Phospholemman inhibition of the cardiac Na+/Ca2+ exchanger. Role of phosphorylation.
Journal: 2006/May - Journal of Biological Chemistry
ISSN: 0021-9258
Abstract:
We have demonstrated previously that phospholemman (PLM), a 15-kDa integral sarcolemmal phosphoprotein, inhibits the cardiac Na+/Ca2+ exchanger (NCX1). In addition, protein kinase A phosphorylates serine 68, whereas protein kinase C phosphorylates both serine 63 and serine 68 of PLM. Using human embryonic kidney 293 cells that are devoid of both endogenous PLM and NCX1, we first demonstrated that the exogenous NCX1 current (I(NaCa)) was increased by phorbol 12-myristate 13-acetate (PMA) but not by forskolin. When co-expressed with NCX1, PLM resulted in: (i) decreases in I(NaCa), (ii) attenuation of the increase in I(NaCa) by PMA, and (iii) additional reduction in I(NaCa) in cells treated with forskolin. Mutating serine 63 to alanine (S63A) preserved the sensitivity of PLM to forskolin in terms of suppression of I(NaCa), whereas mutating serine 68 to alanine (S68A) abolished the inhibitory effect of PLM on I(NaCa). Mutating serine 68 to glutamic acid (phosphomimetic) resulted in additional suppression of I(NaCa) as compared with wild-type PLM. These results suggest that PLM phosphorylated at serine 68 inhibited I(NaCa). The physiological significance of inhibition of NCX1 by phosphorylated PLM was evaluated in PLM-knock-out (KO) mice. When compared with wild-type myocytes, I(NaCa) was significant larger in PLM-KO myocytes. In addition, the PMA-induced increase in I(NaCa) was significantly higher in PLM-KO myocytes. By contrast, forskolin had no effect on I(NaCa) in wild-type myocytes. We conclude that PLM, when phosphorylated at serine 68, inhibits Na+/Ca2+ exchange in the heart.
Relations:
Content
Citations
(40)
References
(36)
Drugs
(3)
Chemicals
(8)
Genes
(2)
Organisms
(4)
Processes
(2)
Anatomy
(4)
Affiliates
(1)
Similar articles
Articles by the same authors
Discussion board
J Biol Chem 281(12): 7784-7792

Phospholemman inhibition of the cardiac Na<sup>+</sup>/Ca<sup>2+</sup> exchanger: Role of phosphorylation.

Department of Cellular and Molecular Physiology and
Department of Medicine, Milton S. Hershey Medical Center, Pennsylvania State University, Hershey, PA 17033;
Weis Center for Research, Geisinger Medical Center, Danville, PA 17822; and
Department of Internal Medicine (Cardiovascular Division), University of Virginia Health Sciences Center, Charlottesville, VA 22908.
Address Correspondence To: Joseph Y. Cheung, M.D., Ph.D., Department of Cellular and Molecular Physiology, Milton S. Hershey Medical Center, MC-H166, Hershey, PA 17033. Tel. (717)531-5748; Fax. (717)531-7667; Email: ude.usp@1cyj

Abstract

We have previously demonstrated that phospholemman (PLM), a 15 kDa integral sarcolemmal phosphoprotein, inhibits the cardiac Na/Ca exchanger (NCX1). In addition, p rotein kinase A phosphorylates serine while protein kinase C phosphorylates both serine and serine of PLM. Using HEK293 cells that are devoid of both endogenous PLM and NCX1, we first demonstrated that the exogenous NCX1 current (INaCa) was increased by phorbol 12-myristate 13-acetate (PMA) but not by forskolin. When co-expressed with NCX1, PLM resulted in: (i) decreases in INaCa; (ii) attenuation of the increase in INaCa by PMA; and (iii) additional reduction in INaCa in cells treated with forskolin. Mutating serine to alanine (S63A) preserved PLM’s sensitivity to forskolin in terms of suppression of INaCa, whereas mutating serine to alanine (S68A) abolished PLM’s inhibitory effect on INaCa. Mutating serine to glutamic acid (phosphomimetic) resulted in additional suppression of I NaCa as compared to wild-type PLM. These results suggest that PLM phosphorylated at serine inhibited INaCa. The physiological significance of inhibition of NCX1 by phosphorylated PLM was evaluated in PLM-knockout (KO) mice. When compared to wild-type myocytes, INaCa was significant larger in PLM-KO myocytes. In addition, PMA-induced increase in INaCa was significantly higher in PLM-KO myocytes. By contrast, forskolin had no effect on INaCa in wild-type myocytes. We conclude that PLM, when phosphorylated at serine, inhibits Na/Ca exchange in the heart.

