Reconstruction of the action potential of ventricular myocardial fibres
Abstract
1. A mathematical model of membrane action potentials of mammalian ventricular myocardial fibres is described. The reconstruction model is based as closely as possible on ionic currents which have been measured by the voltage-clamp method.
2. Four individual components of ionic current were formulated mathematically in terms of Hodgkin—Huxley type equations. The model incorporates two voltage- and time-dependent inward currents, the excitatory inward sodium current, iNa, and a secondary or slow inward current, is, primarily carried by calcium ions. A time-independent outward potassium current, iK1, exhibiting inward-going rectification, and a voltage- and time-dependent outward current, ix1, primarily carried by potassium ions, are further elements of the model.
3. The iNa is primarily responsible for the rapid upstroke of the action potential, while the other current components determine the configuration of the plateau of the action potential and the re-polarization phase. The relative importance of inactivation of is and of activation of ix1 for termination of the plateau is evaluated by the model.
4. Experimental phenomena like slow recovery of the sodium system from inactivation, frequency dependence of the action potential duration, all-or-nothing re-polarization, membrane oscillations are adequately described by the model.
5. Possible inadequacies and shortcomings of the model are discussed.
Full text
Full text is available as a scanned copy of the original print version. Get a printable copy (PDF file) of the complete article (3.2M), or click on a page image below to browse page by page. Links to PubMed are also available for Selected References.
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bassingthwaighte JB, Fry CH, McGuigan JA. Relationship between internal calcium and outward current in mammalian ventricular muscle; a mechanism for the control of the action potential duration? J Physiol. 1976 Oct;262(1):15–37.[PMC free article] [PubMed] [Google Scholar]
- Beeler GW, Jr, Reuter H. Voltage clamp experiments on ventricular myocarial fibres. J Physiol. 1970 Mar;207(1):165–190.[PMC free article] [PubMed] [Google Scholar]
- Beeler GW, Jr, Reuter H. Membrane calcium current in ventricular myocardial fibres. J Physiol. 1970 Mar;207(1):191–209.[PMC free article] [PubMed] [Google Scholar]
- Blaustein MP. The interrelationship between sodium and calcium fluxes across cell membranes. Rev Physiol Biochem Pharmacol. 1974;70:33–82. [PubMed] [Google Scholar]
- Cleemann L, Morad M. Extracellular potassium accumulation and inward-going potassium rectification in voltage clamped ventricular muscle. Science. 1976 Jan 9;191(4222):90–92. [PubMed] [Google Scholar]
- Dudel J, Peper K, Rüdel R, Trautwein W. The dynamic chloride component of membrane current in Purkinje fibers. Pflugers Arch Gesamte Physiol Menschen Tiere. 1967;295(3):197–212. [PubMed] [Google Scholar]
- FRANKENHAEUSER B, HODGKIN AL. The action of calcium on the electrical properties of squid axons. J Physiol. 1957 Jul 11;137(2):218–244.[PMC free article] [PubMed] [Google Scholar]
- Fozzard HA, Hiraoka M. The positive dynamic current and its inactivation properties in cardiac Purkinje fibres. J Physiol. 1973 Nov;234(3):569–586.[PMC free article] [PubMed] [Google Scholar]
- Gettes LS, Morehouse N, Surawicz B. Effect of premature depolarization on the duration of action potentials in Purkinje and ventricular fibers of the moderator band of the pig heart. Role of proximity and the duration of the preceding action potential. Circ Res. 1972 Jan;30(1):55–66. [PubMed] [Google Scholar]
- Gettes LS, Reuter H. Slow recovery from inactivation of inward currents in mammalian myocardial fibres. J Physiol. 1974 Aug;240(3):703–724.[PMC free article] [PubMed] [Google Scholar]
- Giebisch G, Weidmann S. Membrane currents in mammalian ventricular heart muscle fibers using a voltage-clamp technique. J Gen Physiol. 1971 Mar;57(3):290–296.[PMC free article] [PubMed] [Google Scholar]
- Goldman L. Quantitative description of the sodium conductance of the giant axon of Myxicola in terms of a generalized second-order variable. Biophys J. 1975 Feb;15(2 Pt 1):119–136.[PMC free article] [PubMed] [Google Scholar]
- Haas HG, Kern R, Einwächter HM, Tarr M. Kinetics of Na inactivation in frog atria. Pflugers Arch. 1971;323(2):141–157. [PubMed] [Google Scholar]
