary cancer chemopreventive agents—targeting inflammation and Nrf2 signaling pathway. Planta Med. 2008;74:1540–1547.[PubMed]
  • 83. Kim J. Cha YN. Surh YJ. A protective role of nuclear erythroid 2-related factor-2 (Nrf2) in inflammatory disorders. Mutat Res. 2009 Sep 30; [Epub ahead of print]. [[PubMed]
  • 84. Kim SG. Cho MK. Choi SH. Kim HJ. Kwak MK. Kim ND. Molecular basis for hepatic detoxifying enzyme induction by 2-(allylthio)pyrazine in rats in comparison with oltipraz: effects on prooxidant production and DNA degradation. Drug Metab Dispos. 1999;27:667–673.[PubMed]
  • 85. Kitamura Y. Umemura T. Kanki K. Kodama Y. Kitamoto S. Saito K. Itoh K. Yamamoto M. Masegi T. Nishikawa A. Hirose M. Increased susceptibility to hepatocarcinogenicity of Nrf2-deficient mice exposed to 2-amino-3-methylimidazo[4,5-f ]quinoline. Cancer Sci. 2007;98:19–24.[PubMed]
  • 86. Klein EA. Thompson IM. Update on chemoprevention of prostate cancer. Curr Opin Urol. 2004;14:143–149.[PubMed]
  • 87. Kobayashi A. Kang MI. Okawa H. Ohtsuji M. Zenke Y. Chiba T. Igarashi K. Yamamoto M. Oxidative stress sensor Keap1 functions as an adaptor for Cul3-based E3 ligase to regulate proteasomal degradation of Nrf2. Mol Cell Biol. 2004;24:7130–7139.
  • 88. Kobayashi A. Kang MI. Watai Y. Tong KI. Shibata T. Uchida K. Yamamoto M. Oxidative and electrophilic stresses activate Nrf2 through inhibition of ubiquitination activity of Keap1. Mol Cell Biol. 2006;26:221–229.
  • 89. Kobayashi M. Itoh K. Suzuki T. Osanai H. Nishikawa K. Katoh Y. Takagi Y. Yamamoto M. Identification of the interactive interface and phylogenic conservation of the Nrf2-Keap1 system. Genes Cells. 2002;7:807–820.[PubMed]
  • 90. Kobayashi M. Li L. Iwamoto N. Nakajima-Takagi Y. Kaneko H. Nakayama Y. Eguchi M. Wada Y. Kumagai Y. Yamamoto M. The antioxidant defense system Keap1-Nrf2 comprises a multiple sensing mechanism for responding to a wide range of chemical compounds. Mol Cell Biol. 2009;29:493–502.
  • 91. Kucuk OChemoprevention of prostate cancer. Cancer Metastasis Rev. 2002;21:111–124.[PubMed][Google Scholar]
  • 92. Kwak MK. Egner PA. Dolan PM. Ramos-Gomez M. Groopman JD. Itoh K. Yamamoto M. Kensler TW. Role of phase 2 enzyme induction in chemoprotection by dithiolethiones. Mutat Res. 2001;480–481:305–315.[PubMed]
  • 93. Kwak MK. Itoh K. Yamamoto M. Sutter TR. Kensler TW. Role of transcription factor Nrf2 in the induction of hepatic phase 2 and antioxidative enzymes in vivo by the cancer chemoprotective agent, 3H-1, 2-dimethiole-3-thione. Mol Med. 2001;7:135–145.
  • 94. Kwak MK. Kensler TW. Targeting NRF2 signaling for cancer chemoprevention. Toxicol Appl Pharmacol. 2010;244:66–76.
  • 95. Kwak MK. Ramos-Gomez M. Wakabayashi N. Kensler TW. Chemoprevention by 1,2-dithiole-3-thiones through induction of NQO1 and other phase 2 enzymes. Methods Enzymol. 2004;382:414–423.[PubMed]
  • 96. Landis SH. Murray T. Bolden S. Wingo PA. Cancer statistics, 1999. CA Cancer J Clin. 1999;49:8–31. 1. [[PubMed]
  • 97. Lau A. Villeneuve NF. Sun Z. Wong PK. Zhang DD. Dual roles of Nrf2 in cancer. Pharmacol Res. 2008;58:262–270.