Abbreviations: The abbreviations used are: ANOVA, analysis of variance; 8-Br-cAMP, 8-bromoadenosine 3′, 5′ cyclic monophosphate; [Ca]o, extracellular Ca concentration; Cm, whole cell membrane capacitance; CMV, cytomegalovirus; DMEM, Dulbecco’s modified Eagle’s medium; DMSO, dimethylsulfoxide; EGTA, ethylene glycol-bis-(β-aminoethyl ether)N,N,N’,N’-tetraacetic acid; Em, membrane potential; em., emission; ex., excitation; ENaCa, equilibrium potential for Na, Ca exchange current; FBS, fetal bovine serum; GFP, green fluorescent protein; HEK, human embryonic kidney; HEPES, N-2-hydroxyethylpiperazine-N’-2-ethanesulfonic acid; INaCa, Na, Ca exchange current; KO, knock-out; MEM, minimal essential media; NCX1, Na, Ca exchanger; NIMA, never in mitosis A; PKA, protein kinase A; PKC, protein kinase C; PLM, phospholemman; PMA, phorbol 12-myristate 13-acetate; PMSF, phenylmethylsulfonyl fluoride; PVDF, polyvinylidene difluoride; SE, standard error; SERCA2, sarco(endo)plasmic reticulum Ca-ATPase; SR, sarcoplasmic reticulum; SDS-PAGE, sodium dodecyl sulfate- polyacrylamide gel electrophoresis; Vmax, maximum velocity; WT, wild-type
Abstract

