Peyer's patch-specific lymphocyte homing receptors consist of a VLA-4-like alpha chain associated with either of two integrin beta chains, one of which is novel.
Journal: 1989/October - EMBO Journal
ISSN: 0261-4189
PUBMED: 2670559
Abstract:
Lymphocytes home to various lymphoid organs by adhering to and migrating through specialized high endothelial venules (HEV). The murine cell surface heterodimer LPAM-1 is involved in the homing of lymphocytes to mucosal sites (Peyer's patches). LPAM-1 has an alpha subunit (alpha 4m) analogous to the alpha chain of the human integrin molecule VLA-4. Here we show that the LPAM-1 beta subunit (beta p) is immunochemically and biochemically distinct from previously defined integrin beta subunits, suggesting that beta p represents a novel integrin beta subunit. Depending on the cellular source two alternative beta subunits, beta p and integrin beta 1, can be isolated in association with alpha 4m. Therefore, alpha 4m is the common subunit of the unique integrin LPAM-1 (alpha 4m beta p) and of the heterodimer LPAM-2 (alpha 4m beta 1), which is analogous to VLA-4. Antibody-blocking experiments suggest that, in addition to LPAM-1, LPAM-2 is also involved in the organ-specific adhesion of lymphocytes to Peyer's patch HEV.
Relations:
Content
Citations
(56)
References
(47)
Chemicals
(6)
Genes
(1)
Organisms
(2)
Processes
(1)
Anatomy
(3)
Affiliates
(1)
Similar articles
Articles by the same authors
Discussion board
EMBO J 8(6): 1735-1741

Peyer's patch-specific lymphocyte homing receptors consist of a VLA-4-like alpha chain associated with either of two integrin beta chains, one of which is novel.

Abstract

Lymphocytes home to various lymphoid organs by adhering to and migrating through specialized high endothelial venules (HEV). The murine cell surface heterodimer LPAM-1 is involved in the homing of lymphocytes to mucosal sites (Peyer's patches). LPAM-1 has an alpha subunit (alpha 4m) analogous to the alpha chain of the human integrin molecule VLA-4. Here we show that the LPAM-1 beta subunit (beta p) is immunochemically and biochemically distinct from previously defined integrin beta subunits, suggesting that beta p represents a novel integrin beta subunit. Depending on the cellular source two alternative beta subunits, beta p and integrin beta 1, can be isolated in association with alpha 4m. Therefore, alpha 4m is the common subunit of the unique integrin LPAM-1 (alpha 4m beta p) and of the heterodimer LPAM-2 (alpha 4m beta 1), which is analogous to VLA-4. Antibody-blocking experiments suggest that, in addition to LPAM-1, LPAM-2 is also involved in the organ-specific adhesion of lymphocytes to Peyer's patch HEV.

Full text

Full text is available as a scanned copy of the original print version. Get a printable copy (PDF file) of the complete article (1.4M), or click on a page image below to browse page by page. Links to PubMed are also available for Selected References.

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.
  • Page CM. An Apparatus for the Reduction of some Deformities of the Joints, with Special Reference to the Knee. Proc R Soc Med. 1914;7(SURG):113–116.[PMC free article] [PubMed] [Google Scholar]
  • Anderson DC, Springer TA. Leukocyte adhesion deficiency: an inherited defect in the Mac-1, LFA-1, and p150,95 glycoproteins. Annu Rev Med. 1987;38:175–194. [PubMed] [Google Scholar]
  • Argraves WS, Suzuki S, Arai H, Thompson K, Pierschbacher MD, Ruoslahti E. Amino acid sequence of the human fibronectin receptor. J Cell Biol. 1987 Sep;105(3):1183–1190.[PMC free article] [PubMed] [Google Scholar]
  • Butcher EC, Scollay RG, Weissman IL. Lymphocyte adherence to high endothelial venules: characterization of a modified in vitro assay, and examination of the binding of syngeneic and allogeneic lymphocyte populations. J Immunol. 1979 Nov;123(5):1996–2003. [PubMed] [Google Scholar]