  • 98. Leach DR. Krummel MF. Allison JP. Enhancement of antitumor immunity by CTLA-4 blockade. Science. 1996;271:1734–1736.[PubMed]
  • 99. Lee JM. Hanson JM. Chu WA. Johnson JA. Phosphatidylinositol 3-kinase, not extracellular signal-regulated kinase, regulates activation of the antioxidant-responsive element in IMR-32 human neuroblastoma cells. J Biol Chem. 2001;276:20011–20016.[PubMed]
  • 100. Li W. Jain MR. Chen C. Yue X. Hebbar V. Zhou R. Kong AN. Nrf2 Possesses a redox-insensitive nuclear export signal overlapping with the leucine zipper motif. J Biol Chem. 2005;280:28430–28438.[PubMed]
  • 101. Li W. Khor TO. Xu C. Shen G. Jeong WS. Yu S. Kong AN. Activation of Nrf2-antioxidant signaling attenuates NFkappaB-inflammatory response and elicits apoptosis. Biochem Pharmacol. 2008;76:1485–1489.
  • 102. Li W. Kong AN. Molecular mechanisms of Nrf2-mediated antioxidant response. Mol Carcinog. 2009;48:91–104.
  • 103. Li W. Yu SW. Kong AN. Nrf2 possesses a redox-sensitive nuclear exporting signal in the Neh5 transactivation domain. J Biol Chem. 2006;281:27251–27263.[PubMed]
  • 104. Lipkin M. Reddy B. Newmark H. Lamprecht SA. Dietary factors in human colorectal cancer. Annu Rev Nutr. 1999;19:545–586.[PubMed]
  • 105. Mantovani A. Allavena P. Sica A. Balkwill F. Cancer-related inflammation. Nature. 2008;454:436–444.[PubMed]
  • 106. McConnell BB. Yang VW. The role of inflammation in the pathogenesis of colorectal cancer. Curr Colorectal Cancer Rep. 2009;5:69–74.
  • 107. McMahon M. Thomas N. Itoh K. Yamamoto M. Hayes JD. Redox-regulated turnover of Nrf2 is determined by at least two separate protein domains, the redox-sensitive Neh2 degron and the redox-insensitive Neh6 degron. J Biol Chem. 2004;279:31556–31567.[PubMed]
  • 108. Moi P. Chan K. Asunis I. Cao A. Kan YW. Isolation of NF-E2-related factor 2 (Nrf2), a NF-E2-like basic leucine zipper transcriptional activator that binds to the tandem NF-E2/AP1 repeat of the beta-globin locus control region. Proc Natl Acad Sci U S A. 1994;91:9926–9930.
  • 109. Motohashi H. Yamamoto M. Nrf2-Keap1 defines a physiologically important stress response mechanism. Trends Mol Med. 2004;10:549–557.[PubMed]
  • 110. Murakami A. Song M. Ohigashi H. Phenethyl isothiocyanate suppresses receptor activator of NF-kappaB ligand (RANKL)-induced osteoclastogenesis by blocking activation of ERK1/2 and p38 MAPK in RAW264.7 macrophages. Biofactors. 2007;30:1–11.[PubMed]
  • 111. Nair S. Doh ST. Chan JY. Kong AN. Cai L. Regulatory potential for concerted modulation of Nrf2- and Nfkb1-mediated gene expression in inflammation and carcinogenesis. Br J Cancer. 2008;99:2070–2082.
  • 112. Nair S. Li W. Kong AN. Natural dietary anti-cancer chemopreventive compounds: redox-mediated differential signaling mechanisms in cytoprotection of normal cells versus cytotoxicity in tumor cells. Acta Pharmacol Sin. 2007;28:459–472.[PubMed]
  • 113. Nakaso K. Yano H. Fukuhara Y. Takeshima T. Wada-Isoe K. Nakashima K. PI3K is a key molecule in the Nrf2-mediated regulation of antioxidative proteins by hemin in human neuroblastoma cells. FEBS Lett. 2003;546:181–184.[PubMed]
  • 114. Narayanan BA. Narayanan NK. Pittman B. Reddy BS. Regression of mouse prostatic intraepithelial neoplasia by nonsteroidal anti-inflammatory drugs in the transgenic adenocarcinoma mouse prostate model. Clin Cancer Res. 2004;10:7727–7737.[PubMed]
  • 115. Nelson WGAgents in development for prostate cancer prevention. Expert Opin Investig Drugs. 2004;13:1541–1554.[PubMed][Google Scholar]
  • 116. Nelson WG. De Marzo AM. DeWeese TL. Isaacs WB. The role of inflammation in the pathogenesis of prostate cancer. J Urol. 2004;172:S6–S11. discussion S-2. [[PubMed]
  • 117. Nelson WG. De Marzo AM. Isaacs WB. Prostate cancer. N Engl J Med. 2003;349:366–381.[PubMed]
  • 118. Nioi P. Nguyen T. Sherratt PJ. Pickett CB. The carboxy-terminal Neh3 domain of Nrf2 is required for transcriptional activation. Mol Cell Biol. 2005;25:10895–10906.