References

  • 1. Palmer CJ, Scott BT, Jones LR. J Biol Chem. 1991;266:11126–11130.[PubMed]
  • 2. Sweadner KJ, Rael E. Genomics. 2000;68:41–56.[PubMed]
  • 3. Waalas SI, Czernik AJ, Olstad OK, Sletten K, Walaas O. Biochem J. 1994;304 ( Pt 2):635–640.
  • 4. Crambert G, Fuzesi M, Garty H, Karlish S, Geering K. Proc Natl Acad Sci U S A. 2002;99:11476–11481.
  • 5. Fuller W, Eaton P, Bell JR, Shattock MJ. Faseb J. 2004;18:197–199.[PubMed]
  • 6. Silverman BZ, Fuller W, Eaton P, Deng J, Moorman JR, Cheung JY, James AF, Shattock MJ. Cardiovasc Res. 2005;65:93–103.[PubMed]
  • 7. Bossuyt, J., Ai, X., Moorman, J. R., Pogwizd, S. M., and Bers, D. M. (2005) Circ Res[PubMed]
  • 8. Despa S, Bossuyt J, Han F, Ginsburg KS, Jia LG, Kutchai H, Tucker AL, Bers DM. Circ Res. 2005;97:252–259.[PubMed]
  • 9. Zhang XQ, Qureshi A, Song J, Carl LL, Tian Q, Stahl RC, Carey DJ, Rothblum LI, Cheung JY. Am J Physiol Heart Circ Physiol. 2003;284:H225–233.[PubMed]
  • 10. Ahlers BA, Zhang XQ, Moorman JR, Rothblum LI, Carl LL, Song J, Wang J, Geddis LM, Tucker AL, Mounsey JP, Cheung JY. J Biol Chem. 2005;280:19875–19882.[PubMed]
  • 11. Mirza MA, Zhang XQ, Ahlers BA, Qureshi A, Carl LL, Song J, Tucker AL, Mounsey JP, Moorman JR, Rothblum LI, Zhang TS, Cheung JY. Am J Physiol Heart Circ Physiol. 2004;286:H1322–1330.[PubMed]
  • 12. Simmerman HK, Jones LR. Physiol Rev. 1998;78:921–947.[PubMed]
  • 13. Mahmmoud YA, Vorum H, Cornelius F. J Biol Chem. 2000;275:35969–35977.[PubMed]
  • 14. Mahmmoud YA, Cramb G, Maunsbach AB, Cutler CP, Meischke L, Cornelius F. J Biol Chem. 2003;278:37427–37438.[PubMed]
  • 15. Song J, Zhang XQ, Ahlers BA, Carl LL, Wang J, Rothblum LI, Stahl RC, Mounsey JP, Tucker AL, Moorman JR, Cheung JY. Am J Physiol Heart Circ Physiol. 2005;288:H2342–2354.[PubMed]
  • 16. He T, Zhou S, da Costa L, Yu L, Kinzler K, Vogelstein B. Proc Natl Acad Sci USA. 1998;95:2509–2514.
  • 17. Zhang XQ, Song J, Rothblum LI, Lun M, Wang X, Ding F, Dunn J, Lytton J, McDermott PJ, Cheung JY. Am J Physiol Heart Circ Physiol. 2001;281:H2079–2088.[PubMed]
  • 18. Tadros GM, Zhang XQ, Song J, Carl LL, Rothblum LI, Tian Q, Dunn J, Lytton J, Cheung JY. Am J Physiol Heart Circ Physiol. 2002;283:H1616–1626.[PubMed]
  • 19. Zhang X, Tillotson D, Moore R, Zelis R, Cheung J. Am Journal of Physiol. 1996;271:C1800–C1807.[PubMed]
  • 20. Jia LG, Donnet C, Bogaev RC, Blatt RJ, McKinney CE, Day KH, Berr SS, Jones LR, Moorman JR, Sweadner KJ, Tucker AL. Am J Physiol Heart Circ Physiol. 2005;288:H1982–1988.[PubMed]
  • 21. Song J, Zhang X, Carl L, Qureshi A, Rothblum L, Cheung J. Am Journal of Physiol Heart Circ Physiol. 2002;283:H576–H583.[PubMed]
  • 22. Hasenfuss G. Cardiovasc Res. 1998;37:279–289.[PubMed]
  • 23. Zhou YY, Wang SQ, Zhu WZ, Chruscinski A, Kobilka BK, Ziman B, Wang S, Lakatta EG, Cheng H, Xiao RP. Am J Physiol Heart Circ Physiol. 2000;279:H429–436.[PubMed]
  • 24. Zhang XQ, Moorman JR, Ahlers BA, Carl LL, Lake DE, Song J, Mounsey JP, Tucker AL, Chan YM, Rothblum LI, Stahl RC, Carey DJ, Cheung JY. J Appl Physiol. 2006;100:212–220.
  • 25. Presti CF, Jones LR, Lindemann JP. J Biol Chem. 1985;260:3860–3867.[PubMed]
  • 26. Rembold CM, Ripley ML, Meeks MK, Geddis LM, Kutchai HC, Marassi FM, Cheung JY, Moorman JR. J Vasc Res. 2005;42:483–491.
  • 27. Ballard C, Schaffer S. J Mol Cell Cardiol. 1996;28:11–17.[PubMed]
  • 28. Iwamoto T, Pan Y, Wakabayashi S, Imagawa T, Yamanaka HI, Shigekawa M. J Biol Chem. 1996;271:13609–13615.[PubMed]
  • 29. Iwamoto T, Pan Y, Nakamura TY, Wakabayashi S, Shigekawa M. Biochemistry. 1998;37:17230–17238.[PubMed]
  • 30. Ruknudin A, He S, Lederer WJ, Schulze DH. J Physiol 529 Pt. 2000;3:599–610.
  • 31. He LP, Cleemann L, Soldatov NM, Morad M. J Physiol. 2003;548:677–689.
  • 32. Collins A, Somlyo AV, Hilgemann DW. J Physiol. 1992;454:27–57.
  • 33. Perchenet L, Hinde AK, Patel KC, Hancox JC, Levi AJ. Pflugers Arch. 2000;439:822–828.[PubMed]
  • 34. Wei SK, Ruknudin A, Hanlon SU, McCurley JM, Schulze DH, Haigney MC. Circ Res. 2003;92:897–903.[PubMed]
  • 35. Ginsburg K, DM B. Biophys J. 2004;86:26a.[PubMed]
  • 36. Lin, X., Jo, H., Sakakibara, Y., Tambara, K., Kim, B., Komeda, M., and Matsuoka, S(2005) Am J Physiol Cell Physiol
  • 37. Levesque PC, Hume JR. Cardiovasc Res. 1995;29:336–343.[PubMed]
  • 38. Schulze DH, Muqhal M, Lederer WJ, Ruknudin AM. J Biol Chem. 2003;278:28849–28855.[PubMed]
Collaboration tool especially designed for Life Science professionals.Drag-and-drop any entity to your messages.