  • Chin YH, Rasmussen RA, Woodruff JJ, Easton TG. A monoclonal anti-HEBFPP antibody with specificity for lymphocyte surface molecules mediating adhesion to Peyer's patch high endothelium of the rat. J Immunol. 1986 Apr 1;136(7):2556–2561. [PubMed] [Google Scholar]
  • Chirgwin JM, Przybyla AE, MacDonald RJ, Rutter WJ. Isolation of biologically active ribonucleic acid from sources enriched in ribonuclease. Biochemistry. 1979 Nov 27;18(24):5294–5299. [PubMed] [Google Scholar]
  • Cleveland DW, Fischer SG, Kirschner MW, Laemmli UK. Peptide mapping by limited proteolysis in sodium dodecyl sulfate and analysis by gel electrophoresis. J Biol Chem. 1977 Feb 10;252(3):1102–1106. [PubMed] [Google Scholar]
  • Feinberg AP, Vogelstein B. A technique for radiolabeling DNA restriction endonuclease fragments to high specific activity. Anal Biochem. 1983 Jul 1;132(1):6–13. [PubMed] [Google Scholar]
  • Fitzgerald LA, Steiner B, Rall SC, Jr, Lo SS, Phillips DR. Protein sequence of endothelial glycoprotein IIIa derived from a cDNA clone. Identity with platelet glycoprotein IIIa and similarity to "integrin". J Biol Chem. 1987 Mar 25;262(9):3936–3939. [PubMed] [Google Scholar]
  • Gallatin WM, Weissman IL, Butcher EC. A cell-surface molecule involved in organ-specific homing of lymphocytes. Nature. 1983 Jul 7;304(5921):30–34. [PubMed] [Google Scholar]
  • Gallatin M, St John TP, Siegelman M, Reichert R, Butcher EC, Weissman IL. Lymphocyte homing receptors. Cell. 1986 Mar 14;44(5):673–680. [PubMed] [Google Scholar]
  • Gehlsen KR, Dillner L, Engvall E, Ruoslahti E. The human laminin receptor is a member of the integrin family of cell adhesion receptors. Science. 1988 Sep 2;241(4870):1228–1229. [PubMed] [Google Scholar]
  • Ginsberg MH, Loftus J, Ryckwaert JJ, Pierschbacher M, Pytela R, Ruoslahti E, Plow EF. Immunochemical and amino-terminal sequence comparison of two cytoadhesins indicates they contain similar or identical beta subunits and distinct alpha subunits. J Biol Chem. 1987 Apr 25;262(12):5437–5440. [PubMed] [Google Scholar]
  • Gunning P, Ponte P, Okayama H, Engel J, Blau H, Kedes L. Isolation and characterization of full-length cDNA clones for human alpha-, beta-, and gamma-actin mRNAs: skeletal but not cytoplasmic actins have an amino-terminal cysteine that is subsequently removed. Mol Cell Biol. 1983 May;3(5):787–795.[PMC free article] [PubMed] [Google Scholar]
  • Hamann A, Jablonski-Westrich D, Duijvestijn A, Butcher EC, Baisch H, Harder R, Thiele HG. Evidence for an accessory role of LFA-1 in lymphocyte-high endothelium interaction during homing. J Immunol. 1988 Feb 1;140(3):693–699. [PubMed] [Google Scholar]
  • Hemler ME. Adhesive protein receptors on hematopoietic cells. Immunol Today. 1988 Apr;9(4):109–113. [PubMed] [Google Scholar]
  • Hemler ME, Huang C, Schwarz L. The VLA protein family. Characterization of five distinct cell surface heterodimers each with a common 130,000 molecular weight beta subunit. J Biol Chem. 1987 Mar 5;262(7):3300–3309. [PubMed] [Google Scholar]
  • Hemler ME, Huang C, Takada Y, Schwarz L, Strominger JL, Clabby ML. Characterization of the cell surface heterodimer VLA-4 and related peptides. J Biol Chem. 1987 Aug 25;262(24):11478–11485. [PubMed] [Google Scholar]
  • Hemler ME, Crouse C, Takada Y, Sonnenberg A. Multiple very late antigen (VLA) heterodimers on platelets. Evidence for distinct VLA-2, VLA-5 (fibronectin receptor), and VLA-6 structures. J Biol Chem. 1988 Jun 5;263(16):7660–7665. [PubMed] [Google Scholar]
  • Holzmann B, McIntyre BW, Weissman IL. Identification of a murine Peyer's patch--specific lymphocyte homing receptor as an integrin molecule with an alpha chain homologous to human VLA-4 alpha. Cell. 1989 Jan 13;56(1):37–46. [PubMed] [Google Scholar]
