Only Specific Tobacco (Nicotiana tabacum) Chitinases and [beta]-1,3-Glucanases Exhibit Antifungal Activity.
Journal: 2017/February - Plant Physiology
ISSN: 1532-2548
PUBMED: 12231736
Abstract:
Different isoforms of chitinases and [beta]-1,3-glucanases of tobacco (Nicotiana tabacum cv Samsun NN) were tested for their antifungal activities. The class I, vacuolar chitinase and [beta]-1,3-glucanase isoforms were the most active against Fusarium solani germlings, resulting in lysis of the hyphal tips and in growth inhibition. In additon, we observed that the class I chitinase and [beta]-1,3-glucanase acted synergistically. The class II isoforms of the two hydrolases exhibited no antifungal activity. However, the class II chitinases showed limited growth inhibitory activity in combination with higher amounts of class I [beta]-1,3-glucanase. The class II [beta]-1,3-glucanases showed no inhibitory activity in any combination. In transgenic tobacco plants producing modified forms of either a class I chitinase or a class I [beta]-1,3-glucanase, or both, these proteins were targeted extracellularly. Both modified proteins lack their C-terminal propeptide, which functions as a vacuolar targeting signal. Extracellular targeting had no effect on the specific activities of the chitinase and [beta]-1,3-glucanase enzymes. Furthermore, the extracellular washing fluid (EF) from leaves of transgenic plants expressing either of the secreted class I enzymes exhibited antifungal activity on F. solani germlings in vitro comparable to that of the purified vacuolar class I proteins. Mixing EF fractions from these plants revealed synergism in inhibitory activity against F. solani; the mixed fractions exhibited inhibitory activity similar to that of EF from plants expressing both secreted enzymes.
Relations:
Content
Citations
(80)
References
(20)
Similar articles
Articles by the same authors
Discussion board
Plant Physiol 101(3): 857-863

Only Specific Tobacco (Nicotiana tabacum) Chitinases and [beta]-1,3-Glucanases Exhibit Antifungal Activity.

Abstract

Different isoforms of chitinases and [beta]-1,3-glucanases of tobacco (Nicotiana tabacum cv Samsun NN) were tested for their antifungal activities. The class I, vacuolar chitinase and [beta]-1,3-glucanase isoforms were the most active against Fusarium solani germlings, resulting in lysis of the hyphal tips and in growth inhibition. In additon, we observed that the class I chitinase and [beta]-1,3-glucanase acted synergistically. The class II isoforms of the two hydrolases exhibited no antifungal activity. However, the class II chitinases showed limited growth inhibitory activity in combination with higher amounts of class I [beta]-1,3-glucanase. The class II [beta]-1,3-glucanases showed no inhibitory activity in any combination. In transgenic tobacco plants producing modified forms of either a class I chitinase or a class I [beta]-1,3-glucanase, or both, these proteins were targeted extracellularly. Both modified proteins lack their C-terminal propeptide, which functions as a vacuolar targeting signal. Extracellular targeting had no effect on the specific activities of the chitinase and [beta]-1,3-glucanase enzymes. Furthermore, the extracellular washing fluid (EF) from leaves of transgenic plants expressing either of the secreted class I enzymes exhibited antifungal activity on F. solani germlings in vitro comparable to that of the purified vacuolar class I proteins. Mixing EF fractions from these plants revealed synergism in inhibitory activity against F. solani; the mixed fractions exhibited inhibitory activity similar to that of EF from plants expressing both secreted enzymes.