  • 119. Numazawa S. Ishikawa M. Yoshida A. Tanaka S. Yoshida T. Atypical protein kinase C mediates activation of NF-E2-related factor 2 in response to oxidative stress. Am J Physiol Cell Physiol. 2003;285:C334–C342.[PubMed]
  • 120. Ogura T. Tong KI. Mio K. Maruyama Y. Kurokawa H. Sato C. Yamamoto M. Keap1 is a forked-stem dimer structure with two large spheres enclosing the intervening, double glycine repeat, and C-terminal domains. Proc Natl Acad Sci U S A. 2010;107:2842–2847.
  • 121. Okawa H. Motohashi H. Kobayashi A. Aburatani H. Kensler TW. Yamamoto M. Hepatocyte-specific deletion of the keap1 gene activates Nrf2 and confers potent resistance against acute drug toxicity. Biochem Biophys Res Commun. 2006;339:79–88.[PubMed]
  • 122. Osburn WO. Karim B. Dolan PM. Liu G. Yamamoto M. Huso DL. Kensler TW. Increased colonic inflammatory injury and formation of aberrant crypt foci in Nrf2-deficient mice upon dextran sulfate treatment. Int J Cancer. 2007;121:1883–1891.[PubMed]
  • 123. Osburn WO. Wakabayashi N. Misra V. Nilles T. Biswal S. Trush MA. Kensler TW. Nrf2 regulates an adaptive response protecting against oxidative damage following diquat-mediated formation of superoxide anion. Arch Biochem Biophys. 2006;454:7–15.
  • 124. Palapattu GS. Sutcliffe S. Bastian PJ. Platz EA. De Marzo AM. Isaacs WB. Nelson WG. Prostate carcinogenesis and inflammation: emerging insights. Carcinogenesis. 2005;26:1170–1181.[PubMed]
  • 125. Paolini M. Perocco P. Canistro D. Valgimigli L. Pedulli GF. Iori R. Croce CD. Cantelli-Forti G. Legator MS. Abdel-Rahman SZ. Induction of cytochrome P450, generation of oxidative stress and in vitro cell-transforming and DNA-damaging activities by glucoraphanin, the bioprecursor of the chemopreventive agent sulforaphane found in broccoli. Carcinogenesis. 2004;25:61–67.[PubMed]
  • 126. Park EY. Kim SG. NO signaling in ARE-mediated gene expression. Methods Enzymol. 2005;396:341–349.[PubMed]
  • 127. Pomerantz JL. Baltimore D. Two pathways to NF-kappaB. Mol Cell. 2002;10:693–695.[PubMed]
  • 128. Prestera T. Holtzclaw WD. Zhang Y. Talalay P. Chemical and molecular regulation of enzymes that detoxify carcinogens. Proc Natl Acad Sci U S A. 1993;90:2965–2969.
  • 129. Purdom-Dickinson S. Sheveleva E. Sun H. Chen QM. Translational control of Nrf2 protein in activation of antioxidant response by oxidants. Mol Pharmacol. 2007;72:1074–1081.[PubMed]
  • 130. Raghow S. Hooshdaran MZ. Katiyar S. Steiner MS. Toremifene prevents prostate cancer in the transgenic adenocarcinoma of mouse prostate model. Cancer Res. 2002;62:1370–1376.[PubMed]
  • 131. Raina K. Rajamanickam S. Singh RP. Deep G. Chittezhath M. Agarwal R. Stage-specific inhibitory effects and associated mechanisms of silibinin on tumor progression and metastasis in transgenic adenocarcinoma of the mouse prostate model. Cancer Res. 2008;68:6822–6830.
  • 132. Ramos-Gomez M. Dolan PM. Itoh K. Yamamoto M. Kensler TW. Interactive effects of nrf2 genotype and oltipraz on benzo[a]pyrene-DNA adducts and tumor yield in mice. Carcinogenesis. 2003;24:461–467.[PubMed]
  • 133. Ramos-Gomez M. Kwak MK. Dolan PM. Itoh K. Yamamoto M. Talalay P. Kensler TW. Sensitivity to carcinogenesis is increased and chemoprotective efficacy of enzyme inducers is lost in nrf2 transcription factor-deficient mice. Proc Natl Acad Sci U S A. 2001;98:3410–3415.