  • Horwitz A, Duggan K, Greggs R, Decker C, Buck C. The cell substrate attachment (CSAT) antigen has properties of a receptor for laminin and fibronectin. J Cell Biol. 1985 Dec;101(6):2134–2144.[PMC free article] [PubMed] [Google Scholar]
  • Hynes RO. Integrins: a family of cell surface receptors. Cell. 1987 Feb 27;48(4):549–554. [PubMed] [Google Scholar]
  • Jalkanen S, Reichert RA, Gallatin WM, Bargatze RF, Weissman IL, Butcher EC. Homing receptors and the control of lymphocyte migration. Immunol Rev. 1986 Jun;91:39–60. [PubMed] [Google Scholar]
  • Jalkanen ST, Bargatze RF, Herron LR, Butcher EC. A lymphoid cell surface glycoprotein involved in endothelial cell recognition and lymphocyte homing in man. Eur J Immunol. 1986 Oct;16(10):1195–1202. [PubMed] [Google Scholar]
  • Jalkanen S, Bargatze RF, de los Toyos J, Butcher EC. Lymphocyte recognition of high endothelium: antibodies to distinct epitopes of an 85-95-kD glycoprotein antigen differentially inhibit lymphocyte binding to lymph node, mucosal, or synovial endothelial cells. J Cell Biol. 1987 Aug;105(2):983–990.[PMC free article] [PubMed] [Google Scholar]
  • Kishimoto TK, O'Connor K, Lee A, Roberts TM, Springer TA. Cloning of the beta subunit of the leukocyte adhesion proteins: homology to an extracellular matrix receptor defines a novel supergene family. Cell. 1987 Feb 27;48(4):681–690. [PubMed] [Google Scholar]
  • Laemmli UK. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. [PubMed] [Google Scholar]
  • Ledbetter JA, Herzenberg LA. Xenogeneic monoclonal antibodies to mouse lymphoid differentiation antigens. Immunol Rev. 1979;47:63–90. [PubMed] [Google Scholar]
  • Leung LL, Kinoshita T, Nachman RL. Isolation, purification, and partial characterization of platelet membrane glycoproteins IIb and IIIa. J Biol Chem. 1981 Feb 25;256(4):1994–1997. [PubMed] [Google Scholar]
  • Marcantonio EE, Hynes RO. Antibodies to the conserved cytoplasmic domain of the integrin beta 1 subunit react with proteins in vertebrates, invertebrates, and fungi. J Cell Biol. 1988 May;106(5):1765–1772.[PMC free article] [PubMed] [Google Scholar]
  • Meuer SC, Hussey RE, Hodgdon JC, Hercend T, Schlossman SF, Reinherz EL. Surface structures involved in target recognition by human cytotoxic T lymphocytes. Science. 1982 Oct 29;218(4571):471–473. [PubMed] [Google Scholar]
  • Pals ST, den Otter A, Miedema F, Kabel P, Keizer GD, Scheper RJ, Meijer CJ. Evidence that leukocyte function-associated antigen-1 is involved in recirculation and homing of human lymphocytes via high endothelial venules. J Immunol. 1988 Mar 15;140(6):1851–1853. [PubMed] [Google Scholar]
  • Pytela R, Pierschbacher MD, Ruoslahti E. Identification and isolation of a 140 kd cell surface glycoprotein with properties expected of a fibronectin receptor. Cell. 1985 Jan;40(1):191–198. [PubMed] [Google Scholar]
  • Pytela R, Pierschbacher MD, Ruoslahti E. A 125/115-kDa cell surface receptor specific for vitronectin interacts with the arginine-glycine-aspartic acid adhesion sequence derived from fibronectin. Proc Natl Acad Sci U S A. 1985 Sep;82(17):5766–5770.[PMC free article] [PubMed] [Google Scholar]
  • Pytela R, Pierschbacher MD, Ginsberg MH, Plow EF, Ruoslahti E. Platelet membrane glycoprotein IIb/IIIa: member of a family of Arg-Gly-Asp--specific adhesion receptors. Science. 1986 Mar 28;231(4745):1559–1562. [PubMed] [Google Scholar]
  • Ruoslahti E, Pierschbacher MD. New perspectives in cell adhesion: RGD and integrins. Science. 1987 Oct 23;238(4826):491–497. [PubMed] [Google Scholar]
  • Siegelman M, Bond MW, Gallatin WM, St John T, Smith HT, Fried VA, Weissman IL. Cell surface molecule associated with lymphocyte homing is a ubiquitinated branched-chain glycoprotein. Science. 1986 Feb 21;231(4740):823–829. [PubMed] [Google Scholar]