- HODGKIN AL, HUXLEY AF. A quantitative description of membrane current and its application to conduction and excitation in nerve. J Physiol. 1952 Aug;117(4):500–544.[PMC free article] [PubMed] [Google Scholar]
- Isnberg G. Is potassium conductance of cardiac Purkinje fibres controlled by (Ca2+)? Nature. 1975 Jan 24;253(5489):273–274. [PubMed] [Google Scholar]
- Kass RS, Tsien RW. Control of action potential duration by calcium ions in cardiac Purkinje fibers. J Gen Physiol. 1976 May;67(5):599–617.[PMC free article] [PubMed] [Google Scholar]
- Katzung BG. Effects of extracellular calcium and sodium on depolarization-induced automaticity in guinea pig papillary muscle. Circ Res. 1975 Jul;37(1):118–127. [PubMed] [Google Scholar]
- Kohlhardt M, Krause H, Kübler M, Herdey A. Kinetics of inactivation and recovery of the slow inward current in the mammalian ventricular myocardium. Pflugers Arch. 1975 Mar 22;355(1):1–17. [PubMed] [Google Scholar]
- McAllister RE, Noble D, Tsien RW. Reconstruction of the electrical activity of cardiac Purkinje fibres. J Physiol. 1975 Sep;251(1):1–59.[PMC free article] [PubMed] [Google Scholar]
- McGuigan JA. Some limitations of the double sucrose gap, and its use in a study of the slow outward current in mammalian ventricular muscle. J Physiol. 1974 Aug;240(3):775–806.[PMC free article] [PubMed] [Google Scholar]
- Meech RW. Intracellular calcium injection causes increased potassium conductance in Aplysia nerve cells. Comp Biochem Physiol A Comp Physiol. 1972 Jun 1;42(2):493–499. [PubMed] [Google Scholar]
- New W, Trautwein W. Inward membrane currents in mammalian myocardium. Pflugers Arch. 1972;334(1):1–23. [PubMed] [Google Scholar]
- Niedergerke R, Orkand RK. The dual effect of calcium on the action potential of the frog's heart. J Physiol. 1966 May;184(2):291–311.[PMC free article] [PubMed] [Google Scholar]
- Noble D, Tsien RW. The kinetics and rectifier properties of the slow potassium current in cardiac Purkinje fibres. J Physiol. 1968 Mar;195(1):185–214.[PMC free article] [PubMed] [Google Scholar]
- Noble D, Tsien RW. Outward membrane currents activated in the plateau range of potentials in cardiac Purkinje fibres. J Physiol. 1969 Jan;200(1):205–231.[PMC free article] [PubMed] [Google Scholar]
- Reuter H. Slow inactivation of currents in cardiac Purkinje fibres. J Physiol. 1968 Jul;197(1):233–253.[PMC free article] [PubMed] [Google Scholar]
- Reuter H. Divalent cations as charge carriers in excitable membranes. Prog Biophys Mol Biol. 1973;26:1–43. [PubMed] [Google Scholar]
- Reuter H. Localization of beta adrenergic receptors, and effects of noradrenaline and cyclic nucleotides on action potentials, ionic currents and tension in mammalian cardiac muscle. J Physiol. 1974 Oct;242(2):429–451.[PMC free article] [PubMed] [Google Scholar]
- Reuter H, Scholz H. Uber den Einfluss der extracellulären Ca-Konzentration auf Membranpotential und Kontraktion isolierter Herzpräparate bei graduierter Depolarisation. Pflugers Arch Gesamte Physiol Menschen Tiere. 1968;300(2):87–107. [PubMed] [Google Scholar]
- Reuter H, Scholz H. A study of the ion selectivity and the kinetic properties of the calcium dependent slow inward current in mammalian cardiac muscle. J Physiol. 1977 Jan;264(1):17–47.[PMC free article] [PubMed] [Google Scholar]
- Reuter H, Seitz N. The dependence of calcium efflux from cardiac muscle on temperature and external ion composition. J Physiol. 1968 Mar;195(2):451–470.[PMC free article] [PubMed] [Google Scholar]
- Trautwein W, McDonald TF, Tripathi O. Calcium conductance and tension in mammalian ventricular muscle. Pflugers Arch. 1975;354(1):55–74. [PubMed] [Google Scholar]
- Vassalle M. Analysis of cardiac pacemaker potential using a "voltage clamp" technique. Am J Physiol. 1966 Jun;210(6):1335–1341. [PubMed] [Google Scholar]
- Vitek M, Trautwein W. Slow inward current and action potential in cardiac Purkinje fibres. The effect of Mn plus,plus-ions. Pflugers Arch. 1971;323(3):204–218. [PubMed] [Google Scholar]
- WEIDMANN S. Effect of current flow on the membrane potential of cardiac muscle. J Physiol. 1951 Oct 29;115(2):227–236.[PMC free article] [PubMed] [Google Scholar]
- WEIDMANN S. Effects of calcium ions and local anesthetics on electrical properties of Purkinje fibres. J Physiol. 1955 Sep 28;129(3):568–582.[PMC free article] [PubMed] [Google Scholar]
- Weidmann S. Electrical constants of trabecular muscle from mammalian heart. J Physiol. 1970 Nov;210(4):1041–1054.[PMC free article] [PubMed] [Google Scholar]