  • 134. Reddy BSStudies with the azoxymethane-rat preclinical model for assessing colon tumor development and chemoprevention. Environ Mol Mutagen. 2004;44:26–35.[PubMed][Google Scholar]
  • 135. Rubin SJ. Hallahan DE. Ashman CR. Brachman DG. Beckett MA. Virudachalam S. Yandell DW. Weichselbaum RR. Two prostate carcinoma cell lines demonstrate abnormalities in tumor suppressor genes. J Surg Oncol. 1991;46:31–36.[PubMed]
  • 136. Rushmore TH. Pickett CB. Transcriptional regulation of the rat glutathione S-transferase Ya subunit gene. Characterization of a xenobiotic-responsive element controlling inducible expression by phenolic antioxidants. J Biol Chem. 1990;265:14648–14653.[PubMed]
  • 137. Shen G. Hebbar V. Nair S. Xu C. Li W. Lin W. Keum YS. Han J. Gallo MA. Kong AN. Regulation of Nrf2 transactivation domain activity. The differential effects of mitogen-activated protein kinase cascades and synergistic stimulatory effect of Raf and CREB-binding protein. J Biol Chem. 2004;279:23052–23060.[PubMed]
  • 138. Shen G. Jeong WS. Hu R. Kong AN. Regulation of Nrf2, NF-kappaB, and AP-1 signaling pathways by chemopreventive agents. Antioxid Redox Signal. 2005;7:1648–1663.[PubMed]
  • 139. Singh A. Jones RF. Friedman H. Hathir S. Soos G. Zabo A. Haas GP. Expression of p53 and pRb in bladder and prostate cancers of patients having both cancers. Anticancer Res. 1999;19:5415–5417.[PubMed]
  • 140. Smith TJ. Hong JY. Wang ZY. Yang CS. How can carcinogenesis be inhibited? Ann N Y Acad Sci. 1995;768:82–90.[PubMed]
  • 141. Sporn MBApproaches to prevention of epithelial cancer during the preneoplastic period. Cancer Res. 1976;36:2699–2702.[PubMed][Google Scholar]
  • 142. Sun Z. Chin YE. Zhang DD. Acetylation of Nrf2 by p300/CBP augments promoter-specific DNA binding of Nrf2 during the antioxidant response. Mol Cell Biol. 2009;29:2658–2672.
  • 143. Surh YJCancer chemoprevention with dietary phytochemicals. Nat Rev Cancer. 2003;3:768–780.[PubMed][Google Scholar]
  • 144. Svehlikova V. Wang S. Jakubikova J. Williamson G. Mithen R. Bao Y. Interactions between sulforaphane and apigenin in the induction of UGT1A1 and GSTA1 in CaCo-2 cells. Carcinogenesis. 2004;25:1629–1637.[PubMed]
  • 145. Tanigawa S. Fujii M. Hou DX. Action of Nrf2 and Keap1 in ARE-mediated NQO1 expression by quercetin. Free Radic Biol Med. 2007;42:1690–1703.[PubMed]
  • 146. Theodore M. Kawai Y. Yang J. Kleshchenko Y. Reddy SP. Villalta F. Arinze IJ. Multiple nuclear localization signals function in the nuclear import of the transcription factor Nrf2. J Biol Chem. 2008;283:8984–8994.
  • 147. Tominaga S. Kuroishi T. An ecological study on diet/nutrition and cancer in Japan. Int J Cancer Suppl. 1997;10:2–6.[PubMed]
  • 148. Tong KI. Katoh Y. Kusunoki H. Itoh K. Tanaka T. Yamamoto M. Keap1 recruits Neh2 through binding to ETGE and DLG motifs: characterization of the two-site molecular recognition model. Mol Cell Biol. 2006;26:2887–2900.
  • 149. Tong KI. Kobayashi A. Katsuoka F. Yamamoto M. Two-site substrate recognition model for the Keap1-Nrf2 system: a hinge and latch mechanism. Biol Chem. 2006;387:1311–1320.[PubMed]
  • 150. Tong KI. Padmanabhan B. Kobayashi A. Shang C. Hirotsu Y. Yokoyama S. Yamamoto M. Different electrostatic potentials define ETGE and DLG motifs as hinge and latch in oxidative stress response. Mol Cell Biol. 2007;27:7511–7521.