  • Sonnenberg A, Modderman PW, Hogervorst F. Laminin receptor on platelets is the integrin VLA-6. Nature. 1988 Dec 1;336(6198):487–489. [PubMed] [Google Scholar]
  • Springer T, Galfrè G, Secher DS, Milstein C. Monoclonal xenogeneic antibodies to murine cell surface antigens: identification of novel leukocyte differentiation antigens. Eur J Immunol. 1978 Aug;8(8):539–551. [PubMed] [Google Scholar]
  • Springer TA, Dustin ML, Kishimoto TK, Marlin SD. The lymphocyte function-associated LFA-1, CD2, and LFA-3 molecules: cell adhesion receptors of the immune system. Annu Rev Immunol. 1987;5:223–252. [PubMed] [Google Scholar]
  • Stamper HB, Jr, Woodruff JJ. Lymphocyte homing into lymph nodes: in vitro demonstration of the selective affinity of recirculating lymphocytes for high-endothelial venules. J Exp Med. 1976 Sep 1;144(3):828–833.[PMC free article] [PubMed] [Google Scholar]
  • St John T, Gallatin WM, Siegelman M, Smith HT, Fried VA, Weissman IL. Expression cloning of a lymphocyte homing receptor cDNA: ubiquitin is the reactive species. Science. 1986 Feb 21;231(4740):845–850. [PubMed] [Google Scholar]
  • Takada Y, Strominger JL, Hemler ME. The very late antigen family of heterodimers is part of a superfamily of molecules involved in adhesion and embryogenesis. Proc Natl Acad Sci U S A. 1987 May;84(10):3239–3243.[PMC free article] [PubMed] [Google Scholar]
  • Takada Y, Huang C, Hemler ME. Fibronectin receptor structures in the VLA family of heterodimers. Nature. 1987 Apr 9;326(6113):607–609. [PubMed] [Google Scholar]
  • Takada Y, Wayner EA, Carter WG, Hemler ME. Extracellular matrix receptors, ECMRII and ECMRI, for collagen and fibronectin correspond to VLA-2 and VLA-3 in the VLA family of heterodimers. J Cell Biochem. 1988 Aug;37(4):385–393. [PubMed] [Google Scholar]
  • Wayner EA, Carter WG. Identification of multiple cell adhesion receptors for collagen and fibronectin in human fibrosarcoma cells possessing unique alpha and common beta subunits. J Cell Biol. 1987 Oct;105(4):1873–1884.[PMC free article] [PubMed] [Google Scholar]
  • Wayner EA, Carter WG, Piotrowicz RS, Kunicki TJ. The function of multiple extracellular matrix receptors in mediating cell adhesion to extracellular matrix: preparation of monoclonal antibodies to the fibronectin receptor that specifically inhibit cell adhesion to fibronectin and react with platelet glycoproteins Ic-IIa. J Cell Biol. 1988 Nov;107(5):1881–1891.[PMC free article] [PubMed] [Google Scholar]
Department of Pathology, Stanford University Medical School, CA 94305.
Department of Pathology, Stanford University Medical School, CA 94305.
Abstract
Lymphocytes home to various lymphoid organs by adhering to and migrating through specialized high endothelial venules (HEV). The murine cell surface heterodimer LPAM-1 is involved in the homing of lymphocytes to mucosal sites (Peyer's patches). LPAM-1 has an alpha subunit (alpha 4m) analogous to the alpha chain of the human integrin molecule VLA-4. Here we show that the LPAM-1 beta subunit (beta p) is immunochemically and biochemically distinct from previously defined integrin beta subunits, suggesting that beta p represents a novel integrin beta subunit. Depending on the cellular source two alternative beta subunits, beta p and integrin beta 1, can be isolated in association with alpha 4m. Therefore, alpha 4m is the common subunit of the unique integrin LPAM-1 (alpha 4m beta p) and of the heterodimer LPAM-2 (alpha 4m beta 1), which is analogous to VLA-4. Antibody-blocking experiments suggest that, in addition to LPAM-1, LPAM-2 is also involved in the organ-specific adhesion of lymphocytes to Peyer's patch HEV.
Collaboration tool especially designed for Life Science professionals.Drag-and-drop any entity to your messages.