Full Text

The Full Text of this article is available as a PDF (2.3M).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.
  • Bowles DJ. Defense-related proteins in higher plants. Annu Rev Biochem. 1990;59:873–907. [PubMed] [Google Scholar]
  • Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. [PubMed] [Google Scholar]
  • Brederode FT, Linthorst HJ, Bol JF. Differential induction of acquired resistance and PR gene expression in tobacco by virus infection, ethephon treatment, UV light and wounding. Plant Mol Biol. 1991 Dec;17(6):1117–1125. [PubMed] [Google Scholar]
  • Kauffmann S, Legrand M, Geoffroy P, Fritig B. Biological function of ;pathogenesis-related' proteins: four PR proteins of tobacco have 1,3-beta-glucanase activity. EMBO J. 1987 Nov;6(11):3209–3212.[PMC free article] [PubMed] [Google Scholar]
  • Keen NT, Yoshikawa M. beta-1,3-Endoglucanase from Soybean Releases Elicitor-Active Carbohydrates from Fungus Cell Walls. Plant Physiol. 1983 Mar;71(3):460–465.[PMC free article] [PubMed] [Google Scholar]
  • Lawton K, Ward E, Payne G, Moyer M, Ryals J. Acidic and basic class III chitinase mRNA accumulation in response to TMV infection of tobacco. Plant Mol Biol. 1992 Aug;19(5):735–743. [PubMed] [Google Scholar]
  • Legrand M, Kauffmann S, Geoffroy P, Fritig B. Biological function of pathogenesis-related proteins: Four tobacco pathogenesis-related proteins are chitinases. Proc Natl Acad Sci U S A. 1987 Oct;84(19):6750–6754.[PMC free article] [PubMed] [Google Scholar]
  • Linthorst HJ, van Loon LC, van Rossum CM, Mayer A, Bol JF, van Roekel JS, Meulenhoff EJ, Cornelissen BJ. Analysis of acidic and basic chitinases from tobacco and petunia and their constitutive expression in transgenic tobacco. Mol Plant Microbe Interact. 1990 Jul-Aug;3(4):252–258. [PubMed] [Google Scholar]
  • Mauch F, Mauch-Mani B, Boller T. Antifungal Hydrolases in Pea Tissue : II. Inhibition of Fungal Growth by Combinations of Chitinase and beta-1,3-Glucanase. Plant Physiol. 1988 Nov;88(3):936–942.[PMC free article] [PubMed] [Google Scholar]
  • Mauch F, Staehelin LA. Functional Implications of the Subcellular Localization of Ethylene-Induced Chitinase and [beta]-1,3-Glucanase in Bean Leaves. Plant Cell. 1989 Apr;1(4):447–457.[PMC free article] [PubMed] [Google Scholar]
  • Molano J, Durán A, Cabib E. A rapid and sensitive assay for chitinase using tritiated chitin. Anal Biochem. 1977 Dec;83(2):648–656. [PubMed] [Google Scholar]
  • Neuhaus JM, Sticher L, Meins F, Jr, Boller T. A short C-terminal sequence is necessary and sufficient for the targeting of chitinases to the plant vacuole. Proc Natl Acad Sci U S A. 1991 Nov 15;88(22):10362–10366.[PMC free article] [PubMed] [Google Scholar]
  • Payne G, Ahl P, Moyer M, Harper A, Beck J, Meins F, Jr, Ryals J. Isolation of complementary DNA clones encoding pathogenesis-related proteins P and Q, two acidic chitinases from tobacco. Proc Natl Acad Sci U S A. 1990 Jan;87(1):98–102.[PMC free article] [PubMed] [Google Scholar]
  • Samac DA, Hironaka CM, Yallaly PE, Shah DM. Isolation and Characterization of the Genes Encoding Basic and Acidic Chitinase in Arabidopsis thaliana. Plant Physiol. 1990 Jul;93(3):907–914.[PMC free article] [PubMed] [Google Scholar]
  • Shinshi H, Neuhas JM, Ryals J, Meins F., Jr Structure of a tobacco endochitinase gene: evidence that different chitinase genes can arise by transposition of sequences encoding a cysteine-rich domain. Plant Mol Biol. 1990 Mar;14(3):357–368. [PubMed] [Google Scholar]
  • Shinshi H, Wenzler H, Neuhaus JM, Felix G, Hofsteenge J, Meins F. Evidence for N- and C-terminal processing of a plant defense-related enzyme: Primary structure of tobacco prepro-beta-1,3-glucanase. Proc Natl Acad Sci U S A. 1988 Aug;85(15):5541–5545.[PMC free article] [PubMed] [Google Scholar]
  • Swegle M, Kramer KJ, Muthukrishnan S. Properties of Barley Seed Chitinases and Release of Embryo-Associated Isoforms during Early Stages of Imbibition. Plant Physiol. 1992 Jul;99(3):1009–1014.[PMC free article] [PubMed] [Google Scholar]
  • Ward ER, Uknes SJ, Williams SC, Dincher SS, Wiederhold DL, Alexander DC, Ahl-Goy P, Metraux JP, Ryals JA. Coordinate Gene Activity in Response to Agents That Induce Systemic Acquired Resistance. Plant Cell. 1991 Oct;3(10):1085–1094.[PMC free article] [PubMed] [Google Scholar]
  • Wong YS, Maclachlan GA. 1,3-beta-d-Glucanases from Pisum sativum Seedlings: III. DEVELOPMENT AND DISTRIBUTION OF ENDOGENOUS SUBSTRATES. Plant Physiol. 1980 Feb;65(2):222–228.[PMC free article] [PubMed] [Google Scholar]
  • Worrall D, Hird DL, Hodge R, Paul W, Draper J, Scott R. Premature dissolution of the microsporocyte callose wall causes male sterility in transgenic tobacco. Plant Cell. 1992 Jul;4(7):759–771.[PMC free article] [PubMed] [Google Scholar]
MOGEN International NV, Einsteinweg 97, 2333 CB Leiden, The Netherlands.
MOGEN International NV, Einsteinweg 97, 2333 CB Leiden, The Netherlands.

Abstract

Different isoforms of chitinases and [beta]-1,3-glucanases of tobacco (Nicotiana tabacum cv Samsun NN) were tested for their antifungal activities. The class I, vacuolar chitinase and [beta]-1,3-glucanase isoforms were the most active against Fusarium solani germlings, resulting in lysis of the hyphal tips and in growth inhibition. In additon, we observed that the class I chitinase and [beta]-1,3-glucanase acted synergistically. The class II isoforms of the two hydrolases exhibited no antifungal activity. However, the class II chitinases showed limited growth inhibitory activity in combination with higher amounts of class I [beta]-1,3-glucanase. The class II [beta]-1,3-glucanases showed no inhibitory activity in any combination. In transgenic tobacco plants producing modified forms of either a class I chitinase or a class I [beta]-1,3-glucanase, or both, these proteins were targeted extracellularly. Both modified proteins lack their C-terminal propeptide, which functions as a vacuolar targeting signal. Extracellular targeting had no effect on the specific activities of the chitinase and [beta]-1,3-glucanase enzymes. Furthermore, the extracellular washing fluid (EF) from leaves of transgenic plants expressing either of the secreted class I enzymes exhibited antifungal activity on F. solani germlings in vitro comparable to that of the purified vacuolar class I proteins. Mixing EF fractions from these plants revealed synergism in inhibitory activity against F. solani; the mixed fractions exhibited inhibitory activity similar to that of EF from plants expressing both secreted enzymes.

Abstract
Full Text
Selected References
Collaboration tool especially designed for Life Science professionals.Drag-and-drop any entity to your messages.