  • 151. Trotman LC. Alimonti A. Scaglioni PP. Koutcher JA. Cordon-Cardo C. Pandolfi PP. Identification of a tumour suppressor network opposing nuclear Akt function. Nature. 2006;441:523–527.
  • 152. Tzeng YJ. Guhl E. Graessmann M. Graessmann A. Breast cancer formation in transgenic animals induced by the whey acidic protein SV40 T antigen (WAP-SV-T) hybrid gene. Oncogene. 1993;8:1965–1971.[PubMed]
  • 153. Velichkova M. Guttman J. Warren C. Eng L. Kline K. Vogl AW. Hasson T. A human homologue of Drosophila kelch associates with myosin-VIIa in specialized adhesion junctions. Cell Motil Cytoskeleton. 2002;51:147–164.[PubMed]
  • 154. Velichkova M. Hasson T. Keap1 regulates the oxidation-sensitive shuttling of Nrf2 into and out of the nucleus via a Crm1-dependent nuclear export mechanism. Mol Cell Biol. 2005;25:4501–4513.
  • 155. Wada T. Penninger JM. Mitogen-activated protein kinases in apoptosis regulation. Oncogene. 2004;23:2838–2849.[PubMed]
  • 156. Wakabayashi N. Dinkova-Kostova AT. Holtzclaw WD. Kang MI. Kobayashi A. Yamamoto M. Kensler TW. Talalay P. Protection against electrophile and oxidant stress by induction of the phase 2 response: fate of cysteines of the Keap1 sensor modified by inducers. Proc Natl Acad Sci U S A. 2004;101:2040–2045.
  • 157. Wakabayashi N. Itoh K. Wakabayashi J. Motohashi H. Noda S. Takahashi S. Imakado S. Kotsuji T. Otsuka F. Roop DR. Harada T. Engel JD. Yamamoto M. Keap1-null mutation leads to postnatal lethality due to constitutive Nrf2 activation. Nat Genet. 2003;35:238–245.[PubMed]
  • 158. Wang J. Eltoum IE. Lamartiniere CA. Genistein alters growth factor signaling in transgenic prostate model (TRAMP) Mol Cell Endocrinol. 2004;219:171–180.[PubMed]
  • 159. Wang L. Bonorden MJ. Li GX. Lee HJ. Hu H. Zhang Y. Liao JD. Cleary MP. Lu J. Methyl-selenium compounds inhibit prostate carcinogenesis in the transgenic adenocarcinoma of mouse prostate model with survival benefit. Cancer Prev Res (Phila Pa) 2009;2:484–495.
  • 160. Wang X. Deng H. Basu I. Zhu L. Induction of androgen receptor-dependent apoptosis in prostate cancer cells by the retinoblastoma protein. Cancer Res. 2004;64:1377–1385.[PubMed]
  • 161. Wattenberg LWChemoprevention of cancer. Cancer Res. 1985;45:1–8.[PubMed][Google Scholar]
  • 162. Wattenberg LWWhat are the critical attributes for cancer chemopreventive agents? Ann N Y Acad Sci. 1995;768:73–81.[PubMed][Google Scholar]
  • 163. Wechter WJ. Leipold DD. Murray ED., Jr. Quiggle D. McCracken JD. Barrios RS. Greenberg NM. E-7869 (R-flurbiprofen) inhibits progression of prostate cancer in the TRAMP mouse. Cancer Res. 2000;60:2203–2208.[PubMed]
  • 164. Wilson LA. Gemin A. Espiritu R. Singh G. ets-1 is transcriptionally up-regulated by H2O2 via an antioxidant response element. FASEB J. 2005;19:2085–2087.[PubMed]
  • 165. Wingo PA. Cardinez CJ. Landis SH. Greenlee RT. Ries LA. Anderson RN. Thun MJ. Long-term trends in cancer mortality in the United States, 1930–1998. Cancer. 2003;97:3133–3275.[PubMed]
  • 166. Xu C. Huang MT. Shen G. Yuan X. Lin W. Khor TO. Conney AH. Kong AN. Inhibition of 7,12-dimethylbenz(a)anthracene-induced skin tumorigenesis in C57BL/6 mice by sulforaphane is mediated by nuclear factor E2-related factor 2. Cancer Res. 2006;66:8293–8296.[PubMed]
  • 167. Xu C. Yuan X. Pan Z. Shen G. Kim JH. Yu S. Khor TO. Li W. Ma J. Kong AN. Mechanism of action of isothiocyanates: the induction of ARE-regulated genes is associated with activation of ERK and JNK and the phosphorylation and nuclear translocation of Nrf2. Mol Cancer Ther. 2006;5:1918–1926.[PubMed]
  • 168. Yamamoto T. Suzuki T. Kobayashi A. Wakabayashi J. Maher J. Motohashi H. Yamamoto M. Physiological significance of reactive cysteine residues of Keap1 in determining Nrf2 activity. Mol Cell Biol. 2008;28:2758–2770.
  • 169. Yang CX. Kuroishi T. Huang XE. Inoue M. Tajima K. Correlation between food consumption and colorectal cancer: an ecological analysis in Japan. Asian Pac J Cancer Prev. 2002;3:77–83.[PubMed]
  • 170. Yu R. Chen C. Mo YY. Hebbar V. Owuor ED. Tan TH. Kong AN. Activation of mitogen-activated protein kinase pathways induces antioxidant response element-mediated gene expression via a Nrf2-dependent mechanism. J Biol Chem. 2000;275:39907–39913.[PubMed]
  • 171. Yu R. Lei W. Mandlekar S. Weber MJ. Der CJ. Wu J. Kong AN. Role of a mitogen-activated protein kinase pathway in the induction of phase II detoxifying enzymes by chemicals. J Biol Chem. 1999;274:27545–27552.[PubMed]
  • 172. Yu R. Mandlekar S. Lei W. Fahl WE. Tan TH. Kong AN. p38 mitogen-activated protein kinase negatively regulates the induction of phase II drug-metabolizing enzymes that detoxify carcinogens. J Biol Chem. 2000;275:2322–2327.[PubMed]
  • 173. Yu S. Khor TO. Cheung KL. Li W. Wu TY. Ying H. Foster BA. Kan YW. Kong AN. Nrf2 expression is regulated by epigenetic mechanisms in prostate cancer of TRAMP mice. PLoS One. 2010;5:e8579.
  • 174. Yu S. Kong AN. Targeting carcinogen metabolism by dietary cancer preventive compounds. Curr Cancer Drug Targets. 2007;7:416–424.[PubMed]
  • 175. Yuan X. Xu C. Pan Z. Keum YS. Kim JH. Shen G. Yu S. Oo KT. Ma J. Kong AN. Butylated hydroxyanisole regulates ARE-mediated gene expression via Nrf2 coupled with ERK and JNK signaling pathway in HepG2 cells. Mol Carcinog. 2006;45:841–850.[PubMed]
  • 176. Zhang DD. Hannink M. Distinct cysteine residues in Keap1 are required for Keap1-dependent ubiquitination of Nrf2 and for stabilization of Nrf2 by chemopreventive agents and oxidative stress. Mol Cell Biol. 2003;23:8137–8151.
  • 177. Zhang DD. Lo SC. Cross JV. Templeton DJ. Hannink M. Keap1 is a redox-regulated substrate adaptor protein for a Cul3-dependent ubiquitin ligase complex. Mol Cell Biol. 2004;24:10941–10953.
  • 178. Zhang DD. Lo SC. Sun Z. Habib GM. Lieberman MW. Hannink M. Ubiquitination of Keap1, a BTB-Kelch substrate adaptor protein for Cul3, targets Keap1 for degradation by a proteasome-independent pathway. J Biol Chem. 2005;280:30091–30099.[PubMed]
  • 179. Zhu M. Fahl WE. Functional characterization of transcription regulators that interact with the electrophile response element. Biochem Biophys Res Commun. 2001;289:212–219.[PubMed]
  • 180. Zipper LM. Mulcahy RT. Erk activation is required for Nrf2 nuclear localization during pyrrolidine dithiocarbamate induction of glutamate cysteine ligase modulatory gene expression in HepG2 cells. Toxicol Sci. 2003;73:124–134.[PubMed]
  • 181. Zipper LM. Mulcahy RT. Inhibition of ERK and p38 MAP kinases inhibits binding of Nrf2 and induction of GCS genes. Biochem Biophys Res Commun. 2000;278:484–492.[PubMed]
  • 182. Zipper LM. Mulcahy RT. The Keap1 BTB/POZ dimerization function is required to sequester Nrf2 in cytoplasm. J Biol Chem. 2002;277:36544–36552.[PubMed]
Collaboration tool especially designed for Life Science professionals.Drag-and-drop any entity to your messages.